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Abstract

Effectively integrating Large Language Models (LLMs) into
autonomous driving requires a balance between leveraging
high-level reasoning and maintaining real-time efficiency.
Existing approaches either activate LLMs too frequently,
causing excessive computational overhead, or use fixed
schedules, failing to adapt to dynamic driving conditions.
To address these challenges, we propose AdaDrive, an
adaptively collaborative slow-fast framework that optimally
determines when and how LLMs contribute to decision-
making. (1) When to activate the LLM: AdaDrive em-
ploys a novel adaptive activation loss that dynamically de-
termines LLM invocation based on a comparative learning
mechanism, ensuring activation only in complex or critical
scenarios. (2) How to integrate LLM assistance: Instead
of rigid binary activation, AdaDrive introduces an adap-
tive fusion strategy that modulates a continuous, scaled
LLM influence based on scene complexity and prediction
confidence, ensuring seamless collaboration with conven-
tional planners. Through these strategies, AdaDrive pro-
vides a flexible, context-aware framework that maximizes
decision accuracy without compromising real-time perfor-
mance. Extensive experiments on language-grounded au-
tonomous driving benchmarks demonstrate that AdaDrive
state-of-the-art performance in terms of both driving ac-
curacy and computational efficiency. Code is available at
https://github.com/ReaFly/AdaDrive.

1. Introduction

Autonomous driving has long been a focal point in both
academia and industry [1, 2, 5, 9, 10, 12, 20, 22, 26, 32,
34, 36, 37]. With the emergence of large language mod-
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Figure 1. (a) The first generation of LLM-enhanced autonomous
driving approaches [21, 38] employ a synchronous structure,
where both LLM and planner operate at each driving step.
(b) Generation II methods implement asynchronous processing
paradigms, utilizing distinct but predetermined activation frequen-
cies for the LLM and planner. (c) Our proposed AdaDrive also em-
ploys an asynchronous architecture but features two novel adaptive
connectors: Connector-W for adaptively determining when to ac-
tivate the LLM, and Connector-H for controlling how to integrate
the LLM in driving tasks. This design enables enhanced flexibil-
ity in handling uncertain or emergency situations. Besides, we
also incorporate LS-Qformer for efficient processing of continu-
ous streaming data.

els (LLMs) and their multimodal extensions (MLLMs), re-
searchers have begun integrating LLMs into autonomous
driving systems to enhance cognitive reasoning and deci-
sion making [7, 8, 15–17, 24, 30]. Early approaches, such
as LMDrive [21] and AD-H [38], adopt synchronous and
highly-entangled sequential architectures where LLMs con-
tinuously influence the driving process at every step (see
Figure 1). While these models improve driving intelligence,
they introduce substantial memory overhead and latency,
making real-time deployment challenging, particularly in
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high-speed, dynamic environments. To address this is-
sue, subsequent research [4, 25] has explored asynchronous
strategies, where LLM activation occurs at pre-defined in-
tervals to balance performance and efficiency. However,
these fixed schedules greatly limit model adaptability, as
the need for LLM intervention varies significantly across
different driving scenarios. For instances, in safety-critical
situations, LLMs may not be invoked when they are needed
most. Conversely, in simple scenarios, activating LLMs
may be unnecessary, leading to suboptimal resource utiliza-
tion.

Given these limitations, an ideal LLM-enhanced au-
tonomous driving framework should be able to: 1) Dy-
namically decide when to activate the LLM, ensuring that
LLMs contribute only in scenarios where they are benefi-
cial while avoiding unnecessary computational overhead;
2) Adaptively control the degree of LLM influence, as our
key insight reveals that while LLM engagement consistently
enhances performance, a binary on/off activation with full
weight (e.g. 1.0) can often be suboptimal compared to a
continuous, scaled integration with a lower adaptive weight
(e.g. 0.7) (see results in Table 3: ID #3 vs. ID #4).

