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Abstract—Although deep convolutional neural networks (CNNs) have demonstrated remarkable performance on multiple computer

vision tasks, researches on adversarial learning have shown that deep models are vulnerable to adversarial examples, which are

crafted by adding visually imperceptible perturbations to the input images. Most of the existing adversarial attack methods only create a

single adversarial example for the input, which just gives a glimpse of the underlying data manifold of adversarial examples. An

attractive solution is to explore the solution space of the adversarial examples and generate a diverse bunch of them, which could

potentially improve the robustness of real-world systems and help prevent severe security threats and vulnerabilities. In this paper, we

present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence

of adversarial examples. To improve the efficiency of HMC, we propose a new regime to automatically control the length of trajectories,

which allows the algorithm to move with adaptive step sizes along the search direction at different positions. Moreover, we revisit the

reason for high computational cost of adversarial training under the view of MCMC and design a new generative method called

Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples with only few iterations by

building from small modifications of the standard Contrastive Divergence (CD) and achieve a trade-off between efficiency and

accuracy. Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the

superiority of the proposed algorithm.

Index Terms—Adversarial example, adversarial training, robustness and safety of machine learning

Ç

1 INTRODUCTION

WITH the rapid development and superior performance
achieved in various vision tasks, deep convolutional

neural networks (CNNs) have eventually led to pervasive
and dominant applications in many industries. However,
most deep CNN models could be easily misled by natural
imageswith imperceptible but deceptive perturbations. These
crafted images are known as adversarial examples, which
have become one of the biggest threats in real-world applica-
tions with security-sensitive purposes [1], [2], [3]. Devising an
effective algorithm to generate such deceptive examples can
not only help to evaluate the robustness of deep models, but
also promote better understanding about deep learning for
the future community development.

In the past literature, most state-of-the-art methods are
well-designed for generating a single adversarial example
only, for example, by maximizing the empirical risk minimi-
zation (ERM) over the target model, and might not be able
to exhaustively explore the solution space of adversarial
examples. In our opinion, adversarial examples of a deep

model might form an underlying data manifold [4], [5], [6],
[7] rather than scattered outliers of the classification surface.

Therefore, we argue that it is desirable and critical for
adversarial attack and learning methods to have the ability
of generating multiple diverse adversarial examples in one
run for the following reasons. First, the diversity of adversar-
ial examples can fully verify the robustness of an unknown
system. Second, developing an attack with multiple distinct
adversarial examples would enable adversarial training
with such examples, which could make the model more
robustness against white-box attacks. Third, it is necessary
to preserve multiple adversarial examples since the solution
space of adversarial examples only depends on the targeted
model and its input image even if the objective energy func-
tion of adversarial examples is constantly being improved
[11], [12], [13], [14], e.g., mapping the clipped gradient
descent into tanh space or adding KL-divergence term. A
series of adversarial samples can better depict the manifold
of the solution space than a single global optimal, which can
also bring more stable and superior performance on attack-
ing. In fact, training these representative generative models
also suffers from instability due to the difficulty of finding
the exact Nash equilibrium [15], [16] or tackling memoriza-
tion [17], [18], [19].

Motivated by the aforementioned observations, we rethink
the generation of adversarial examples from the view of prob-
abilistic distribution and develop an innovative paradigm
called Hamiltonian Monte Carlo with Accumulated Momen-
tum (HMCAM) for generating a sequence of adversarial
examples in one run. Given the attack objective energy func-
tion, the HMCAMmethod first constructs a joint distribution
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by Hamiltonian equations and the Metropolis-Hastings algo-
rithm is used to determine whether to transition to the candi-
date sample via the acceptance function based upon the
proposal distribution and the candidate-generating density.
To improve the efficiency of HMC, we further propose a new
regime called accumulated momentum to adaptively control
the step sizes, which allows the algorithm tomovewith differ-
ent step sizes along the search direction at different positions.
Conceptually, our HMCAM paradigm also reveals the roles
of the well-known FSGM family algorithms, including FSGM
[20], I-FGSM [21], PGD [9] andMI-FGSM [10]. These methods
can be considered as special cases of HMCwithminormodifi-
cations. Inspired by our new paradigm, we further design a
new generativemethod, calledContrastiveAdversarial Train-
ing (CAT), which approaches equilibrium distribution of
adversarial examples with only few iterations by building
from small modifications of the standard Contrastive Diver-
gence [22]. We verify the effectiveness of both the adversarial
attack and the training algorithms in multiple scenarios. For
the investigation of adversarial attack, we test our algorithm
on single and ensemble models in both white-box and black-
box manners. Extensive experiments conducted on the
CIFAR10 dataset show that ourmethod achievesmuch higher
success rates with fewer iterations for black-box models and
maintains similar success rates for white-boxmodels. We also
evaluate the proposed HMCAM on the CAAD 2018 defense
champion solution [23]. It outperforms the official baseline
attack andM-PGD (PGDwithmomentum) by a largemargin,
which clearly demonstrates the effectiveness of the proposed
adversarial method. To further show the practical applicabil-
ity of our proposedmethod, we launch our attack on the real-
world celebrity recognition system such as Clarifai, AWS and
Azure. Compared with traditional iterative attack methods,
HMCAM is able to generate more successful malicious exam-
ples to fool the systems through sampling from the likelihood
models. For adversarial training, our CAT algorithm achieves
much higher robustness than any other state-of-the-art adver-
sarial training methods on both the CIFAR-10 and MNIST

datasets and reaches a balance of performance and efficiency.
In summary, this paper has the following contributions:

� We formulate the problem of generating adversarial
examples in a HMC framework, which can produce
multiple fair samples and better represent the under-
lying distribution of the adversarial examples. These
fair samples can well reflect the typical state of the
underlying system, as shown in Fig. 1.

� We design a new regime called accumulated momen-
tum to adaptively control the step sizes, which allows
the algorithm to move with different step sizes along
the search direction at different positions, and thus
improves the efficiency ofHMC.

� We thoroughly compare the effectiveness of our
algorithms in various settings against several itera-
tive attack methods on both CIFAR10 and ImageNet,
including the champion solution in the defense track
of CAAD 2018 competitions. We also investigate the
high efficiency of HMC framework in adversarial
training and show the practical applicability of our
HMCAM by successfully attacking the real-world
celebrity recognition system.

