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Abstract— In this paper, we address a complex but practical
scenario in Active Learning (AL) known as open-set AL, where
the unlabeled data consists of both in-distribution (ID) and out-
of-distribution (OOD) samples. Standard AL methods will fail in
this scenario as OOD samples are highly likely to be regarded
as uncertain samples, leading to their selection and wasting of
the budget. Existing methods focus on selecting the highly likely
ID samples, which tend to be easy and less informative. To this
end, we introduce two criteria, namely contrastive confidence and
historical divergence, which measure the possibility of being ID
and the hardness of a sample, respectively. By balancing the two
proposed criteria, highly informative ID samples can be selected
as much as possible. Furthermore, unlike previous methods that
require additional neural networks to detect the OOD samples,
we propose a contrastive clustering framework that endows the
classifier with the ability to identify the OOD samples and further
enhances the network’s representation learning. The experi-
mental results demonstrate that the proposed method achieves
state-of-the-art performance on several benchmark datasets.

Index Terms— Image recognition, active learning, contrastive
learning.

I. INTRODUCTION

DEEP Neural Networks (DNNs) have emerged as a
promising solution for a wide range of applications,

including image recognition [1], recommendation systems [2],
and biomedical imaging [3]. However, the data-hungry nature
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Fig. 1. The comparison between our proposed method and the previous
method LfOSA [19]. LfOSA trains an additional OOD detector to select the
samples most likely to be ID for annotation and trains the task classifier
solely on the labeled ID samples. In contrast, our method leverages both ID
and OOD data for training the task classifier and has the capability to select
highly informative ID samples without the need for additional OOD detectors.

of DNNs and the high cost of labeling large volumes of
data have presented significant challenges. Meanwhile, Active
Learning (AL) [4], [5] has gained popularity as an approach to
resolve the problem of expensive annotation costs by utilizing
machine learning models to identify informative subsets of
data for annotation and subsequently train models on the
selected subset. As a result, numerous works have been
proposed to tackle the AL problem in the field of deep
learning [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18].

Although effective, standard Active Learning (AL) methods
operate under the implicit assumption that unlabeled data
solely consists of in-distribution (ID) samples. This assump-
tion is unrealistic since many real-world scenarios are open-set
and often contain numerous out-of-distribution (OOD) sam-
ples. Specifically, the label sets of ID and OOD samples differ,
e.g., they belong to different classes, and the OOD classes
are irrelevant to the task. In practice, standard closed-set AL
algorithms fail in the open-set AL context since they primarily
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focus on selecting highly uncertain samples for labeling. This
results in the selection of numerous OOD samples as the
task neural networks [20] are usually not confident when
dealing with such samples. Therefore, the most straightforward
solution for open-set AL is to select the samples that are most
likely to be ID for labeling, thereby creating a clean query set.

The pioneering work LfOSA [19] proposes to use an addi-
tional neural network to detect the OOD samples and avoid
selecting them. Specifically, given ID samples of K classes and
a few OOD samples, a (K + 1)-way classifier is trained along
with the task classifier. After each active learning round, the
samples with high maximum ID activation values are selected
for labeling. The maximum ID activation value is defined as
the maximum of the K-dimensional vector for ID classes of
the final feature.

Although LfOSA [19] can effectively filter out OOD sam-
ples, we argue that it has the following shortcomings. Firstly,
it is not optimal to only focus on the “cleanness” of the query
set. LfOSA only selects the ID samples that are most differen-
tiable from OOD samples. Thus, the selected samples tend to
be “easy” and less informative. Secondly, diversity is not con-
sidered, as all the samples are sorted together according to the
maximum activation value. This might bring the class imbal-
ance issue as some classes may be highly differentiable while
some may be ambiguous to the OOD classes. Finally, an addi-
tional classifier needs to be trained since the classification
performance of the OOD detector is low, because all the OOD
samples are forcibly classified as a single class, while classify-
ing the samples belonging to multiple categories into a single
class will hurt the representation learning of the network.