To address these challenges, we introduce AdaDrive, a
next-generation self-adaptive LLM-integration framework
for autonomous driving. In particular, AdaDrive leverages a
slow-fast system paradigm to balance high-frequency low-
latency tasks (a lightweight planner without invoking the
LLM, referred to as, the fast path) and low-frequency high-
reasoning tasks (where the LLM is activated as a cognitive
agent, also known as, the slow path).

We optimize this slow-fast framework to achieve an opti-
mal balance between decision accuracy and computational
efficiency with two key innovations. 1) Adaptive LLM
Activations. Instead of relying on fixed activation inter-
vals, AdaDrive learns when to engage the LLM dynami-
cally through a novel adaptive activation loss. By compar-
ing LLM-assisted and LLM-free prediction during training,
our model automatically identifies high-risk or complex sit-
uations where LLM intervention is most beneficial, ensur-
ing a real on-demand activation. 2) Dynamic LLM Con-
tribution Scaling. Unlike prior methods that treat LLM
engagement as a binary decision, AdaDrive introduces a
confidence-driven fusion strategy that adjusts the weights
of LLM involvement dynamically. Our key insight is that
while LLM assistance consistently improves performance,
treating its activation as a binary decision with full weight-
ing can be suboptimal -— adaptive scaling of LLM con-
tributions often yields better results than an all-or-nothing
approach.(see results in Table 3: ID #3 vs. ID #4). To
counter this, AdaDrive modulates the strength of LLM in-
fluence based on the confidence of the LLM output and
scene complexity, ensuring that its contributions are opti-
mally balanced with conventional planning modules.

In addition, we propose Long-Short Q-former (LS-
Qformer) to enhance visual modeling by integrating short-
term precision with long-term contextual retention, en-
suring consistent trajectory predictions in streaming au-
tonomous driving. We also introduce Propagative Mem-
ory Fusion (PMF) mechanism to further optimize mem-
ory efficiency by merging evicted frame features into ad-
jacent frames, preserving critical historical context while
maintaining a compact representation. Experimental re-
sults demonstrate that AdaDrive sets a new state of art in
language-grounded autonomous driving. We summarize
our contributions as follows:
• We introduce AdaDrive, the first self-adaptive slow-fast

architecture for LLM-enhanced autonomous driving, en-
abling dynamic LLM activation based on real-time driv-
ing contexts.

• We propose a novel adaptive integration mechanism,
which automatically (i) learns when to activate the LLM
for maximum performance gains while minimizing com-
putational overhead, and (ii) determines how much the
LLM should contribute based on model confidence and
scene complexity.

• We develop LS-Qformer and PMF mechanism to enhance
temporal feature aggregation and preserve critical histor-
ical context through efficient memory retention.

• We achieve state-of-the-art performance on standard
language-grounded autonomous driving benchmarks in
terms of both accuracy and computational efficiency.

2. Related Work
2.1. End-to-End Autonomous Driving
Imitation learning [5, 9, 32] and reinforcement learning [2,
12, 26, 37] are two primary approaches for end-to-end au-
tonomous driving. Significant advancements have been
made in both directions in recent years. InterFuser [22]
enhances driving safety by effectively leveraging multi-
modal, multi-view sensor data and utilizing intermediate in-
terpretable features to constrain actions within a safe set.
ReasonNet [23] focuses on global information comprehen-
sion and temporal context reasoning, substantially improv-
ing the prediction accuracy of object behaviors and enhanc-
ing system robustness in challenging scenarios. UniAD [10]
proposes a novel modular end-to-end framework that uni-
fies full-stack driving tasks within a single network, enhanc-
ing inter-module collaboration for optimal planning perfor-
mance.

2.2. LLMs for Autonomous Driving
Recently, with the emergence of LLMs, their impres-
sive logical reasoning capabilities have catalyzed the inte-
gration with autonomous driving systems [4, 21, 24, 25,
29, 30]. As a pioneering effort, LMDrive [21] utilizes
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Figure 2. An overview of AdaDrive framework, comprising generic multi-modal feature extraction and parallel slow-fast paths dedicated to
logical reasoning and trajectory prediction. The two paths are adaptively integrated through our proposed Connector-W and Connector-H
components, determining when to activate the LLM and how to integrate the LLM for trajectory prediction, respectively. Dashed lines
indicate intermittent execution, which only occurs when LLM is enabled.