2 RELATED WORK

Adversarial Attacks. Since Szegedy et al. [20] first revealed that
deep learning models were vulnerable to adversarial attacks,
learning how to generate adversarial examples has quickly
attracted wide research interest. Goodfellow et al. [24] devel-
oped a single gradient step method to generate adversarial
examples, which was known as the fast gradient sign method
(FGSM). Kurakin et al. [21] extended FGSM to an iterative ver-
sion and obtainedmuch stronger adversarial examples. Based
on their works, Madry et al. [9] started projected gradient
descent (PGD) from several random points in the L1-ball
around the natural example and iterate PGD. Dong et al. [10]
proposed to add the momentum term into iterative process to
boost adversarial attacks, which won the first places in the
NIPS 2017 Adversarial Attacks and Defenses Competition.
Due to the high efficiency and high success rates, the last two
methods have been widely used as baseline attack models in
many competitions. Our method also belongs to the iterative
attack family but has much faster convergence and better
transferability than alternative methods. When compared
with recent similar works on distributional attack [13], [25],
our HMC-based methods can better explore the distribution
space of adversarial samples and reveal the reason for the
high computational cost of adversarial training from the per-
spective ofMCMC.Adversarial Defense. To dealwith the threat
of adversarial examples, different strategies have been stud-
ied with the aim of finding countermeasures to protect ML
models. These approaches can be roughly categorized into
two main types: (a) detection only and (b) complete defense.
The goal of the former approaches [26], [27], [28], [29], [30],
[31], [32] is to reject the potential malignant samples before
feeding them to theMLmodels. However, it ismeaningless to
pinpoint the defects for developing more robust ML models.
Complimentary to the previous defending techniques, the lat-
ter defense methods often involve modifications in the train-
ing process. For example, gradient masking [33], [34], [35] or

Fig. 1. Iterative Deterministic Generator versus Stochastic MCMC-based
Generator. We choose a natural image to generate 500 adversarial
examples and visualize these samples by t-SNE [8]. In contrast to two
typical iterative deterministic methods (PGD [9] with 500 random restarts
and MI-FGSM [10] selecting samples at the final 500 iterations), MCMC-
based method explores the solution space of adversarial examples and
finds out the decision boundary of target classifier which is easily misled
to erratic discrimination, then generates multiple diverse adversarial
examples to attack. It is clear that our method automatically generates
all of the 500 samples for a certain category in the untargeted attack sce-
nario. When gradually increasing the number of MCMC sampling, the
generated sequence of adversarial examples and their corresponding
frequencies collectively depict the true underlying distribution of adver-
sarial examples.
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randomizedmodels [36], [37], [38], [39], [40] obfuscate the gra-
dient information of the classifiers to confuse the attackmech-
anisms. There are also some add-on modules [23], [41], [42],
[43], [44], [45] being appended to the targeted network to pro-
tect deep networks against the adversarial attacks. Besides all
the above methods, adversarial training [9], [21], [24], [46],
[47] is the most effective way, which has been widely verified
in many works and competitions. However, limited works
[48], [49] focus on boosting robust accuracy with reasonable
training time consumption.

Markov Chain Monte Carlo Methods. Markov chain Monte
Carlo (MCMC)[50] established a powerful framework for
drawing a series of fair samples from the target distribution.
ButMCMC is known for its slow convergence rate which pre-
vents its wide use in time critical fields. To address this issue,
Hamiltonian (or Hybrid) Monte Carlo method (HMC) [51],
[52] was introduced to take advantages of the gradient infor-
mation in the target solution space and accelerate the conver-
gence to the target distribution. Multiple variants of HMC
[53], [54], [55] were also developed to integrate adaptive strat-
egies for tuning step size or iterations of leapfrog integrator.
Recently, the fusion of MCMC and machine learning hastens
wide range of applications, including data-driven MCMC
[56], [57], adversarial training [58], cooperative learning [59],
which shows great potential ofMCMC in deep learning.

3 METHODOLOGY

In this section, we briefly review the Markov chain Monte
Carlo (MCMC) method [50] and Hamiltonian Monte Carlo
(HMC) methods [51], [52]. Then we will explain that most
of the existing methods for generating adversarial examples
are the specializations of HMC. Finally, we illustrate how to
modify the update policy of the momentum item in HMC to
obtain a better trajectory.

3.1 Review: MCMC and Hamiltonian Monte Carlo

We now give the overall description of Metropolis-Hasting
based MCMC algorithm. Suppose p is our target distribution
over a space D, MCMC methods construct a Markov Chain
that has the desired distribution p as its stationary distribution.
At the first step, MCMC chooses an arbitrary point x0 as the
initial state. Then it repeatedly performs the dynamic process
consisting of the following steps: (1)Generate a candidate sam-
ple ~x as a “proposed” value for xtþ1 from the candidate-gener-
ating densityQðxtj~xÞ, which generates a value ~x fromQðxtj~xÞ
when a process is at the state xt. (2) Compute the acceptance
probability � ¼ minð1; pð~xÞQðxt j~xÞ

pðxtÞQð~xjxtÞÞ, which is used to decide

whether to accept or reject the candidate. (3) Accept the candi-
date sample as the next state with probability � by setting
xtþ1 ¼ ~x. Otherwise reject the proposal and remain xtþ1 ¼ xt.
Although MCMC makes it possible to sample from any
desired distributions, its random-walk nature makes the Mar-
kov chain converge slowly to the stationary distribution pðxÞ.

In contrast, HMC employs physics-driven dynamics to
explore the target distribution, which is much more efficient
than the alternative MCMC methods. Before introducing
HMC, we start out from an analogy of Hamiltonian systems
in [52] as follows. Suppose a hockey puck sliding over a sur-
face of varying height and both the puck and the surface are
frictionless. The state of the puck is determined by potential

energy UðuÞ and kinetic energy KðvÞ, where u and v are the
position and the momentum of the puck. The evolution
equation is given by the Hamilton’s equations:

@u
@t ¼ @H

@v ¼ rvKðvÞ
@v
@t ¼ @H

@u
¼ �ruUðuÞ:

�
(1)

Due to the reversibility of Hamiltonian dynamics, the total
energy of the system remains constant:

Hðu; vÞ ¼ UðuÞ þKðvÞ: (2)

As for HMC, it contains three major parts: (1) Hamilto-
nian system construction; (2) Leapfrog integration; (3)
Metropolis-Hastings correction. First, the Hamiltonian is an
energy function for the joint density of the variables of inter-
est u and auxiliary momentum variable v, so HMC defines a
joint distribution via the concept of a canonical distribution:

pðu; vÞ / exp
�Hðu; vÞ

t

� �
; (3)

where t ¼ 1 for the common setting. Then, HMC discretizes
the system and approximately simulates Eq. (1) over time
via the leapfrog integrator. Finally, because of inaccuracies
caused by the discretization, HMC performs Metropolis-
Hastings [60] correction without reducing the acceptance
rate. A full procedure of HMC is described in Algorithm 1.

