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BCNet: Bronchus Classification via Structure
Guided Representation Learning
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Abstract— CT-based bronchial tree analysis is a key step
for the diagnosis of lung and airway diseases. However,
the topology of bronchial trees varies across individuals,
which presents a challenge to the automatic bronchus clas-
sification. To solve this issue, we propose the Bronchus
Classification Network (BCNet), a structure-guided frame-
work that exploits the segment-level topological information
using point clouds to learn the voxel-level features. BCNet
has two branches, a Point-Voxel Graph Neural Network
(PV-GNN) for segment classification, and a Convolutional
Neural Network (CNN) for voxel labeling. The two branches
are simultaneously trained to learn topology-aware fea-
tures for their shared backbone while it is feasible to run
only the CNN branch for the inference. Therefore, BCNet
maintains the same inference efficiency as its CNN base-
line. Experimental results show that BCNet significantly
exceeds the state-of-the-art methods by over 8.0% both on
F1-score for classifying bronchus. Furthermore, we con-
tribute BronAtlas: an open-access benchmark of bronchus
imaging analysis with high-quality voxel-wise annotations
of both anatomical and abnormal bronchial segments. The
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[. INTRODUCTION

HE lung airway analysis based on CT imaging is clini-

cally critical since it provides quantitative information to
assist lung disease diagnosis and surgical navigation [1], [2],
[3]. As the basis of lung airway analysis, bronchial tree recon-
struction usually comprises two steps [4], [5], [6]. The first
step is to extract the binary airway-tree mask from CT imag-
ing. The second step is to label major anatomical branches
via bronchus segment classification. The automatic bronchial
tree reconstruction can support more clinical processes, such
as individual airway tree phenotype matching and lung lobe
or lung segment classification [7], [8]. Moreover, accurate
labeling of bronchial segments is helpful for clinicians to
understand which anatomic segments are affected by disease
and can be helpful for surgical planning [9], [10], [11]. In the
automatic bronchus segment classification, there still exists
a challenge: how to model and exploit the topology of the
bronchial tree efficiently.

Motivated by the importance of structure priors in med-
ical image analysis [12], [13], we developed a Bronchus
Classification Network (BCNet), a framework designed to
effectively classify bronchus segmentation from CT images.
BCNet leverages the inherent topology of the bronchial tree
as structural guidance by incorporating a Point-Voxel Graph
Neural Network (PV-GNN) to enhance the representation
learning of a Convolutional Neural Network (CNN). The core
idea behind BCNet is to utilize segment-wise topological
information (via the GNN) to guide the learning of voxel-wise
convolution features (via the CNN). This approach enables the
CNN branch to better distinguish bronchus segments at the
voxel level, as illustrated in Figure 1. Notably, BCNet can
operate solely with the convolution branch during inference,
eliminating the need for the graph model and thereby achiev-
ing the accuracy benefits of GNN training while maintaining
the computational efficiency of the CNN baseline.

To construct the GNN branch of BCNet, we integrate high-
dimensional local features from the CNN with positional and
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Fig. 1. The key idea of our BCNet. The upper part shows the training

process involves the GNN and CNN. The GNN and CNN parts share
the same voxel-wise CNN feature map, which is used to represent
the bronchus in the GNN part. By computing loss in the GNN part,
we encourage the shared feature map to better describe the bronchus
segments and the topological relationships between segments. It can
be viewed as additional contextual guidance that is different from and
complements the voxel-level supervision in the CNN part. The bottom
part shows that our inference phrase only needs the CNN part.

angular information described by point clouds. Recognizing
that adjacent bronchus segments often belong to the same
category, we introduce a Neighborhood Consistency Regu-
larization as a loss term to enhance model training. For
evaluation, we manually annotated airway branches in 100 CT
scans, comprising 60 scans from public datasets and 40 from
a collaborating hospital. This comprehensive annotation effort
ensures robust assessment of both anatomical and abnormal
labels. Overall, our contributions are summarized as follows:

« BronAtlas, a benchmark containing 100 bronchial cases
with accurate voxel-level segmentation masks and
anatomical categories including the abnormal bronchus
segment;

« BCNet, a structure-guided representation learning frame-
work to classify the bronchus from lung CT imaging,
which significantly outperforms the state-of-the-art meth-
ods on BronAtlas;

« PV-GNN, a Point-Voxel Graph Neural Network to per-
form the segment-level bronchus classification, which
uses the point cloud and convolutional feature to represent
the relative position and semantics of the bronchus seg-
ment, respectively. By taking both the convolution feature
and point cloud feature as the node feature to construct
the graph, the PV-GNN has shown its superiority through
ablation studies.