LLMs to comprehend natural language navigation instruc-
tions and predict future waypoints, successfully achiev-
ing language-grounded closed-loop autonomous driving.
DriveMLM [29] establishes a novel interface between
LLMs and autonomous driving systems through semantic
mapping of language model reasoning to planners’ deci-
sion state space. Despite these advancements, the high
computational cost and inference latency associated with
LLMs limit their practical applications. To tackle this is-
sue, AsyncDriver [4] presents an asynchronous architec-
ture in which the LLM maintains periodic activations to en-
hance a traditional planner’s capabilities. DriveVLM [25]
incorporates the MLLM and traditional planner, where low-
frequency activated MLLM provides the reference trajec-
tories to a high-frequency activated planner for trajectory
refinement. However, these approaches employ fixed fre-
quencies and invocation intervals for LLMs, severely lim-
iting the collaborative operation of the two systems. In
contrast, our framework empowers the planner with au-
tonomous LLM activation capabilities, facilitating dynamic
model collaboration while maintaining an optimal balance
between task performance and computational resources.

2.3. MLLMs for Streaming Understanding

The rapid development of MLLM has showcased versatile
capabilities in vision-language comprehension, spatial per-
ception, and video understanding. However, these MLLMs
are limited to processing fixed-length images or short clips
in an offline manner, constraining their applicability in
practical streaming scenarios. Recently, GPT-4o [18] has

demonstrated voice-driven online response capabilities. In
parallel, a series of studies [3, 19, 31, 40] have made no-
table strides in streaming video understanding, further push-
ing the boundaries of practical applications. VideoLLM-
online [3] pioneers the extension of offline models into on-
line contexts by introducing a novel training objective with
a specialized EOS token, prompting the model to remain
silent when responses are unnecessary. Flash-VStream [31]
focuses on designing human-like memory modeling to store
and process long-term video information while maintain-
ing low inference latency. In contrast to video understand-
ing, which focuses on high-level content comprehension
and dialogue, autonomous driving in streaming scenarios
emphasizes low-level, high-frequency trajectory prediction.
This fundamental distinction motivates us to explore a novel
paradigm that optimally balances driving performance with
inference latency.

3. Method

3.1. Overview

Problem Definition: Given a sequence of streaming
video clip data VT = [v1, v2, ..., vT ] and corresponding
navigation instructions IT , where T is the current times-
tamp. This work aims to establish an efficient autonomous
driving system S to generate the instruction-following tra-
jectory prediction:

WT = S(VT , IT ). (1)
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Here, WT represents the predicted waypoints for timestamp
T , which is subsequently converted by PID controllers into
lateral steering and longitudinal acceleration actions.

System Architecture: As shown in Fig. 2, unlike con-
ventional designs where instruction comprehension and tra-
jectory prediction are entangled within LLMs, our pro-
posed AdaDrive decouples these two processes, running
them in parallel with distinct activation frequencies. The
lightweight planner operates as a low-level trajectory pre-
dictor for each frame (fast path), while the LLM functions
as a central cognitive unit, maintaining low-frequency acti-
vation to provide essential assistance to the planner in criti-
cal situations (slow path). The two paths are adaptively inte-
grated through our proposed Connector-W and Connector-
H components, determining when to activate the LLM and
how much the LLM should contribute to trajectory predic-
tion, respectively.