Algorithm 1.Hamiltonian Monte Carlo

Inputs: Target distribution pðuÞ, initial position uð1Þ and step size a
1: /*Hamiltonian system construction*/
2: UðuÞ ¼ �log pðuÞ,KðvÞ ¼ vT I�1v=2
3: for s ¼ 1; 2; � � � do
4: v0 � Nð0; IÞ, u0 ¼ uðsÞ

5: /*Leapfrog integration*/
6: v0  v0 � a

2rU u0ð Þ
7: for t ¼ 1 to T do
8: ut  ut�1 þ arK vt�1ð Þ
9: vt  vt�1 � arU utð Þ
10: end for
11: vT  vT � a

2rU uTð Þ
12: /*Metropolis-Hastings correction*/
13: u � Uniform(0,1)
14: if u < minð1; eHðuT ;vT Þ�Hðus;vsÞÞ then
15: uðsþ1Þ  uT
16: else
17: uðsþ1Þ  uðsÞ

18: end if
19: end for

According to Eqs. (2) and (3), the joint distribution can be
divided into two parts:

pðu; vÞ / exp
�UðuÞ

t

� �
exp

�KðvÞ
t

� �
: (4)

Since KðvÞ is an auxiliary term and always setting KðvÞ ¼
vT I�1v=2 with identity matrix I for standard HMC, our aim
is that the potential energy UðuÞ can be defined as UðuÞ ¼
�log pðuÞ to explore the target density p more efficiently
than using a proposal probability distribution. If we can cal-

culate ruUðuÞ ¼ � @log ðpðuÞÞ
@u

, then we can simulate Hamilto-

nian dynamics that can be used in an MCMC technique.
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subsectionSimulating Adversarial Examples Generating
by HMC Considering a common classification task, we have
a dataset D that contains normalized data x 2 ½0; 1�d and
their one-hot labels y. We identify a target DNN model with
an hypothesis fð�Þ from a space F . The cross entropy loss J
function is used to train the model. Assume that the adver-
sarial examples for x with label y are distributed over the
solution space V. Given any input pair ðx; yÞ, for a specified
model fð�Þ 2 F with fixed parameters, the adversary wants
to find such examples ~x that can mislead the model:

V ¼ arg max
NðxÞ�N ðxÞ

Z
J ~x; yð Þp ~xjx; yð Þd~x; (5)

where NðxÞ is the neighboring regions of x and defined as
x0 2 N ðxÞ :¼ f x0 � xk k1;2;or1� �g. From the perspective of
Bayesian statistics, we can make inference about adversarial
examples over a solution space V from the posterior distri-
bution of ~x given the natural inputs x and labels y.

~x � pð~xjx; yÞ / pðyj~xÞpð~xjxÞ; ~x 2 V: (6)

In Hamiltonian system, it becomes to generate samples
from the joint distribution pðu; vÞ. Let u ¼ ~x, according to
Eqs. (6) and (4), we can express the posterior distribution as a
canonical distribution (with t ¼ 1) using a potential energy
function defined as:

U ¼ 1

N

XN
i¼1
�log pðyðiÞj~xðiÞÞ � log pð~xjxÞ

¼ J ~x; yð Þ � log pð~xjxÞ:
(7)

Since J ~x; yð Þ is the usual classification likelihood measure,
the question remains how to define pð~xjxÞ. A sensible choice
is a uniform distribution over the Lp ball around x, which
means we can directly use a DNN classifier to construct a
Hamiltonian system for adversarial examples generating as
the base step of HMC.

Recall that the development of adversarial attacks is
mainly based on the improvement of the vanilla fast gradi-
ent sign method, which derives I-FGSM, PGD and MI-
FGSM. For clarity, we omit some details about the correc-
tion due to the constraint of adversarial examples. The core
policy of the family of fast gradient sign methods is:

~xt ¼ ~xt�1 þ a � signðgtÞ; (8)

where gt is the gradient of J at the tth iteration, i.e.,
rxJð~xt�1; yÞ. It is clear that the above methods are the spe-
cialization of HMC by setting:

ut ¼ ~xt; vt ¼ gtHðu; vÞ ¼ JðuÞ þ jvj: (9)

More specifically, I-FGSM can be considered as the degenera-
tion of HMC, which explicitly updates the position item u but
implicitly changes the momentum item v at every iteration.
One of the derivation of I-FGSM, MI-FGSM, has explicitly
updated both u and v by introducing gt ¼ mgt�1 þ 1

jjrJð~xt�1;yÞjj1rJð~xt�1; yÞ after Eq. (8) at each step with the decay factor m ¼
1. The other derivative PGD runs Eq. (8) on a set of initial points
~x0 2 f~xð1Þ0 ; ~x

ð2Þ
0 ; � � � ; ~xðSÞ0 g adding different noises, which can be

treated as a parallel HMC but the results are mutually
independent.

Algorithm 2.HMCAM

Inputs: Target DNN model fð�Þ with loss function J , initial
position uð0Þ ¼ x, step size a, sampling transition S, updating
iteration T , magnitude of perturbation " and small constant d
Inputs: exponential decay rates for the moment estimates b1 ¼
0:95, b2 ¼ 0:999
1: /*Hamiltonian system construction*/
2: UðuÞ ¼ J ,KðvÞ ¼ jvj
3: for s ¼ 1 to S do
4: Initialize v0  0; e0  0; ê0  0
5: /*Accumulated Momentum*/
6: for t ¼ 1 to T do
7: b1  1� bt

1, b2  1� bt
2

8: vt  b1 � vt�1 � b1 � 1ð Þ � ruJðut�1; yÞ
9: et  b2 � et�1 � b2 � 1ð Þ � r2

uJðut�1; yÞ
10: êt  maxðet; êtÞ
11: ut  ut�1 þminð"; a

b1ð
ffiffiffi
êt
b2

q
þdÞ
ÞrvKðvtÞ

12: ut  P"�ballðutÞ
13: end for
14: /*Metropolis-Hastings correction*/
15: u � Uniform(0,1)
16: if u < minð1; eHðuT ;vT Þ�Hðus;vsÞÞ then
17: uðsþ1Þ  uT
18: else
19: uðsþ1Þ  uðsÞ

20: end if
21: end for
22: Return A sequence of adversarial examples uf g

3.2 Adaptively Exploring the Solution Space With
Accumulated Momentum

Although the above formulation has proved that HMC can be
used to simulate adversarial examples generating, one major
problem of these methods is that u and v are not independent
because of vt ¼ rJðut�1Þ as discussed in Eq. (9). The other dis-
advantage is in optimization: SGD scales the gradient uni-
formly in all directions, which can be particularly detrimental
for ill-scaled problems. Like the need to choose step size in
HMC, the laborious learning rate tuning is also troublesome.