[I. RELATED WORK
A. Bronchus Analysis

In recent years, deep learning (DL) has shown its advance
for bronchus segmentation [4], [14]. Single-stage networks
like U-Net [15], 2.5D Net [5], [16], 3D U-Net [2], [6],
[17], [18], [19], [20], [21], [22], [23] have been employed
to segment the bronchus. Meng et al. [6] proposed an image

tracking method for the segmentation task. Qin et al. [19], [20]
proposed a CNNs-based airway segmentation method which
works better on superior sensitivity to tenuous peripheral
bronchioles. Zheng et al. [22] adopted gradient erosion and
dilation operators to alleviate the inter-class imbalance issue
in segmenting bronchus. Zheng et al. [24] adjusted the gradient
ratio of each airway point based on the quantification of local
class imbalance, and further proposed a weight enhancement
strategy to handle the hard-to-segment regions. Tang et al. [25]
propose the adversarial transformer for airway segmentation.
Nan et al. [26] propose the fuzzy attention neural network to
tackle discontinuity in airway segmentation.

Bronchus classification [4], [27], [28] is a challenging
task due to that the topology of bronchial trees substan-
tially varies across individuals. It is usually based on the
results of bronchus segmentation methods [2], [16], [17], [18],
[19], [20], [21], [22], [24], [25]. The conventional methods
for bronchus classification include geodesic matching [28]
and probabilistic hypergraph matching [29]. Wang et al. [§]
achieved lobar-level bronchus classification using key-point
detection. Lo et al. [30] proposed a bottom-up approach for
bronchial labeling based on rules. For deep learning-based
methods, Zhao et al. [31] analyzed the average inclination
angle of bronchial segments in the training set and applied
linear programming to post-process the airway structure pre-
dicted by neural models. Nadeem et al. [7] proposed a neural
network of two stages that label the lobar-level and segment-
level bronchus, respectively. Yu et al. [32] propose the tree
neural network for airway labeling.

B. Graph Models for Segmentation

Recently, Graph Neural Networks (GNNs) [33], [34],
[35] have become increasingly important in the biomedical
domain [36], [37], [38], [39], [40], particularly for addressing
segmentation tasks [41], [42], [43], [44], [45], [46]. For
instance, Garcia-Uceda et al. [41] enhanced airway binary
segmentation by replacing the deepest convolutional layer in
a U-Net [15] with graph convolutions [33], demonstrating
the potential of GNNs in improving segmentation results.
Similarly, Selvan et al. [42] introduced a GCN-based [33]
mean-field network to refine segmentation outputs produced
by a 3D-UNet [15], further highlighting the role of GNNs in
segmentation refinement. Tan et al. [44] approached bronchial
segmentation and classification as a semantic segmenta-
tion problem, proposing a two-stage framework specifically
designed for bronchus classification. Zhao et al. [43] developed
a prototype-based graph neural network aimed at detecting
abnormal bronchus structures, showcasing the application of
GNNss in identifying pathological changes.

Therefore, there is a pressing need for a more efficient
and effective framework that leverages voxel-wise features
and point-cloud topology to guide voxel-level representation
learning for bronchus classification. Our proposed Bronchus
Classification Network (BCNet) addresses this gap by inte-
grating the structural topology of the bronchial tree into the
learning process. BCNet employs a Point-Voxel Graph Neural
Network (PV-GNN) to enhance the representation learning
capabilities of a Convolutional Neural Network (CNN).

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on September 26,2025 at 07:54:53 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: BCNet: BRONCHUS CLASSIFICATION VIA STRUCTURE GUIDED REPRESENTATION LEARNING 491

I1l. BRONATLAS: A BENCHMARK FOR BRONCHUS
CLASSIFICATION

A. Motivation

The category and the abnormality of bronchus segments
play an important role in computer-aided bronchial dis-
ease diagnosis. However, the existing bronchial classification
dataset does not contain the categorical label of abnormal
bronchial segments. Moreover, we observe that the existing
bronchial segmentation datasets [2], [47], [48] do not provide
the category of bronchial segments. To facilitate the devel-
opment of automatic bronchus diagnosis, we contribute a new
benchmark, BronAtlas, for bronchus segmentation and classifi-
cation. BronAtlas contains 100 cases of lung CT imaging with
voxel-level annotations of 20 segmental bronchi categories
(i.e., 10 from the right lung, 8 from the left lung, 1 for the
main trachea, and 1 for abnormal bronchus). We will make
this dataset available after acceptance.

B. Sample Collection and Annotation

We collect 60 cases from the currently available databases
EXACT’09 [47] and LIDC [48]. The remaining 40 cases
are collected from our cooperative hospital. For the currently
public samples and the newly collected ones, each CT scan
is annotated by two experts in a two-step annotation process.
The experts first annotate binary masks for the airway seg-
mentation and then label 20 segmental bronchi at the voxel
level according to the anatomical structure which is shown
in Fig. 2. With the binary segmentation of the bronchus, the
radiologists label the 18 segments of the bronchus and the
main trachea according to [27], where 10 of these segmental
bronchi are from the right lung (i.e., RB1 to RB10) while
the remaining 8 segmental bronchi are from the left lung
(i.e., LB1 + 2, LB3,..., LB7 + 8, LB9, LB10). During the
annotation process, the radiologists make sure that except
for the abnormal branches, the bronchial segments should be
connected to the main bronchial trunk, and that the bronchial
segments do not have any problems of misclassification,
under classification, non-abnormal co-drying, or cross-color.
For the bronchus segments that do not belong to the above
classes, the radiologists regard them as abnormal bronchus.
The process of data acquisition and investigation follows the
principles outlined in the declaration of Helsinki [49], and
has received the appropriate approvals from the institutional
ethical committee.