3.2. Slow-Fast Systems
Multi-modal Feature Extraction: Given a sequence of
streaming video clip data VT = [v1, v2, ..., vT ], where each
frame data comprises multi-view camera images and point
cloud data. We employ a pretrained visual encoder [21]
V is(·) to extract and fuse these multi-modal visual fea-
tures of each frame: ft = V is(vt), thus constructing
FT = [f1, f2, ..., fT ]. The subsequent Long-Short Q-
former further aggregates the feature tokens in considera-
tion of both long-range and current frame information, de-
noted as F′

T = [f ′
1, f

′
2, ..., f

′
T ], f

′
t ∈ RN×C , where N is

number of tokens and C is the feature dimension. (section
3.3).

Fast-path Trajectory Prediction: The lightweight plan-
ner P maintains high-frequency activation for each times-
tamp to generate the waypoint only relying on the current
frame information: WT = P(f ′

T ).

Slow-path Logical Reasoning: In contrast to the plan-
ner, we endow the LLM with access to long-range context
information to fully leverage its instruction comprehension
and reasoning capabilities. To prevent unbounded growth
in memory usage and computational complexity, making it
well-suited for streaming scenarios, we build upon F′

T by
maintaining a streaming memory buffer to manage the fea-
tures input for LLM (section 3.4). This feature buffer main-
tains a fixed capacity k and we denote the stored features in
the buffer as B′

T = [f ′
T−k, f

′
T−k+1, ..., f

′
T ]. Subsequently,

the LLM processes the k-frame contextual information and
outputs the integrated features f ′′

T for current timestamp T
as follows:

f ′′
T = LLM(IT ,B

′
T ) (2)

Adaptive Connector: Our framework enhances the slow-
fast architecture through adaptive scheduling via two spe-
cialized connectors: Connector-W and Connector-H, which
orchestrate the interaction between the LLM and the plan-
ner. Specifically, Connector-W determines adaptive LLM
activations, while Connector-H controls the dynamic scal-
ing of LLM contributions.
Connector-W: Given the current driving context feature f ′

T

extracted by LS-Qformer, we predict a confidence score that
determines the LLM’s activation utilizing an MLP function:

θT = MLP(f ′
T ) (3)

The continuous probability distribution θT is transformed
into a discrete binary decision πT ∈ {0, 1} through the
Gumbel-Softmax reparameterization, which ensures end-
to-end differentiability by maintaining the gradient flow:

πT = Gumbel-Softmax(θT ) (4)

However, the optimization of πT presents significant chal-
lenges due to the absence of gold standards or ground-truth
supervision signals for optimal activation timing. In our
work, we propose a novel comparative learning based adap-
tive activation loss, to address these issues. Specifically,
in the training stage, We perform two forward passes for
trajectory prediction: one with LLM assistance yielding
WLLM

T = P(f ′
T + f ′′

T ), and another without, producing
WT = P(f ′

T ). Subsequently, we calculate the trajectory
loss (L1 loss) for WLLM

T and WT , denoted as LLLM
T and

LT , respectively. Following a warmup phase where both
losses converge to stable values, their comparative differ-
ence reflects the magnitude of LLM’s contribution to tra-
jectory prediction at the current timestep. Thus, we link the
binary decision πT with the trajectory losses to construct a
novel adaptive activation loss:

Lada = πT ∗ LLLM
T + (1− πT ) ∗ LT (5)

Optimizing this objective function naturally induces πT =
1 when LLLM

T < LT and 0 otherwise, thereby enabling
the model to learn optimal LLM activation conditions. Fur-
ther, to achieve optimal performance gains while minimiz-
ing computational overhead, we introduce a penalty term
γ into the LLM-assisted trajectory loss to control the fre-
quency of LLM activations, ensuring LLM is only activated
when LLLM

T is significantly lower than LT by a predeter-
mined margin d:

Lada = πT ∗ (LLLM
T + γ) + (1− πT ) ∗ LT (6)

γ = max(d− (LT − LLLM
T ), 0) (7)

Connector-H: Through our proposed adaptive activation
loss, the model (Connector-W) learns to determine opti-
mal LLM activation timing. However, binary fusion (all-
or-nothing) may not be the optimal strategy for seam-
less integration with conventional planners. To enable dy-
namic LLM contribution scaling, Connector-H leverages
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Figure 3. Comparisons between the Q-former and our proposed
Long-Short Q-former (LS-Qformer).

the predicted confidence score θT as a fusion coefficient for
weighted feature integration, generating a third trajectory
prediction WFuse

T = P(f ′
T + θT ∗ f ′′

T ). The trajectory loss
computed for WFuse

T inherently guides the model to learn
optimal contribution scaling.