To overcome the above two problems, we present a Hamil-
tonianMonteCarlowithAccumulatedMomentum (HMCAM)
for adversarial examples generating. The resulting HMCAM
algorithm is shown in Algorithm 2. The core of our accumu-
latedmomentum strategy is using exponentialmoving average
(EMA) to approximate the first and second moment of the sto-
chastic gradient byweighted accumulating the historymoment
information. Let us initialize the exponential moving average
as v0 ¼ e0 ¼ 0. After t inner-loop steps, the accumulated
momentum vt is:

vt ¼ 1� b1ð Þ
Xt

i¼1
bt�i
1 ruJðui�1Þ

¼ ð1� b1Þ ruJðut�1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Current term

þ b1 ½ruJðut�2Þ þ b1ruJðut�3Þ þ � � � þ bt�2
1 ruJðu0Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

History term

:

(10)
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The derivation for the second moment estimate et is
completely analogous. Owing to the fact that the decay rates
b1 close to 1 is typically recommended in practice, the contri-
bution of older gradients decreases exponentially. But mean-
while, we can observe in Eq. (10) that the current gradient
only accounts for 1� b1 ! 0, which is much smaller than b1.
This indicates that performing exponential moving averages
for the step in lieu of the gradient greatly reduces the rele-
vance between vt and the current position ut�1. That makes
the sequence of samples into an approximateMarkov chain.

As for step size, there always be a tradeoff between using
long trajectories tomakeHMCmore efficient or using shorter
trajectories to update more frequently. Ignoring small con-
stant d, our accumulatedmomentum is to update the position
by:

ut ¼ ut�1 þ aDu ¼ ut�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bt

2

q
ð1� bt

1Þ
� ajvtj �

vtffiffiffiffi
et
p ; (11)

where
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bt

2

q
=ð1� bt

1Þ corrects the biasd estimation of
moments towards initial values at early stages due to the
property of EMA. When approaching to the minima, a=jvtj
automatically decreases the size of the gradient steps along
different coordinates. Because vt=

ffiffiffiffi
et
p

leads to smaller effec-
tive steps in solution space when closer to zero, this aniso-
tropic scale of step size helps u to escape sharp local
minimal at the later period of the learning process at some
coordinates, which leads to better generalization. We apply
similar idea as [61] by replacing e to ê that maintains the
maximum of all history e to keep a non-increasing step size
ð ffiffiffiffiffiffiffiffi

etþ1
p � ffiffiffiffi

et
p Þ=at 	 0. To guarantee the step size does not

exceed the magnitude of adversarial perturbations, we con-
fines the a to a predefined maximum " by applying ele-
ment-wisemin.

Algorithm 3. Contrastive Adversarial Training

Input: A DNN classifier fvð�Þ with initial learnable parameters
v0; training data x with visible label y; number of epochs N ;
length of trajectory K; repeat time T ; magnitude of perturba-
tion "; learning rate k; step size a.
/*Stage-0: Construct Hamiltonian system*/
Uðu;v; ~v; y; kÞ ¼ �Jcd fvðuk�1Þ; f~vðuKÞ; y

� �
, KðvÞ ¼ jvj

Initialize v ¼ ~v ¼ v0, u
K ¼ u0.

for epoch ¼ 1 � � �N=ðTKÞ do
u0  xþ v0, v0 � Uniformð�"; "Þ.
for t ¼ 1 to T do

/*Stage-1: Generate adversarial examples by K-step contrastive
divergence*/

for k ¼ 1 toK do
uk  uk�1 þ " � rKðvt�1Þ
vt  vt�1 � arUðu;v; ~v; y; kÞ
vt  clipðvt;�"; "Þ

end for
/*Stage-2: Update parameters of DNN by generated adversarial

examples*/
ggv  Eðu;yÞ rvJceðfvðuKÞ; yÞ

	 

~v v

v v� kggv
end for

end for

After every full inner iteration, we calculate the acceptance
rate of the candidate sample byM-H sampling and reinitialize
the first/second moment as well as the maximum of second
moment to zero and then perform the next generation. M-H
algorithm distributes the generating samples to staying in
high-density regions of the candidate distribution or only
occasionally visiting low-density regions through the accep-
tance probability. As more and more sample are produced,
the distribution of samples more closely approximates the
desired distribution and its returning samples are more in
line with such distribution than other works like PGD with
random starts.

4 CONTRASTIVE ADVERSARIAL TRAINING

Assume softmax is employed for the output layer of the
model fð�Þ and let fðxÞ denote the softmax output of a given
input x 2 Rd, i.e., fðxÞ : Rd ! RC , where C is the number of
categories. We also assume that there exists an oracle map-
ping function f
 2 F : x 7! y
, which pinpoints the belonging
of the input x to all the categories by accurate confidence
scores y
 2 RC . The common training is to minimize the
cross-entropy (CE) loss, which is defined as:

f ¼ argmin
f2F

E x;yð Þ�D Lce fðxÞ; yð Þ½ �; (12)

where y is the manual one-hot annotation of the input x
since y
 is invisible. The goal of Eq. (12) is to update the
parameters of f for better approaching f
, which leads to:

fðxÞ � y � y
 ¼ f
ðxÞ: (13)

Suppose the target DNN model correctly classifies most of
the input after hundreds of iterations, it will still be badly mis-
classified by adversarial examples (i.e., argmaxc2 1;���;Cf gfð~xÞc 6¼
y½c�). In adversarial training, these constructed adversarial
examples are used to updates themodel usingminibatch SGD.
The objective of this minmax game can be formulated as a
robust optimization following [9]:

f 0 ¼ argmin
f2F

E
x;yð Þ�D

max~x2NðxÞLce f ~xð Þ; yð Þ	 

: (14)

As mentioned in Section 3.1, the inner maximization
problem can be reformulated as the process of HMC. It is
obvious that the high time consumption of adversarial train-
ing is caused by the long trajectory of HMC. But running a
full trajectory for many steps is too inefficient since the
model changes very slightly between parameter updates.
Thus, we take advantage of that by initializing a HMC at
the state in which it ended for the previous model. This ini-
tialization is often fairly close to the model distribution,
even though the model has changed a bit in the parameter
update. Besides, the high acceptance rate of HMC indicates
that it is not neccesary to run a long Markov Chain from the
initial point. Therefore, we can simply run the chain for one
full step and then update the parameters to reduce the ten-
dency of the chain to wander away from the initial distribu-
tion on the first step instead of running the full trajectory to
equilibrium. We takes small number K of transitions from
the data sample xif gni¼ 1 as the initial values of the MCMC
chains and then use these K-step MCMC samples to

WANG ET AL.: HAMILTONIAN MONTE CARLO METHOD FOR PROBABILISTIC ADVERSARIAL ATTACK AND LEARNING 1729

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 05,2022 at 15:59:22 UTC from IEEE Xplore.  Restrictions apply. 



approximate the gradient for updating the parameters of
the model. Algorithm 3 summarizes the full algorithm.