C. Dataset Summary

For the development of automatic bronchus diagnosis,
we contribute a new benchmark, BronAtlas, for bronchus clas-
sification. BronAtlas has 100 cases of lung CT imaging with
voxel-level annotations of 20 segmental bronchi categories
(i.e. , 10 from the right lung, 8 from the left lung, 1 for the
main trachea, and 1 for abnormal bronchus). The “abnormal
bronchus segment” denotes the congenital abnormal bronchus.
There are 33 abnormal cases in the training and validation
set and 12 abnormal cases in the test set. The visualization
of the 20 bronchial categories is in Figure 2. The details of

Fig. 2. The visualization results of the bronchus segment labels. The
segmental bronchi from the right lung (i.e., RB1 to RB10) and segmental
bronchi from the left lung (i.e., LB1 + 2, LBS3,..., LB7 + 8, LB9, LB10) are
defined according to [27]. “MAIN” denotes the main trachea while “ABN”
denotes the abnormal bronchus segment. The radiologists use the binary
segmentation of the bronchus and make sure the bronchial segments are
connected to the main bronchial trunk except for the abnormal branches.
For the bronchus segments that do not belong to the above classes, the
radiologists regard them as abnormal bronchus.

TABLE |
DETAILS OF THE BRONATLAS: A BENCHMARK FOR BRONCHUS
CLASSIFICATION WITH A VOXEL-WISE MASK. WE COLLECT 60 CASES
FROM THE CURRENTLY AVAILABLE DATABASES EXACT’09 [47] AND
LIDC [48]. THE REMAINING 40 CASES ARE COLLECTED FROM OUR
COOPERATIVE HOSPITAL. FOR THE CURRENTLY PUBLIC SAMPLES AND
THE NEWLY COLLECTED ONES, EACH CT SCAN IS ANNOTATED BY
TwO EXPERTS IN A TWO-STEP ANNOTATION PROCESS. THE EXPERTS
FIRST ANNOTATE BINARY MASKS FOR THE AIRWAY SEGMENTATION,
AND THEN LABEL 20 SEGMENTAL BRONCHI AT THE VOXEL LEVEL
ACCORDING TO THE ANATOMICAL STRUCTURE IN FIGURE 2

Attributes of BronAtlas Values
Resolution of axial slices 512 x 512
Thickness of axial slices 0.55 ~ 1.00 mm
#Samples in BronAtlas 100
#Samples from LIDC 40
#Samples from EXACT 09 20

the samples in the benchmark are in Table I. We mix these
data from different sources together and split the whole dataset
into a training/validation/test set of 63/7/30 cases, respectively.
The patient data used in this study was anonymized, and
all personally identifiable information was removed before
the model training and evaluation processes. This procedure
ensures the privacy of the individuals whose CT scans were
included in the study. We attempted to minimize bias by
using a diverse dataset, including CT scans from individuals
of different ages, genders, and health conditions. It would be
our future work to construct a more systematic approach to
addressing bias, such as stratified sampling or bias audits.

IV. METHOD

To use the inherent topology of the bronchus to guide the
representation learning for bronchus classification, we pro-
posed the Bronchus Classification Network (BCNet), which
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Fig. 3. Overview of the Bronchus Classification Network (BCNet). The upper part is a UNet that predicts the voxel-level categorical labels of the
bronchus based on a binary bronchus mask. The lower part is a graph neural network (GNN) that predicts the categories of the bronchus at the
segment level. In the training, the gradients of the GNN part are passed backward through the UNet to guide its representation learning.

is shown in Fig. 3. The proposed BCNet includes two
components: a UNet for voxel-level bronchus labeling,
and a Point-Voxel Graph Neural Network (PV-GNN) for
segment-level bronchus labeling. The structure-guided repre-
sentation learning in BCNet means that the UNet can benefit
from the gradients propagated from the PV-GNN branch since
the PV-GNN adopts the convolutional feature from the UNet
branch to construct graph nodes.

A. Motivation

We employ the UNet to obtain the voxel-level bronchus
segmentation result since the UNet can compute the
high-dimension voxel feature for the following segment-level
bronchus labeling. The motivation behind our proposed GNN
is that the relative positional information represented by the
point cloud can help model the intrinsic bronchus topol-
ogy during the classification process. In the meanwhile, the
high-dimension voxel feature could be a strong supplement
for bronchus classification since it can implicitly capture
other kinds of bronchus attributes such as the diameter of
bronchi. Finally, we utilize the GNN to guide the learning
process of the UNet through the convolution feature and
improve the classification performance of the UNet. The joint
learning of the GNN and CNN branches can be seen as a
form of regularization. By encouraging the model to learn
representations on two tasks, the model can achieve better
generalization performance. Note that the gradients of GNN
loss are passed through the CNN, while those of CNN loss
are not sent into the GNN. Thus, the CNN is trained with
the voxel-level loss and an additional segment-level loss via
the feature construction procedure of GNN, while the GNN
part is only trained with the segment-level loss. The CNN can
learn from both tasks at the voxel level and segment level and
exploit the shared information to improve performance without
introducing additional parameters.