Inference Stage: Connector-W predicts the confidence
score θT and corresponding binary decision πT for LLM’s
activation. Upon LLM activation, Connector-H modulates
the contribution of LLM features f ′′

T to base features f ′
T

by leveraging the prediction confidence θT as a dynamic
weighting coefficient. Specifically, the trajectory prediction
can be uniformly formulated as follows:

WT =

{
P(f ′

T ), if LLM is not activated ,
P(f ′

T + θT ∗ f ′′
T ), if LLM is activated.

(8)

3.3. Long-Short Feature Modeling
As a common connector to bridge visual encoder and LLM,
Q-former has been applied in many MLLMs. The vanilla
Q-former can be formulated as follows:

f ′
T = Q-former(Q, fT , IT ) (9)

where Q is additional introduced learnable tokens for fea-
ture aggregation. However, this module processes each
frame separately while ignoring the long-range temporary
information. To tackle this issue, we propose a Long-Short
Q-former. Inspired by the group mechanism [6], we parti-
tion the learnable tokens into two groups, denoted as Qm

and Ql. Qm is propagated into the next frame for aggre-
gating long-range information while Ql are similar to the

Figure 4. Illustration of FIFO and our proposed PMF. Unlike
FIFO, PMF maintains a compact buffer while enabling forward
information flow by merging features from to-be-evicted frames
into their preceding frames.

vanilla Q-former focusing on the current frame:

f ′
T = [Ql;Qm

T ] = Q-former(Ql,Qm
T−1, fT , IT ) (10)

Through this mechanism, LS-Qformer simultaneously ex-
tracts critical features from current frames and models tem-
poral feature evolution, yielding richer visual representa-
tions.

3.4. Streaming Memory Buffer
Long-range contextual information is crucial for predict-
ing objects’ potential behaviors and trajectories, thereby en-
abling safer autonomous driving. However, storing and pro-
cessing continuous streaming data inevitably leads to ex-
ponential growth in computational overhead and potential
memory overflow. To address these challenges, we pro-
pose a fixed-size streaming memory buffer with a Propaga-
tive Memory Fusion (PMF) strategy for managing histori-
cal driving data (illustrated in Fig. 4). Compared to First-
in-First-out (FIFO) which only retains fixed-length features,
our PMF mechanism preserves information by merging fea-
tures of the to-be-evicted frame into its preceding frame,
maintaining a compact buffer while enabling forward infor-
mation propagation:

f̂ ′
T−k+1 = (f ′

T−k + f ′
T−k+1)/2 (11)

Subsequently, the memory buffer is updated to B′
T =

[f̂ ′
T−k+1, f

′
T−k+2, ..., f

′
T+1], where f̂ ′

T−k+1 represents the
fused features.

4. Experiments
4.1. Experimental Setup
Dataset: We train the AdaDrive on the standard Lan-
gAuto dataset [21], a comprehensive multi-modal collection
comprising 64K instruction-following sequences. Each se-
quence encapsulates synchronized multi-view camera im-
ages and LiDAR point clouds, providing rich spatiotempo-
ral context for autonomous navigation.

Benchmarks and Metrics: We conduct closed-loop au-
tonomous driving evaluations on the LangAuto benchmark
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Table 1. Performance comparison of our method with state-of-the-art approaches on the LangAuto-Tiny and LangAuto-Short benchmarks.