Moreover, we also present a new training objective func-
tion Jcd, which minimizes the difference of KL divergence
between two adjacent sampling steps to substitute the com-
mon KL loss:

Jcd ¼ rðQ0 Q1Þ � �ðQ1
�� ��Q1Þ; (15)

where jj denotes a Kullback-Leibler divergence and r and �
are the balanced factors. The intuitive motivation for using
this Jcd is that we would like every state in HMC exploring
to leave the initial distribution Q0 and Q0jjQ1 would never
exceed Q1jjQ1 until Q1 achieves the equilibrium distribu-
tion. We set � ¼ 2; r ¼ 1 and analyze how this objective
function influences the partial derivative of the output prob-
ability vector with respect to the input. Due to the fact that
the equilibrium distribution Q1 is considered as a fixed dis-
tribution and the chain rule, we only need to focus on the
derivative of the softmax output vector with respect to its
input vector in the last layer as follows:

rUlast ¼ 2
X
c

yc
@log fvð~xKÞc

@~x0
�
X
c

yc
@log f~v ~xð Þc

@~x0

¼ 2fvð~xKÞc
X
c

yc � f~v ~xð Þc
X
c

yc � y

¼ fvðxKÞ � ðy� DfÞ;

(16)

where Df ¼ fvðxKÞ � f~v ~xð Þ. Based on this abbreviation, we
can easily get the relationship between Eq. (16) and @Jce

@~x0 ¼
fvðxKÞ � y. For each adversarial example generation, Eq. (16)
makes an amendment of y which is determined by the differ-
ence of current and the last K-step HMC samples output
probability. Since fv and fvðxÞ are more closer to f
 and y


than f~v and f~vðxÞ, each update of ~xwould be better corrected.

5 EXPERIMENT

In this section, we conduct extensive experimental evalua-
tions of our proposed methods on three benchmarks:
CIFAR10 [62], ImageNet [63] andMNIST [64]. First, we briefly
introduce the major implementation settings in Section 5.1,
and perform comprehensive comparisons to verify the superi-
ority of our HMCAMmethod on single and ensemblemodels
in both white-box and black-box manners in Sections 5.2 and
5.3. Then, we perform detailed ablation studies to demon-
strate the influence of different aspects in HMCAM and
explore the possibility of few sample learning for competitive
results in adversarial training in Section 5.4. To further test the
efficiency of CAT method in adversarial training, we provide
detailed quantitative comparison results of our proposed
models in Section 5.5. Finally, to investigate the generalization
of our approach, we also perform experiments on ImageNet
against the champion solution in the defense track of CAAD
2018 competitions in Section 5.6.1 and attempt to launch
attack on public face recognition systems in Section 5.6.2.

5.1 Datasets and Implementation Details

Datasets. We employ the following four benchmark datasets
for a comprehensive evaluation to validate the effectiveness
of our HMCAM and CAT methods.

� CIFAR10 [62] is a widely used dataset consisting of
60,000 colour images of 10 categories. Each category
has 6,000 images. Due to the resource limitation,
we mainly focus on the CIFAR10 [62] dataset with
extensive experiments to validate the effectiveness of
the proposed methods on both adversarial attack
and training.

� ImageNet [63] a large dataset with 1,283,166 images in
the training set and 50,000 images in the validation
set images collected from the Web. It has 1,000 syn-
sets used to label the images. As it is extremely time-
consuming to train a model from scratch on Image-
Net, we only use it to test the generalization of our
approach, which fights against the champion solu-
tion in the defense track of CAAD 2018 competitions.

� MNIST [64] is a database for handwritten digit classi-
fication. It consists of 60,000 training images and
10,000 test images, which are all 28� 28 greyscale
images, representing the digits 0�9. In this experi-
ment, we only perform different adversarial training
methods on MNIST.

Implementation Details. For adversarial attack, we pick six
models, including four normally trained single models
(ResNet32 [65], VGG16 (without BN)[66], ResNetXt29-8-64
[67] and DenseNet121 [68]) and one adversarially trained
ensemble models (Resnet32A). The hyper-parameters of
different attack methods follow the default settings in [69]
and the total iteration number is set to N ¼ 100 (in most
cases T ¼ N except HMCAM). We fix T ¼ 50 and S ¼ 2
for HMCAM, and the decay rate m is set to 1.0 for M-PGD
(MI-FGSM+PGD). The magnitude of maximum perturba-
tion at each pixel is " ¼ 2=255. For simplicity, we only
report the results based on L1 norm for the non-targetd
attack.

For adversarial training, we follow the training scheme
used in Free [48] and YOPO [49] on CIFAR10. We choose
the standard Wide ResNet-34 and Preact-ResNet18 follow-
ing previous works [9], [49]. For PGD adversarial training,
we set the total epoch number N ¼ 105 as a common prac-
tice. The initial learning rate is set to 5e-2, reduced by 10
times at epoch 79, 90 and 100. We use a batch size of 256, a
weight decay of 5e-4 and a momentum of 0.9 for both algo-
rithms. During evaluating, we test the robustness of the
model under CW [12], M-PGD and 20 steps of PGD with
step size " ¼ 2=255 and magnitude of perturbation " ¼
8=255 based on L1 norm. When performing YOPO and
Free, we train the models for 40 epochs and the initial learn-
ing rate is set to 0.2, reduced by 10 times at epoch 30 and 36.
As for ImageNet, we fix the total loop times T 
K ¼ 4 same
as Free-4 [48] for fair comparison. For all methods, we use a
batch size of 256, and SGD optimizer with momentum 0.9
and a weight decay of 1e-4. The initial learning rate is 0.1
and the learning rate is decayed by 10 every 30=TK epochs.
We also set step size � ¼ 4=255 and magnitude of perturba-
tion " ¼ 4=255 based on L1 norm.

5.2 Attacking a Single Model

We compare the attack success rates of HMCAMwith the fam-
ily of FGSM on a single network in Table 2. The adversarial
examples are created by one of the six networks in turns and
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test on all of them. The italic columns in each block indicate
white-box attacks and others refer to black-box attacks. From
the Table 2, we can observe that HMCAM outperforms all
other FGSM family attacks by a large margin in black-box sce-
nario, and maintains comparable results on all white-box
attacks with M-PGD. For example, HMCAM obtains success
rates of 74.92 percent on ResNetXt29-8-64 (white-box attack),
78.37 percent on DenseNet121 (black-box attack on normally
trained model) and 14.11 percent on Resnet32A (black-box
attack on adversarially trained model) if adversarial examples
are crafted on ResNetXt29-8-64, whileM-PGD only reaches the
corresponding success rates of 72.81, 42.53 and 10.11 percent,
respectively. Considering that the white-box attack is usually
used as a launch pad for the black-box attack, this demon-
strates the practicality and effectiveness of our HMCAM for
improving the transferability of adversarial examples.

Note that AI-FGSM is a special case of HMCAM (T ¼ N ,
S ¼ 1), which means AI-FGSM only carries out the inner
loop in Algorithm 2 for position and momentum updating.
But AI-FGSM also reaches much higher success rates than
FSGM family. This shows the superiority of our accumulated
momentum strategy.