B. UNet for Voxel-Level Bronchus Labeling

We classify the bronchus at voxel level with a UNet [18]
that is shown in the upper part of Fig. 3. The UNet can produce
both the coarse bronchial prediction and the voxel-level feature
for further segment-level classification. The UNet is trained
with the cross-entropy loss, which is formulated as:

(1)

where the ground truth and the prediction are denoted as y,,
and ypreq, respectively. It is worth noting that the background
class is not considered.

Lyner = LCE(ypredz ygt),

C. Point-Voxel GNN for Segment-Level Bronchus
Labeling

1) Definition of Point-Voxel Graph: Given a binary segmenta-
tion mask of the bronchus, we update the mask as its maximum
connected region and define a point-voxel graph with the
region, using mixed voxel and point-level features as node
embeddings. The point-voxel graph was built, as shown in
Fig. 4. First, we skeletonize the binary mask by extracting
the centerline (see Fig. 4(b)) via an existing algorithm [50].
Second, according to the number N of foreground voxels in the
26-connected neighborhood of each voxel on the centerline,
we define the endpoints (N = 1), edge points (N = 2),
and division points (N > 3), as shown in Fig. 4(c). Finally,
as Fig. 4(d) displays, we divide the branches into segments
with these points. Each bronchial segment corresponds to a
node in the proposed point-voxel graph. An edge of the graph
is defined by the connectivity between two line segments that
are divided by a division point. The details of our network
structure are shown in Table II.

2) Point-Wise Coordinate Feature: We generate the point
cloud from the bronchus mask to obtain the point-wise coordi-
nate feature. We crop out the bounding box of each bronchial
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Fig. 4. Construction of bronchial tree: (1) skeletonize the bronchus; (2) extract the key points separating the bronchial fragments; (3) separate the

bronchus into segments.

TABLE Il
DETAILS OF THE UNET AND POINT-VOXEL GRAPH NEURAL NETWORK (PV-GNN) STRUCTURES AND PARAMETERS. “BN” DENOTES BATCH
NORMALIZATION, “SK” DENOTES SKIP CONNECTION, “FC” DENOTES FULLY CONNECTED LAYER, “CONV” DENOTES CONVOLUTION, “MSC”
DENOTES MEAN SAGE-CONVOLUTION, “GN” DENOTES GRAPH NORMALIZATION, AND “CONV-NORM BLOCK” COMBINES MSC, GN, AND RELU
LAYERS. “K” DENOTES THE NUMBER OF POINTS PER NODE IN THE GRAPH

Module Input Size/Channels Network Layer/Operation In/Out Channels Description
UNet Architecture
Encoder 128 x 128 x 128 Stem Conv 1724 Conv3d+BN+ReLU
64 x 64 x 64 Residual block 1 24 /1 48 Multiple layers with SK
32 x 32 x 32 Residual block 2 48 /96 Multiple layers with SK
16 x 16 x 16 Residual block 3 96 /192 Multiple layers with SK
Decoder 32 x 32 x 32 Upsample layer 1927192 Trilinear upscaling
32 x 32 x 32 Double Conv 192+96 / 96 Conv3d+BN+ReLU
64 x 64 x 64 Upsample layer 96 / 96 Trilinear upscaling
64 x 64 x 64 Double Conv 96+48 / 48 Conv3d+BN+ReLU
128 x 128 x 128 Upsample layer 48 / 48 Trilinear upscaling
128 x 128 x 128 Double Conv 48+24 / 24 Conv3d+BN+ReLU
128 x 128 x 128 FC layer 24 /20 Reduce dimensions
PV-GNN Architecture
PV-GNN (24 + 3) x GNN Block 1 (24+3)x K/ (24+43)x K  Conv-Norm Block
(24 +3) x GNN Block 2 (24+3)x K/ (24+3) x K Conv-Norm Block
(24 4+ 3) x K GNN Block 3 (244+3)x K/ (24 +3) x K Conv-Norm Block
(24 +3) x Fully-connected layer (24+3) x K /2 Reduce dimensions

segment (i.e., a node in the graph) from the bronchus tree.
Each segment is composed of the centerline voxels that are
within the bounding box. Then the coordinate (X, Y, and Z)
of each voxel is normalized to [0, 1] concerning the shape
of the bounding box. Such normalization is expected to help
describe the pose and angle of a segment. Let L be the length
of the center line, We divide the centerline into K — 1 parts
with the same interval K 1> and collect K points from the
start and the end points of these K — 1 parts. For each
bronchial segment, we define its point-wise coordinate feature
as the list of three-dimensional coordinates of these K points.
In this way, for each bronchial segment, we obtain its point
cloud feature that contains three-dimensional coordinates of
K voxels and has a length of 3 x K. The detailed analysis of
the hyper-parameter K is shown in Table VIL.