Method LLM (#Params)
LangAuto-Tiny LangAuto-Short

DS ↑ RC ↑ IS ↑ DS ↑ RC ↑ IS ↑

LMDrive [21]

LLaMA2 (7B) [27] 56.1 64.2 0.87 44.8 53.5 0.84
Vicuna-v1.5 (7B) [39] 59.0 69.9 0.84 47.0 56.5 0.83
LLaVA-v1.5 (7B) [13] 66.5 77.9 0.85 50.6 60.0 0.84

TinyLLaMA (1.1B) [33] 64.1 75.0 0.86 46.2 59.7 0.79

AD-H [38] Mipha (3B) [41] + OPT (350M) [35] 68.0 74.4 0.87 54.3 61.8 0.86

AdaDrive TinyLLaMA (1.1B) [33] + Planner (3M) 80.9 87.6 0.90 70.6 85.3 0.81

Table 2. Performance comparison of our method with state-of-the-art approaches on the LangAuto benchmark.

Method LLM (#Params)
LangAuto

Mem ↓ Inf. Time ↓
DS ↑ RC ↑ IS ↑ (G) (ms)

LMDrive [21]

LLaMA2 (7B) [27] 32.8 40.1 0.81
26.91 526Vicuna-v1.5 (7B) [39] 34.0 39.0 0.85

LLaVA-v1.5 (7B) [13] 36.2 46.5 0.81
TinyLLaMA (1.1B) [33] 25.2 38.6 0.71 16.29 445

AD-H [38] Mipha (3B) [41] + OPT (350M) [35] 41.1 48.5 0.86 - -

AdaDrive TinyLLaMA (1.1B) [33] + Planner (3M) 42.9 53.4 0.82 6.79 189

within the CARLA simulation environment, where the
benchmark is structured into three distinct subtasks based
on driving distances: LangAuto-Tiny, LangAuto-Short, and
LangAuto. Route completion (RC), infraction score (IS),
and driving score (DS) are three widely adopted evaluation
metrics. Specifically, RC denotes the ratio of successfully
traversed distance by an agent to the total planned route
length. IS aggregates multiple categories of traffic viola-
tions through geometric progression, initializing at 1.0 and
decaying multiplicatively with each infraction occurrence.
DS synthesizes route completion and infraction penalties
through multiplication, serving as the principal evaluation
criterion and providing a comprehensive assessment of au-
tonomous driving performance.

Model Configuration: Our framework employs a pre-
trained visual encoder from [21], which remains frozen
during training. For language modeling, we adopt TinyL-
LaMA [33], a lightweight language model, to reduce com-
putational overhead and parameter count. The planner
adopts a 4-layer Transformer [28] architecture. We adopt
20 learnable tokens and 20 memory tokens in LS-Qformer
and set the capacity k of streaming memory buffer to 10.

Implementation Details: We employ an AdamW opti-
mizer with a cosine learning rate scheduler. The initial
learning rate is set to 1 × 10−5 with training spanning 15
epochs. In the loss function, we set the hyper-parameter
margin d to 0.3 to constrain the LLM activation.

4.2. Main Results

Closed-loop Driving Performance: We conduct com-
prehensive experiments to evaluate our method on the Lan-
gAuto benchmarks [21], comparing against state-of-the-art
approaches including LMDrive [21] and AD-H [38]. It is
worth noting that AD-H employs additional mid-level lan-
guage commands to train its hierarchical multi-agent driv-
ing system. The experimental results are presented in Ta-
bles 1 and 2. Our proposed AdaDrive demonstrates supe-
rior performance across all distance-based sub-tracks, par-
ticularly excelling in tiny and short route scenarios. Specif-
ically, AdaDrive achieves driving scores of 80.9% and
70.6% on the LangAuto-Tiny and LangAuto-Short bench-
marks, surpassing the second-best method AD-H by signif-
icant margins of 12.9% and 16.3%, respectively. These re-
sults validate the effectiveness of our self-adaptive slow-fast
driving system.
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Table 3. Ablation of Connector and LS-Qformer components on
the LangAuto-Tiny benchmark.