5.3 Attacking an Ensemble of Models

Although our AI-FGSM and HMCAM better improve the
success rates for attacking model in black-box scenario, the
results of all the attack methods on adversarially trained
model, e.g., Resnet32A, are far from satisfactory. To solve
this problem, generating adversarial examples on the
ensemble models [10], [70], [71] rather than a single model
have been broadly adopted in the black-box scenario for
enhancing the transferability and shown its effectiveness.

For the ensemble-based strategy, each one of the six mod-
els introduced above will be selected as the hold-out model
while the rest build up an ensemble model. The ensemble
weights are set equally for all the six models. The results are
shown in Table 3. The ensemble block consists of the white-
box attack which uses the ensemble model to attack itself,
and the hold-out block is composed of the black-box attack
that utilizes the ensemble model to generate adversarial
examples for its corresponding hold-out model.

We can observe from Table 3 that our AI-FGSM and
HMCAM always showmuch better transferability than other
methods no matter which target model is selected. For exam-
ple, the adversarial examples generated by an ensemble of

TABLE 1
Relationship Between HMC and the Family of Fast Gradient Sign Methods

Methods
Hamiltonian system construction Iteration

Metropolis-Hastings correction
potential energy? kinetic energy? sampling? u update? v update?

FGSM [24] @, but implicit @, but implicit x x x x
I-FGSM [21] @, but implicit @, but implicit x @ x x
PGD [9] @, but implicit @, but implicit @, but independent @ x x
MI-FGSM [10] @, but implicit @, but implicit x @ @ x

TABLE 2
The Success Rates of Several of Non-Targeted Attacks Against a Single Network on CIFAR10

Model Attack ResNet32 VGG16 ResNetXt Densenet121 ResNet32_A

ResNet32

FGSM 38.31% 29.30% 19.89% 22.64% 3.79%
PGD 98.12% 34.92% 49.44% 56.50% 4.60%

M-PGD 98.93% 37.89% 55.48% 61.01% 7.44%
AI-FGSM (Ours) 98.76% 42.23% 58.12% 64.12% 9.56%
HMCAM (Ours) 98.76% 42.69% 58.76% 65.20% 10.01%

VGG16

FGSM 37.86% 56.34% 27.34% 31.54% 4.22%
PGD 59.39% 80.55% 50.50% 55.72% 5.52%

M-PGD 64.02% 83.64% 54.95% 60.48% 7.75%
AI-FGSM (Ours) 64.77% 86.76% 53.38% 59.45% 9.83%
HMCAM (Ours) 68.60% 93.29% 55.39% 62.70% 10.26%

ResNetXt

FGSM 27.44% 28.52% 31.74% 24.03% 4.50%
PGD 65.48% 35.19% 96.60% 69.13% 6.55%

M-PGD 72.81% 38.50% 98.02% 76.55% 10.11%
AI-FGSM (Ours) 74.42% 42.73% 97.65% 77.09% 13.48%
HMCAM (Ours) 74.92% 42.53% 97.75% 78.37% 14.11%

Densenet121

FGSM 26.87% 29.40% 20.42% 30.96% 4.42%
PGD 63.38% 35.70% 57.22% 95.34% 5.67%

M-PGD 66.07% 39.16% 59.48% 97.83% 8.33%
AI-FGSM (Ours) 69.64% 41.41% 63.35% 96.49% 9.77%
HMCAM (Ours) 69.82% 42.45% 63.87% 96.39% 10.36%

The Maximum Perturbation is " ¼ 2=255. The italic columns in each block indicate white-box attacks while the rest are all black-box attacks which are more prac-
tical but challenging. Results have shown that our proposed methods (AI-FGSM and HMCAM) greatly improve the transferability of generated adversarial
examples. We compare our AI-FGSM and HMCAMwith FGSM, PGD and M-PGD (MI-FGSM+PGD), respectively.
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ResNet32, VGG16 and DenseNet121 (ResNetXt29-8-64 hold-
out) can fool ResNetXt29-8-64 with a 83.07 percent success
rate. Moreover, our proposed methods can remarkably boost
the transferability of adversarial examples on adversarially
trainedmodel.

5.4 Ablation Study on Adversarial Attack

In the following sections, we perform several ablation experi-
ments to investigate how different aspects of HMCAM influ-
ence its effectiveness. For simplicity, we only attack five single
models introduced in the previous section, and focus on com-
paring our HMCAM with M-PGD since M-PGD is one of the
most effective iterative attack method so far. We report the
results in bothwhite-box and black-box scenarios.

5.4.1 Influence of Iteration Number

To further demonstrate how fast our proposed method con-
verges, we first study the influence of the total iteration
number N on the success rates. We clip a snippet over a
time span of 10 iterations from the very beginning. Results
are shown in Fig. 2.

These results indicate that (1) the success rate of HMCAM
against both white-box and black-box models are higher than
M-PGD at all stages when combining with the extensive com-
parisons in Table 2, which shows the strength of our
HMCAM. (2) Evenwhen the number of iterations is one order
lower than that in Table 2, the success rate of both HMCAM
and M-PGD are still higher than PGD on the black-box sce-
nario. Moreover, HMCAM (N ¼ 10) reaches higher values
than PGD (N ¼ 100), demonstrating thatHMCAMhas strong
attack ability and fast converges on both the white-box and
black-box scenarios.

5.4.2 Influence of Step Size

We also study the influence of the step size a on the success
rates under both white-box and black-box settings. For sim-
plicity, we fix the total iteration N ¼ 100 and set S ¼ 1 for
HMCAM. We control the step size a in the range of
0:001; 0:01; 0:03; 0:1f g � e�2. The results are plotted in Fig. 3.
It can be observed that HMCAM outperforms M-PGD on
both small and large step size. Under both the white-box and
the black-box settings, our HMCAM is insensitive to the step
size attributing to the accumulatedmomentum strategy.

5.4.3 Fewer Samples for Competitive Results

Since HMCAM is able to explore the distribution of adversar-
ial examples, we finally investigate what aspects of systems
are strengthened by ourmethod. We also investigate whether
the competitive result can be achieved with fewer samples
when compared to the regular adversarial training.We gener-
ate adversarial images using FGSM, BIM andPGD to adversa-
rially retrain the model and remain M-PGD to attack. We fix
the total iterationN ¼ S 
 T ¼ 100. To test the diversity of our
generated samples, we select only d ¼ 50 samples from the
whole training set for generating adversarial samples, then
mixed into the training set for adversarial training. For fair
comparison, we allow other methods except HMCAM to
select more samples satisfying d0 ¼ d 
 S. We sweep the sam-
pling number S among 1; 2; 5; 10; 20; 50; 100f g. The results are
plotted in Fig. 4. It is clear to see that the system trained by our
HMCAM, only using two orders of magnitude fewer natural
samples than any other method, can achieve comparable
robustness. Considering the compared methods utilize the
extra samples truly on the adversarial manifold, this indicates
that ourHMCAMdraws the distribution of adversarial exam-
pleswith few samples indeed.