3) Voxel-Wise Convolution Feature: To obtain voxel features,
we train a UNet (the upper part in Fig. 3) to predict the cate-
gory of each bronchus branch. A 3D feature map is produced
from the penultimate layer of the UNet. For each bronchial
fragment, we locate the K voxels that are nearest to the above-
mentioned K points and extract the convolution features from
the feature map according to each voxel’s indices. The voxel-
wise convolution feature of the bronchial fragment is defined
as the combination of the K features and has a length of C- K,
where C is the channel number of the last but one feature map

(C = 24 by default) of the UNet. Thus, the size of a voxel-wise
convolution feature is 24 x K.

4) Point-Voxel Graph Neural Network: Given a point-voxel
graph that takes both point-cloud features and high-dimension
voxel features into account, we design a Point-Voxel Graph
Neural Network (PV-GNN) to predict the category of each
bronchial segment. The PV-GNN consists of Conv-Norm
Blocks and a fully connected layer. A Conv-Norm Block is
composed of a Mean Sage-Convolution (MSC) [52] layer,
a Graph Normalization (GN) [53] layer, and a ReLU activation
function. The MSC layer uses the mean aggregated function
to merge information from node neighbors to overcome the
inductive bias. Considering that adjacent nodes in the topology
of the bronchial tree are relatively sparse, we build up a deep
GNN for better information integrating point clouds. Since
the GNN has a risk of suffering from gradient vanishing as
it goes deeper, we introduce GN to shift and scale feature
values, which makes graph neural networks converge much
faster. Besides the first block, each block is followed by an
element-wise addition that acts as a residual connection. Let
H* denote the output of the k-th block and o denote the
ReLU operation. The Conv-Norm block is formally defined
as Eq. (2):

k — o (GNMSC(H* 1)) + HF 1. 2)
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TABLE Il

COMPARISON OF BRONCHUS CLASSIFICATION METHODS. LP [31],

TS-NN [7], SGNET [44] ARE THE PREVIOUS STATE-OF-THE-ARTS

METHODS. THE GNN-BASED METHODS (I.E., GCN [33], GAT [34], GIN [35]) UTILIZE OUR PROPOSED POINT-VOXEL FEATURE FOR GRAPH
CONSTRUCTION. p-Value IS CALCULATED BETWEEN OUR MODEL AND OTHER MODELS UNDER THREE DIFFERENT SEEDS

Methods Accuracy  Precision Recall F1-score p-value  Flops (G)  Running Time (s)  Throughput (samples/s)
LP [31] 81.844.3 74.7+34 792448 T77.0442 <0.001 - 0.75 1.33
TS-NN [51] 76.845.3 77.844.4 74.946.1 76.245.2 <0.001 0.38 0.04 24.99
SGNet [44] 85.6453 85.0452 844462 84.7156 <0.001 477.47 4.27 0.28
GCN [33] 90.7457 90.2146 904456 90.415.2 0.006 13.21 2.52 0.40
GIN [35] 90.0442 89.2153 90.1158 894155 <0.001 13.12 2.51 0.40
GAT [34] 912456 91.6149 907454 911152 0.020 14.21 2.60 0.39
BCNet 942438 934463 940449 93.7455 - 13.07 1.00 1.00
5) CE Loss With Neighborhood Consistency Regularization: TABLE IV

Considering the topology prior that adjacent branches in
a bronchial tree more likely belong to the same category,
we design a novel Neighborhood Consistency Regularization
(NCR) to penalize local spatial variations and force the
nearby nodes of the same category to be closer in a latent
space. Let Y {v1,y2,...,yn} be the set that contains
the one-hot vector of the ground truth of each branch and
Z ={z1,22,...,zn} be the set that contains the logit vector
of the model prediction of each branch. The NCR loss is
formulated as Eq. (3):

N

Vi
i=1 2.5 zi =z [1IQi = y))

M

where V; is the set of the i-th node’s neighbors, j denotes the
j-th node in this set, z; denotes the logit vector of the i-th
node from the output of the last fully connected layer, I(-)
is an indicator function that returns 1 when the condition is
met and returns O otherwise, and M, N are the numbers of
edges and nodes in the graph, respectively. Let « be a scalar
to balance the weight of the regularization and CE loss, the
overall loss function contains the above NCR and a vanilla
Cross-Entropy loss and is formulated as Eq. (4):

, 3)

Lycr =

“4)

vagnn = LCE(}’prezh )’gt) + OfLNCR(yprea’)a

where L g0, has the same number of classes with L.