ID
Connector

LS-Qformer DS ↑ RC↑ IS↑
W H

1 ✗ ✗ ✗ 67.4 75.3 0.86
2 ✗ ✗ ✓ 71.9 82.6 0.84
3 ✓ ✗ ✓ 77.9 84.8 0.89
4 ✓ ✓ ✓ 80.9 87.6 0.90

Table 4. Ablation of different feature modeling methods on the
LangAuto-Tiny benchmark.

Method #Token DS ↑ RC↑ IS ↑

Q-former [11] 40 75.8 83.4 0.88
SeqQ-Former [14] 40 77.6 83.5 0.89

Q-former&Add 40 77.4 83.5 0.89
LS-Qformer (Ours) 20+20 80.9 87.6 0.90

Freq.=0

Freq.=0.1

Freq.=0.25

Freq.=0.5

Freq.=1
GFLOPs reduced by 62% ! 

DS increased 
by 5.6% !

Figure 5. (a) Ablation on varying streaming memory buffer (SMB) capacities and content update mechanisms. (b) Comparison of our
self-adaptive LLM activation vs. fixed-interval activation (freq. = 0, 0.1, 0.25, 0.5, and 1, where 0 indicates no activation and 1 indicates
full activation) on driving scores. (c) Comparison of our self-adaptive LLM activation with fixed-interval LLM activation in terms of
computational cost (GFLOPs) and driving scores. These analyses are performed using the LangAuto-Short benchmark.

Inference Time and Memory Cost: In addition to en-
hanced driving performance, our method exhibits substan-
tial advantages in inference time and computational over-
head, as showcased in Table 2. These benefits are at-
tributed to two key architectural designs: 1) the self-
adaptive slow-fast system. Unlike LMDrive and AD-H,
which adopt sequential processing requiring LLM inference
at every timestamp, our parallel architecture primarily re-
lies on a lightweight planner, with the LLM activated only
during emergencies as determined by the system’s adap-
tive scheduling. Moreover, the planner only needs to pro-
cess the current frame features, as the historical information
has been propagated through the LS-Qformer. These archi-
tectural designs significantly reduce the system’s inference
latency. 2) The tailored streaming memory buffer. Exist-
ing methods lack specialized handling for streaming inputs,
leading to data accumulation and increased memory over-
head. In contrast, we explicitly propose a streaming mem-
ory buffer architecture that efficiently manages input data,
reducing memory costs while improving inference speed.

4.3. Ablation Study
Components Effectiveness: We conduct comprehensive
ablation studies to validate the effectiveness of the proposed
LS-Qformer and quantify the performance gains achieved
through connector-driven LLM interaction. First, we start
from the baseline which implements a vanilla Q-former that
independently aggregates frame-level features and a plan-

ner for trajectory prediction (ID #1). The results are pre-
sented in Table 3. Replacing the vanilla Q-former with
our proposed LS-Qformer (ID #2) yields substantial per-
formance improvements. These results demonstrate that
the LS-Qformer effectively captures temporal dependencies
in historical information, enabling more informed planning
decisions. Furthermore, we integrate the LLM into our sys-
tem through the Connector architecture. Leveraging the dy-
namic LLM activation mechanism governed by Connector-
W (ID #3), our approach achieves significant performance
gains, attaining a driving score of 77.9%. Moreover, by re-
placing the conventional full weighting LLM’s feature fu-
sion with our innovative Connector-H-controlled dynamic
LLM contribution scaling strategy (ID #4), we observe fur-
ther enhancement in the overall DS performance metrics.

Analysis of LS-Qformer: We compare our LS-Qformer
against several architectural variants: 1) the standard Q-
former which processes frames independently in a frame-
wise manner; 2) SeqQ-Former [14], which propagates cur-
rent output tokens as queries for subsequent frame feature
extraction; and 3) Q-former with temporal accumulation,
which incorporates historical context by additively fusing
token representations from previous frames with current
frame features. The results in Table 4 demonstrate that our
LS-former achieves optimal driving scores by ingeniously
incorporating long-range historical information with cur-

5118



Figure 6. The distribution of LLM activation frequencies across
all routes in both LangAuto-Short and LangAuto benchmarks.

rent frame content through a grouping mechanism.