Fig. 2. The success rates of M-PGD (left) and HMCAM (right) on
CIFAR10 over the first 10 iterations, with " ¼ 2=255. Solid lines represent
the white-box attacks and dashed lines represent the black-box attacks.
“A! B” means that model B is attacked by adversarial examples gener-
ated by model A.

Fig. 3. The success rates of M-PGD (left) and HMCAM (right) on CIFAR10
after 100 iterations, with " ¼ 2=255. Solid lines represent the white-box
attacks and dashed lines represent the black-box attacks. “A! B” means
thatmodel B is attacked by adversarial examples generating bymodel A.

TABLE 3
The Success Rates of Several of Non-Targeted Attacks Against an Ensemble of Networks on CIFAR10

Attack -ResNet32 -VGG16 -ResNetXt29-8-64 -DenseNet121 -ResNet32_A

Ensemble Hold-out Ensemble Hold-out Ensemble Hold-out Ensemble Hold-out Ensemble Hold-out

FGSM 28.27% 30.74% 31.08% 31.43% 29.47% 25.34% 29.64% 27.70% 28.45% 7.53%
PGD 90.97% 80.73% 94.79% 50.30% 91.05% 80.14% 92.13% 82.11% 92.11% 13.88%
M-PGD 92.13% 81.92% 96.47% 52.48% 92.60% 80.83% 93.60% 83.85% 92.48% 21.23%
AI-FGSM (Ours) 92.62% 83.12% 96.06% 56.54% 92.94% 82.29% 93.47% 84.46% 93.04% 28.31%
HMCAM (Ours) 92.81% 83.76% 96.29% 57.43% 92.99% 83.07% 93.88% 85.38% 94.18% 30.11%

The maximum perturbation is " ¼ 2=255. We report the results on the ensemble network itself (white-box scenario) and its corresponding hold-out network
(black-box scenario). Model with “-” indicates it is the hold-out network. We compare our AI-FGSM and HMCAM with FGSM, PGD and M-PGD (MI-FGSM
+PGD), respectively.
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5.5 Efficiency for Adversarial Training

In this subsection, we investigate whether the training time of
adversarial training can benefit from the view of HMC since
the high computational cost of adversarial training can be eas-
ily attributed to the long trajectory of MCMC finding the sta-
tionary distribution of adversarial examples. We take fixed but
small number k of transitions from thedata sample as the initial
values of the MCMC chains and then use these k-step MCMC
samples to approximate the gradient for updating the parame-
ters ofmodel.We calculate the deviation value of the last 5 eval-
uations and report the average over 5 runs. Results about
Preact-ResNet18 and Wide ResNet34 on CIFAR10 are shown
in Tables 4 and 5, respectively. Our CAT method greatly boost
the robust accuracy in a reasonable training speed.

We also present a comparison in terms of both clean accu-
racy and robust accuracy per iteration on all methods evalu-
ated during training in Fig. 5. When compared with YOPO,
the robust accuracy of our CAT method rises steadily and
quicklywhile YOPOvibrates greatly and frequently.

For ImageNet, we report the average results over last three
runs. Comparison between free adversarial training and ours
are shown in Table 6. Although the 2-PGD trained ResNet-50
model still maintains its leading role in the best robust accu-
racy, it takes three times longer than our CAT method. Actu-
ally, when compared with its high computational cost of
ImageNet training, this performance gain can be considered

inefficient or even impractical for resource limited entities.
We also compare ResNet-50 model trained by our CAT
methodwith the Free-4 trained,model trained byCATprodu-
ces much more robust models than Free-4 against different
attacks in almost the same order of time.

We also investigate our CAT method on MNIST. We
choose a simple ConvNet with four convolutional layers fol-
lowed by three fully connected layers, which is of the same
as [49]. For PGD adversarial training, we train the models
for 55 epochs. The initial learning rate is set to 0.1, reduced
by 10 times at epoch 45. We use a batch size of 256, a weight
decay of 5e-4 and a momentum of 0.9. For evaluating, we
perform a PGD-40 and CW attack against our model and set
the size of perturbation as " ¼ 0:3 based on L1 norm as a
common practice [9], [49], [72]. Results are shown in Table 7.

5.6 Competitions and Real World Systems Attack

5.6.1 Attack CAAD 2018 Defense Champion

Adversarial Attacks and Defenses (CAAD) 2018 is an open
competition involving an exciting security challenge which

Fig. 4. Comparison with different adversarial training methods on
CIFAR10. We use M-PGD as the attacker and report its success rate,
with " ¼ 2=255. Our HMCAM can use two orders of magnitude fewer
samples than other methods to simulate the target distribution.

TABLE 4
Validation Accuracy and Robustness of Preact-ResNet18 on CIFAR10

Methods Natural PGD-20 Attack M-PGD-20 Attack CW Attack Speed (mins)

Natural train 93.78% 0.00% 0.00% 0.00% 47
PGD-10 [9] 84.96%
0.12% 41.58%
0.11% 39.47%
0.27% 58.88%
0.33% 132
Free-8 [48] 82.44%
0.37% 42.07%
0.44% 41.88%
0.53% 57.02%
0.22% 110
YOPO-5-3 [49] 82.65%
0.75% 42.56%
0.83% 41.85%
0.44% 56.93%
0.71% 66

CAT (Ours) 81.54%
0.31% 49.37%
0.27% 48.56%
0.09% 61.28%
0.29% 114

The maximum perturbation of all the attackers is " ¼ 8=255. We report average over 5 runs on a single NVIDIA GeForce GTX XP GPU. The best result under
different attack methods is in bold.

TABLE 5
Validation Accuracy and Robustness of Wide ResNet34 on CIFAR10

Methods Natural PGD-20 Attack M-PGD-20 Attack CW Attack Speed (mins)

Natural train 94.58% 0.00% 0.00% 0.00% 212
PGD-10 [9] 87.11%
0.37% 48.4%
0.22% 44.37%
0.11% 45.91%
0.14% 2602
Free-8 [48] 84.29%
1.44% 47.8%
1.32% 47.01%
0.19% 46.71%
0.22% 646
YOPO-5-3 [49] 84.72%
1.23% 46.4%
1.49% 47.24%
0.25% 47.5%
0.37% 457

CAT (Ours) 85.39%
0.33% 53.3%
0.64% 52.41%
0.18% 52.55%
0.2% 672

The maximum perturbation of all the attackers is " ¼ 8=255. We report average over 5 runs on a single NVIDIA GeForce GTX XP GPU. The best result under
different attack methods is in bold.