D. Overall Loss for Bronchus Classification

We train our proposed model with the UNet and PV-GNN
components in an end-to-end manner, since the gradients of the
GNN branch can sent backward to the UNet branch through
the operation of convolutional voxel feature extraction. Let 8
be a scalar to balance the weight of two tasks, the final loss
L5 is composed of two parts, which could be formulated as
Eq. (5):

Leis = Lyner + ﬂvagnm @)

V. EXPERIMENTS AND RESULTS
A. Implementation Details

PyTorch 1.10 is used to build the model. All models are
trained with an NVIDIA V100 GPU of 32GB. BronAtlas
is split into the training/validation/testing set with 63/7/30
samples. We use the validation set to tune our parameters
select the best-performed model and further test it on the test

FIVE-FOLD CROSS-VALIDATION RESULT OF THREE REPRESENTATIVE
METHODS. IN THIS SETTING, WE USE 56 SAMPLES FOR TRAINING,
14 SAMPLES FOR VALIDATION, AND 30 SAMPLES FOR TESTING

Method  Accuracy  Precision Recall Fl-score  p-value
CNN 81.740.3 823+0.2 8l.1+0.4 81.7404 <0.001
GIN 87.640.1 87.1+02 863101 86.7+0.2 <0.001

BCNet 932401  93.0+0.1 926401 92.840.1 -

TABLE V

DETAILED PERFORMANCE ANALYSIS ON THE OUT-OF-DOMAIN DATA
FROM ANOTHER DATA CENTER WHICH CONTAINS 30 CASES. p-Value
IS CALCULATED BETWEEN OUR MODEL AND OTHER MODELS UNDER

THREE DIFFERENT SEEDS

Method  Accuracy  Precision Recall Fl-score  p-value
CNN 84.547.0 83.147.1 86.84+6.3 849467 <0.001
GIN 88.7+0.6 88.0+57 914454 89.6454 <0.01

BCNet 917446 903449 943435 923441 -

set. We augment the training data by applying random affine
transformation and elastic deformation 99 times. Following the
aforementioned data augmentation process, we transformed
the samples into a cube with a shape of 128 x 128 x 128. This
standardized cube was used to train all the algorithms in this
work. For the testing phase, we reverted the cube to its original
shape for evaluation and visualization. By doing this, we were
able to ensure a fair comparison across all the methods. We use
DropEdge [54] for the classification model training to avoid
over-fitting. The model is trained with the Adam optimizer,
a batch size of 128, and a learning rate of 0.001 for 50 epochs.
The number of layers and hidden dimensions in PV-GNN is
set to 5 and 256, respectively.

We follow [31] to adopt four metrics: accuracy, precision,
recall, and Fl-score. The overall Fl-score is computed by
taking the average of the Fl-scores of all classes, while the
F1-score of each class is based on the harmonic mean of the
precision and recall. All performance metrics reported herein
are computed using the One-versus-All (OvA) strategy. OVA
treats one class as the positive class and combines all other
classes into a single negative class for each classification task,
thereby enabling the evaluation of classifier performance on a
per-class basis.

B. Comparison With the State-of-the-Art Methods

The quantitative comparison for bronchial classification is
shown in Table III. The previous state-of-the-art methods,
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TABLE VI
PERFORMANCE ON THE ABNORMAL CATEGORY IN BRONCHUS ATLAS
BENCHMARK. RESULTS ARE TESTED USING THE BEST-PERFORMING
MODEL IN THE VALIDATION SET

Method  Accuracy  Precision  Recall Fl-score  p-value
CNN 24.5 26.7 15.4 19.5 <0.001
GIN 39.3 38.2 22.0 279 <0.001

BCNet 61.2 60.7 50.0 54.8 -

we implement them by following the description in their
paper and using the same training setting as our work. For
the GNN-based methods, we first pre-train a UNet to seg-
ment the bronchus and extract the dimension voxel feature,
then use the GNN that takes the point cloud feature and
high-dimension voxel feature as the node feature for bronchus
classification. Our final BCNet is trained using a multi-task
learning pipeline with the PV-GNN and CNN. For inference,
BCNet solely relies on the CNN part.

Observations from Table III indicate that our uniquely
designed point-voxel feature allows the Graph Neural Net-
works (GNNs) to deliver superior results compared to
previously established state-of-the-art methods. This shows
that compared with the previous handcraft feature [31] or
other graph construction feature [44], the point cloud fea-
ture and convolutional feature are quite important for the
distinguishable graph representation learning. Our Bronchus
Classification Network (BCNet) significantly outperforms the
previously established state-of-the-art SGNet, achieving an
improvement of 8.8% in accuracy and 9.0% in the F1-score.
This underscores the substantial effectiveness of our pro-
posed structure-guided learning framework. Notably, BCNet
exhibits an advantage in efficiency over Graph Neural Net-
work (GNN)-based methods. While the latter requires both
Convolutional Neural Network (CNN) and GNN components
during the inference stage, BCNet only needs the CNN part
for inference, leading to greater efficiency and compromising
performance. We present the outcomes of representative meth-
ods in Table IV, conducted under a five-fold cross-validation
setting on our dataset. To achieve five-fold cross-validation,
we adopt the data partition of “56/14/30”. Note that, for the
data partition of “63/7/30” in Section III-C, we do not perform
cross-validation. Additionally, we further evaluate our model’s
performance on out-of-domain data, as shown in Table V. All
these results support that our methods are effective.

We also provide the averaging result of the abnormal cases,
and it is shown in Table VI. We can see that our method
achieves the highest performance and significantly exceeds the
previous methods on the abnormal samples by over 25% on
the F1 scores. The abnormal cases are clinically important.
However, due to the limited abnormal cases in the training
set, there is still a gap to achieve better performance, which
will be our future work.