In this paper, we address the aforementioned shortcomings
by a selection method that balances the cleanliness and hard-
ness of the query set using two proposed criteria: contrastive
confidence and historical divergence. Specifically, the selec-
tion method has three components: i) measuring the possibility
that a sample belongs to ID by contrastive confidence, ii) mea-
suring the hardness of a sample by historical divergence, and
iii) a class-wise selection module that ensures diversity of the
query set. The contrastive confidence and historical divergence
are balanced by a round-adaptive parameter. Furthermore,
we propose a contrastive clustering method that fully leverages
both the ID and OOD samples, endowing the classifier with
the ability to identify OOD samples without training an OOD
detector and enhancing the representation learning of the net-
work. The contrastive clustering consists of two components:
(i) An ID clustering method that contrastively clusters the
ID samples in a supervised manner and pushes away ID
samples from OOD samples in the feature space. (ii) An OOD
clustering method that clusters OOD samples into compact
clusters to benefit the network’s representation learning, which
is achieved by contrasting the prototypical predictions of two
augmented views in a mini-batch. A comparison between our
method and LfOSA [19] is shown in Figure 1.

In summary, our work has the following contributions:

• We propose a sample selection method that selects as
many highly informative ID samples as possible by
balancing the query set’s cleanness and hardness.

• We propose an ID clustering method that enhances the
representation learning of the network and pushes ID
samples away from OOD samples in feature space so
that ID samples can be more discriminative from OOD
samples.

• In addition to the ID clustering, we propose an OOD
clustering method that fully leverages the selected OOD
samples and further improves the network’s performance.

• We perform extensive experiments on several bench-
mark datasets to verify the effectiveness of our proposed
method, and the results show that our method outperforms
previous state-of-the-art methods by clear margins.

II. RELATED WORK

A. Active Learning

The existing active learning methods usually focus on
designing various sample selection strategies that can broadly
be grouped into uncertainty-based [6], [11], [21], [22], [23],
[24], [25], [26], [27], [28], [29] and diversity-based meth-
ods [7], [8], [10], [12], [14], [18], [30], [31], [32], [33],
[34]. Uncertainty-based methods mainly aim to select samples
that are ambiguous about the predictions. Standard approaches
use the posterior probability to measure the uncertainty, e.g.,
least softmax confidence [21], margin [22], and entropy [6],
[23]. In addition, many other approaches have been proposed
to estimate the uncertainty, especially for DNNs, e.g., Yoo
and Kweon [11] estimates the training loss of unlabeled
samples and select the samples with large losses, Ducoffe
and Precioso [24] proposes to using the adversarial robustness
as the uncertainty criterion, and Liu et al. [25] proposes a
measure called influence function to assist sample selection.
Diversity-based methods mainly aim to select samples that
are representative in the feature space so that the distribution
of this selected subset can become close to the original
unlabeled samples. CoreSet [10] proposes to formulate the
problem to a k-center problem and greedily select the samples
with the greatest distance to their nearest neighbors. Further-
more, Agarwal et al. [13] replace the Euclidean distance with
context-aware KL-divergence. VAAL [12] uses a variational
autoencoder [35] to approximate the distribution of labeled
data and a discriminator to discriminate the labeled and
unlabeled data. Moreover, many approaches [7], [8], [18], [30],
[30], [36], [37] have been proposed to use both uncertainty
and diversity as the selection criterion to select more diverse
and informative samples. BADGE [7] proposes to cluster
the gradient embeddings regarding to the pseudo labels to
ensure both diversity and uncertainty. ALFA-Mix [8] iden-
tifies unlabelled instances with sufficiently distinct features
by seeking inconsistencies in predictions resulting from their
representation mixup [38].

The above methods are no longer feasible in the case of
the open-set setting as OOD samples are highly likely to be
regarded as uncertain samples, and they are easy to show great
diversity in the feature space. As a result, some OOD samples
will be selected as hard samples, and the potentially really-
hard samples will be left out, thereby wasting the budget.
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In this paper, we propose a sample selection method to select
as many hard ID samples as possible.