Fig. 5. Comparison with different adversarial training methods on both
clean accuracy and robust accuracy (against PGD-10 with " ¼ 8=255) of
Wide ResNet34 on CIFAR10 at every iteration.
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stimulate the interest of a wide range of talents from industry
and academia on adversarial learning. In the defense track of
CAAD2018, the champion solution [23] devised new network
architectures with novel non-local means blocks and better
adversarial training scheme,which greatly surpassed the run-
ner-up approach under a strict criterion. We download the
meticulously pretrained models1 and apply our proposed
method to attack the approach with default settings. We com-
pare three attack methods (baseline, M-PGD and our
HMCAM) on ResNet152A, ResNet152AD and ResNeXt101AD
with 10/100 attack iterations, where A is denoted as using
adversarial training and D presents being equipped with
denoising blocks. Results are shown in Table 8. Note that the
baseline attack method is one of the strongest white-box
attacker as recent works [23], [46]. From the Table 8, we can
see that M-PGD is ineffective for attacking adversarially
trained models with denoising blocks. Our proposed method
outperforms both official baseline method and M-PGD. It is
worth mentioning that our proposed method also outper-
forms one of the recent distributionally adversarial attack
methodDAA [13], which proposes a specific energy function-
als combined the cross-entropy loss with the KL-divergence
term for better adversarial-sample generation. Actually, DAA
can be considered as a special case of the potential energyU .

5.6.2 Attack on Public Face Recognition Systems

To further show the practical applicability of attack, we
apply our HMCAM to the real-world celebrity recognition
APIs in Clarifai,2 AWS3 and Azure.4 These celebrity recogni-
tion APIs allow users to upload any face images and recog-
nize the identity of them with confidence score. The users

have no knowledge about the dataset and types of models
used behind these online systems.

We choose 10 pairs of images from the LFW dataset and
learn perturbations from local facenet model to launch tar-
geted attack, whose goal is tomislead the API to recognize the
adversarial images as our selected identity. We randomly
pick up 10 celebrities as victims from Google and 10 existing
celebrities as targets from LFW, ensuring that all colors and
genders are taken into account. Thenwe apply the same strat-
egy as Geekpwn CAAD 2018 method that pulls victims
towards their corresponding targets by the inner product of
their feature vectors and generates noise to them. Finally, we
examine their categories and confidence scores by uploading
these adversarial examples to the online systemsAPI.

We fix " ¼ 16=255 and total iteration number N ¼ 100.
Besides, we also set S ¼ 5 to generate a sequence of adver-
sarial examples to test the robustness of these online sys-
tems. Here we propose a strict evaluation criterion derived
from [23] for our HMCAM attacker, which we also call “all-
or-nothing”: an attack is considered successful only if all the
adversarial examples in our generated sequence can deceive
the system. This is a challenging evaluation scenario. As
shown in Table 9, quite a part of them pass the recognition
of the online systems and output the results we want. The
qualitative results are given in the supplementary docu-
ment, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2020.3032061. Note that we also compare our
HMCAM method with one of state-of-the-art black-box
attack methodN Attack [25], which aims at finding a proba-
bility density distribution around the input and estimates
the gradient by a modified NES [73] method. Comparisons
between N Attack and HMCAM show that the samples
generated by our proposed method have the stronger trans-
ferability since HMCAM is just a white-box attack method.

TABLE 6
Validation Accuracy and Robustness of ResNet50 on ImageNet

Methods Clean Data PGD-10 Attack PGD-20 Attack PGD-50 Attack MI-FGSM-20 Attack Speed (mins)

Natural train 75.34% 0.14% 0.06% 0.03% 0.03% 1437
PGD 63.95% 36.89% 36.44% 36.17% 35.29% 8928
Free-4 60.26% 31.12% 30.29% 30.07% 29.43% 2745
CAT (Ours) 59.23% 35.91% 35.72% 35.76% 34.67% 2992

The maximum perturbation of all the attackers is " ¼ 4=255. We report average over the final 3 runs. The best (or almost best) results under different attack meth-
ods are in bold. Our CAT achieves a trade-off between efficiency and accuracy.

TABLE 7
Validation Accuracy and Robustness of a small CNN on MNIST

Clean Data PGD-40 Attack CW Attack

PGD-40 99.50% 97.17% 93.27%
Free-10 98.29% 95.33% 92.66%
YOFO-5-10 99.98% 94.79% 92.58%

CAT (Ours) 99.36% 97.48% 94.77%

The maximum perturbation of all the attackers is " ¼ 0:3. The best result
under different attack methods is in bold.

TABLE 8
The Success Rates of Targeted
White-Box Attacks on ImageNet

Methods 10/100-step Success Rate (%)

ResNet152A ResNet152AD ResNeXt101AD

PGD [9] 5.48/31.04 4.93/27.65 5.00/31.56
M-PGD [10] 4.01/24.63 3.51/22.07 3.44/23.78
DAA [13] 4.23/27.31 4.17/24.69 4.55/28.07
HMCAM (Ours) 17.29/35.07 14.69/31.52 17.54/36.36

The maximum perturbation is " ¼ 16=255. We report three advanced adver-
sarial attacks and our HMCAM on adversarially trained models with
(ResNet152AD/ResNeXt101AD) and without (ResNet152A) feature denois-
ing module.

1. https://github.com/facebookresearch/ImageNet-Adversarial-
Training/blob/master/INSTRUCTIONS.md

2. https://clarifai.com/models/celebrity-image-recognition-model-
e466caa0619f444ab97497640cefc4dc

3. https://aws.amazon.com/blogs/aws/amazon-rekognition-
update-celebrity-recognition/

4. https://azure.microsoft.com/en-us/services/cognitive-services/
computer-vision/
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6 CONCLUSION

In this paper, we formulate the generation of adversarial
examples as a MCMC process and present an efficient para-
digm called Hamiltonian Monte Carlo with Accumulated
Momentum (HMCAM). In contrast to traditional iterative
attackmethods that aim to generate a single optimal adversar-
ial example in one run, HMCAM can efficiently explore the
distribution space to search multiple solutions and generate a
sequence of adversarial examples. We also develop a new
generative method called Contrastive Adversarial Training
(CAT), which approaches equilibrium distribution of adver-
sarial examples with only few iterations by building from
small modifications of the standard Contrastive Divergence.
Extensive results with comparisons on CIFAR10 showed that
not only HMCAM attained much higher success rates than
other black-box models and comparable results as other
white-box models in adversarial attack, but also CAT
achieved a trade-off between efficiency and accuracy in adver-
sarial training. By further evaluating this enhanced attack
against the champion solution in the defense track of CAAD
2018 competition, HMCAM outperforms the official baseline
attack andM-PGD. To demonstrate its practical applicability,
we apply the proposed HMCAM method to investigate the
robustness of real-world celebrity recognition systems, and
compare against the Geekpwn CAAD 2018 method. The
result shows that the existing real-world celebrity recognition
systems are extremely vulnerable to adversarial attacks in the
black-box scenario since most examples generated by our
approach canmislead the systemwith high confidence, which
raises security concerns for developing more robust celebrity
recognition models. The proposed attack strategy leads to a
new paradigm for generating adversarial examples, which
can potentially assess the robustness of networks and inspire
stronger adversarial learningmethods in the future.
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