C. Ablation Study

The ablation study for the classification task is in Table VII.
‘CNN’ uses only a UNet to label the input binary mask, which
shows inferior results due to the lack of structure modeling.

TABLE VI
ABLATION STUDY OF DIFFERENT COMPONENTS USED IN OUR BCNET.
‘PF’, ‘'VF’, AND ‘NCR’ DENOTE POINT FEATURE, VOXEL FEATURE,
AND NEIGHBORHOOD CONSISTENCY REGULARIZATION,
RESPECTIVELY. NOTE THAT ALL METHODS INVOLVE A VOXEL FEATURE
NEEDED TO TRAIN THE UNET. p-Value IS CALCULATED BETWEEN OUR
MODEL AND OTHER MODELS UNDER THREE DIFFERENT SEEDS

Methods CNN GNN Fl-score  p-value
PF  VF NCR

CNN v 85.7+8.5  <0.001
V-GNN v 91.445.0 0.04

P-GNN v 88.245.7  <0.001
VN-GNN v v 91.745.5 0.06
PN-GNN v v 90.7+5.9 0.01
PV-GNN v v 91.846.0 0.07
PVN-GNN v v v 92.446.5 0.16
BCNet (GNN) v v v v 91.246.3 0.03

BCNet (CNN) v v v v 93.7+5.5 -

“*.GNN’ denotes the method that adopts a graph neural
network with different node representations. ‘PF’ denotes
the point-wise coordinate feature based on point clouds,
while ‘VF’ means the voxel-wise convolution feature. ‘NCR’
denotes Neighborhood Consistency Regularization. Using the
graph representation of point clouds, ‘P-GNN’ outperforms
the ‘CNN’ by 6.3% on the Fl-score. ‘PV-GNN’ means the
proposed point-voxel graph neural network that adopts both
the voxel-wise convolutional features and the point cloud
features as the node representations, and it can capture the
texture and diameter information, thus significantly exceeding
the ‘P-GNN’ by 3.8% F1-score. ‘PN-GNN’ denotes the GNN
that employs the point cloud features as node features and
utilizes the NCR. ‘PVN-GNN’ means integrating the NCR
with the ‘PV-GNN’ model, which brings a performance gain
of 0.6%.

‘BCNet (GNN)’ and ‘BCNet (CNN)’ denote the results of
the CNN (UNet) and GNN branches in our BCNet, respec-
tively. Under the guidance of the GNN, the CNN branch in
BCNet obtains 93.7% F1-score and impressively outperforms
the CNN baseline (85.7%) by 8% on F1-score. The improve-
ment well verifies the idea of structure-guided learning that
training the GNN branch can boost the feature learning and
classification result of the CNN branch. Of the reasons the
performance of the GNN part degrades, one is that the GNN
result needs to be recovered to the cube with an unlearnable
region growth algorithm. The reason for PVN-GNN is better
than BCNet (GNN) on Fl-score is that PVN-GNN uses a
pre-trained and fixed classification CNN network to extract
static voxel features, which are used to initialize the nodes in
PVN-GNN. In this situation, the voxel features are stable and
discriminative for classification. In contrast, BCNet (GNN)
uses voxel features extracted from a CNN which is updated in
real-time, which may introduce unstable noises and negatively
affect the initial training process of the GNN branch, leading
to degraded performance. Note that ‘BCNet (GNN)’ still
achieves the state-of-the-art result among existing methods in
Table III. Interestingly, during the inference, BCNet can run
only the CNN branch without relying on the GNN branch and
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Ground Truth

TS-NN

NN-LP

SG-Net Ours

Fig. 5. Qualitative analysis on the BronAtlas benchmark. The misclassified bronchus is bounded by red boxes. TS-NN [7] suffers from errors related
to branching variability. LP [31] fails to distinguish the segments with similar angles. SGNet [44] misclassifies the thin bronchus while the proposed

BCNet shows robust predictions.

thus enjoys both the best performance 93.7%, and the same
efficiency as the CNN baseline.

VI. DISCUSSION
A. Constrains and Limitations

The one-stage framework utilizes UNet for direct
multi-class segmentation from CT images and processes sam-
ples in approximately 3.5 seconds each. Despite its speed,
the performance metrics show significant limitations, with an
accuracy of only 36.1 (£15.7), precision of 34.3 (£12.2),
and particularly low recall of 11.8 (£3.7), resulting in an
Fl-score of 17.0 (4£4.9), as shown in TABLE VIII. The
p-value < 0.001 highlights the considerable performance gap
compared to the two-stage approach. Our two-stage frame-
work, though more time-consuming, clearly outperforms the
one-stage. In the training process, we start with UNet gen-
erating a binary mask in 3.5 seconds per sample, followed
by construction of bronchial tree (1.5 seconds per sample)
and CNN-GNN based classification (1.01 seconds per sample),
totaling around 6 seconds per sample. This approach attains an
accuracy of 93.6 (£5.6), precision of 93.4 (£6.1), and recall
of 91.7 (£8.2), with an Fl-score of 92.5 (£+7.0). It is worth
noting that during the inference stage, we only need 1 second
to obtain the classification result from the CNN branch without
prepossessing like building a bronchial tree.