Analysis of Streaming Memory Buffer: We investigate
the impact of different memory bank capacities and con-
tent update mechanisms on trajectory prediction, as illus-
trated in Fig. 5(a). Several key observations emerge: 1)
Thanks to our LS-Qformer’s effective context aggregation,
our method achieves comparable performance even when
the LLM only attends to the current frame (w/o SMB). 2)
Smaller memory bank capacities prove more beneficial for
trajectory prediction. We hypothesize that as memory con-
tent increases, the LLM’s instruction perception capabil-
ity becomes diluted among the expanded context. 3) The
hard update mechanism, which completely clears the cur-
rent buffer upon reaching capacity limits, introduces inher-
ent instabilities in subsequent trajectory predictions. In con-
trast, the PMF mechanism maintains temporal coherence
while preserving more contextual information, leading to
superior performance.

Analysis of Adaptive Collaboration: We compare our
adaptive LLM activation strategy against fixed-interval ac-
tivation at various frequencies. As illustrated in Fig 5(b),
higher activation frequencies consistently yield more sta-
ble and robust driving performance. Our adaptive LLM
activation mechanism enables dynamic responses to criti-
cal scenarios, achieving comparable performance to contin-
uous LLM activation (frequency = 1.0) while maintaining
an average activation frequency of only 0.28. Fig 5(c) fur-
ther demonstrates that our method strikes an optimal bal-
ance between driving performance and computational effi-
ciency, reducing GFLOPs by 62% compared to continuous
activation (frequency = 1.0) while improving driving scores
by 5.6% relative to the fixed-interval scheme with a similar
frequency (frequency = 0.25).

Besides, we analyze the distribution of LLM activa-
tion frequencies across all routes in both LangAuto-Short
and LangAuto benchmarks, as illustrated in Fig. 6. The
activation frequencies range from 0.1 to 0.5, demonstrat-
ing effective sparsity and dynamic adaptation, with aver-

Initial Phase Turning Phase Cruising Phase

Initial&Turning Turning Crossing Turning Turning Consecutive Turning

Cruising

(a)

(b)

Figure 7. Temporal distribution of LLM activations for Route 7
(a) and Route 9 (b) in the LangAuto-Short benchmark. LLM acti-
vation moments, highlighted in darkblue on the timeline, demon-
strate concentrated engagement during complex maneuvers such
as turning and crossing, while remaining dormant during routine
cruising phases.

age activation rates of 0.28 and 0.33 respectively. Notably,
higher activation frequencies are observed in challenging
routes, such as dense urban streets, nighttime conditions
or mountain roads, validating our design principle of adap-
tive LLM engagement for complex situations. Furthermore,
by analyzing the temporal distribution of LLM activations
within individual routes, we identify patterns of increased
LLM engagement during critical driving steps. As illus-
trated in Fig. 7, LLM activations are predominantly concen-
trated in complicated scenarios, including directional tran-
sitions, and intersection navigation. The LLM’s advanced
logical reasoning capabilities significantly enhance the au-
tonomous vehicle agent’s decision-making performance in
these situations.

5. Conclusion

This work explores LLM-powered language-grounded au-
tonomous driving, focusing on two fundamental questions:
optimal activation timing and effective utilization strate-
gies of LLMs. Specifically, our approach features a self-
adaptive slow-fast architecture that adaptively schedules
LLM activation according to driving situations, while dy-
namically modulating its contribution weight based on pre-
diction confidence scores. This strategy significantly en-
hances model flexibility and robustness while maintaining
controlled computational overhead. Additionally, we intro-
duce a tailored LS-Qformer for effective historical context
aggregation and a streaming memory buffer with a propaga-
tive memory fusion strategy for efficient unbounded tempo-
ral data management. Extensive experiments demonstrate
that our approach significantly outperforms existing meth-
ods in both effectiveness and efficiency, validating its po-
tential for practical applications.
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