TABLE VIII
COMPARISON OF ONE-STAGE AND TWO-STAGE FRAMEWORKS FOR CT
IMAGE SEGMENTATION. THE ONE-STAGE APPROACH EMPLOYS UNET
FOR DIRECT MULTI-CLASS SEGMENTATION FROM CT IMAGES. THE
TWO-STAGE FRAMEWORK FIRST UTILIZES UNET TO GENERATE A
BINARY MASK FROM THE CT, FOLLOWED BY THE APPLICATION OF
BCNET FOR MULTI-CLASS CLASSIFICATION

Method Accuracy Precision Recall Fl-score  p-value
one-stage 36.1+15.7 3434122 11.843.7 17.044.9 <0.001
two-stage 93.645.6 934461 91.748.2 925470 -

The one-stage method’s failure is largely due to its inability
to separately optimize segmentation and classification, forcing
UNet to manage both tasks simultaneously. This can lead
to conflicts between segmentation accuracy and classification
precision. In contrast, the two-stage method allows each net-
work (UNet for segmentation and BCNet for classification)
to specialize and optimize its respective task, resulting in
significantly enhanced overall performance. In summary, the
two-stage framework, despite its longer processing time, offers
a substantial increase in performance, making it preferable for
applications where accuracy is critical. The one-stage method,
although faster, suffers from significant performance deficits,
rendering it less suitable for high-stakes clinical applications.
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TABLE IX
ANALYSIS ON THE HYPER-PARAMETERS o AND 3. PARAMETER a IS
USED IN THE NEIGHBORHOOD CONSISTENCY REGULARIZATION
(NCR) TO BALANCE THE TRADE-OFF BETWEEN CROSS-ENTROPY
Loss AND NCR, AS SHOWN IN EQ. 4. PARAMETER (3 ADJUSTS THE
TRADE-OFF BETWEEN THE CROSS-ENTROPY LOSS ON THE CNN AND
GNN BRANCHES, AS DETAILED IN EQ. 5

a 0 0.5 1 1.5 2
Fl-score  92.846.1 93.1458 93.7455 93.3+49 93.046.5
B8 - 0.5 1 2 -
Fl-score - 935447 937455 934453 -

TABLE X

ANALYSIS ON THE NUMBER OF POINTS K IN THE GRAPH
CONSTRUCTION PROCESS

K 6 8 10 12 14
933458 9341459 937155 932152 935161

F1-score

Another obstacle in our current work is the performance of
the abnormal category predictions. Despite BCNet being the
best-performing model with an accuracy of 61.2 and F1-score
of 54.8, it, along with CNN and GIN, shows substantial room
for improvement, particularly in recall rates. Future efforts
will focus on refining these models through advanced neu-
ral architectures, increased data augmentation, sophisticated
feature engineering, and hybrid model approaches. Moreover,
implementing advanced training techniques such as transfer
learning could also enhance our model’s ability to accurately
identify abnormal categories, addressing the critical need for
reliable detection in medical imaging. These strategies are
pivotal as we aim to close the performance gap between
abnormal and normal category predictions.

B. Sensitive and Qualitative Analysis

The sensitivity analysis for our BCNet architecture, detailed
in Table IX, evaluates the impact of hyper-parameters o and
B. The parameter «, which governs the balance between
cross-entropy loss and neighborhood consistency regulariza-
tion (NCR) as per Eq. 4, shows that increasing o from O to
1 enhances the Fl-score, reaching a peak at « = 1 (93.7).
This indicates optimal NCR application, improving model
generalization. Beyond this, further increases in o slightly
degrade performance, suggesting over-regularization. Simi-
larly, the parameter 8, adjusting the cross-entropy loss balance
between the CNN and GNN branches as outlined in Eq. 5,
reveals that both 8 = 0.5 and 8 = 1 optimize the model’s
performance with Fl-scores of 93.5 and 93.7, respectively.
A shift to 8 = 2 results in a minor decrease in the F1-score
to 93.4, indicating less effective loss distribution.

Table X demonstrates the effect of varying K on the F1
score. As K increases from 6 to 10, the F1 score improves,
reaching a peak of 93.7 at K = 10. However, further increases
in K result in marginal changes, suggesting an optimal K
range of 1 to 1.5 for achieving the highest F1 score. We also
provide the qualitative comparison result for bronchus seg-
mentation in Fig. 5. As we can see, our method produces

less misclassified bronchus (marked in red box) than other
approaches.

VII. CONCLUSION

In this paper, we present the BCNet, a structure-guided
learning framework for bronchus classification based on CT
imaging data. With the simultaneous training of our proposed
Point-Voxel GNN at the segment level, the BCNet learns to
harvest structure-aware representations for the shared convo-
lutional backbone and hence yields better predictions at the
voxel-level branch. Besides, we exploit the structure prior
with a novel neighborhood consistency regularization to boost
the performance. We contribute the BronAtlas benchmark that
contains 100 CT scans with voxel-wise masks and segment-
level labels to facilitate future research. The experimental
results on the BronAtlas benchmark show that our proposed
model significantly exceeds the state-of-the-art methods.
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