B. Open-Set Recognition

Open-set recognition (OSR) has emerged as a critical
problem in the field of machine learning that addresses
the challenge of learning with both known and unknown
categories. The foundational framework for OSR, proposed
by Scheirer et al. [39], posits that the training set comprises
known classes, whereas the testing set includes both known
and unknown classes. The objective is to classify the known
classes while rejecting the unknown ones during testing. A lot
of approaches have been introduced to address the OSR prob-
lem [40], [41], [42], [43], [44], [45], [46], [47], [48]. Building
upon this framework, various related settings have been pro-
posed, including open-set semi-supervised learning [49], [50],
[51], [52], [53], few-shot OSR [54], [55], [56], [57], [58],
[59], and novel category discovery [60], [61], [62], [63], [64].
Open-set semi-supervised learning presumes the presence of
unknown classes within the unlabeled data, aiming to classify
known classes. Few-shot OSR extends few-shot learning by
requiring the model to not only classify novel classes but also
reject unknown class samples during testing. Novel category
discovery delves deeper into handling unknown classes by
assuming that the training set contains both labeled known
classes and unlabeled unknown classes, with the goal of clus-
tering the unknown classes into meaningful semantic cluters.

However, the above paradigms focus on learning in the
presence of unknown classes, whereas open-set active learning
centers on the strategies of sample selection. Given an unla-
beled dataset containing both known and unknown classes,
the goal is to select the most informative samples for labeling
in order to enhance the classification of known classes. This
diverges from the typical settings outlined above and presents
unique challenges within the domain of active learning.

C. Open-Set Active Learning

There are few works that address the problem of open-set
active learning [19], [65], [66], [67]. SIMILAR [66] employs
submodular functions to select the samples farthest from
the identified OOD samples while nearest to all unlabeled
samples. However, such an operation tends to select easy ID
samples. CCAL [65] pre-trains two OOD detector networks,
each for measuring the informativeness and the possibility of
being ID of a given sample. However, the detector networks
are pre-trained in an unsupervised manner, then are frozen
during active learning rounds, which do not interact with the
task classifier during training, thereby the estimation of the
informativeness and IDness is biased. Unlike CCAL [65],
LfOSA [19] does not discard the selected OOD samples.
In contrast, LfOSA [19] uses them along with the ID samples
to train a (K + 1)-way OOD detector network on-the-fly
during active learning rounds. However, only the possibility of
belonging to ID samples is considered for the selection, which
tends to select low informative samples. MQNet [67] leverages
a self-supervised model and a meta-net to balance the purity
and informativeness for selection. However, the training of

the self-supervised model and the meta-net brings additional
computational costs.

Compared with the above methods, our method jointly
models the hardness and the possibility of being ID of the
unlabeled samples using the task classifier, which can select
highly informative ID samples. Furthermore, our method does
not require additional OOD detector networks as the proposed
contrastive clustering endows the classifier with the ability to
identify OOD samples.

D. Generalized Category Discovery

Generalized Category Discovery (GCD) [62], [68], [69],
[70] addresses the challenge of clustering a pool of unla-
beled data that includes both ID and OOD samples. The
goal is to effectively cluster all unlabeled samples, encom-
passing both ID and OOD categories. The pioneering work
by Vaze et al. [62] employs semi-supervised K-Means to
tackle this task. Additionally, several subsequent studies have
explored the use of parametric classifiers [69], [70]. Recently,
an extended setting of GCD, termed Active Generalized Cat-
egory Discovery (AGCD), has been proposed to address the
GCD task within the constraints of affordable labeling budgets.
AGCD introduces an adaptive sampling strategy that jointly
considers novelty, informativeness, and diversity to adaptively
select novel samples with appropriate uncertainty.

In contrast to AGCD, our approach focuses solely on
classifying ID samples during inference, which eliminates
the necessity of considering the novelty of samples during
sampling. Furthermore, results from AGCD indicate that while
accounting for novelty can improve the clustering performance
of OOD samples, it can also negatively impact the performance
on ID samples.

III. METHOD

In this section, we first present the preliminaries including
the definition of open-set active learning and associated nota-
tions and then detail the proposed framework.

A. Preliminaries

In the open-set active learning problem, a small-size initial
labeled set DL = {(xl

i , yl
i )}

nl
i=1, yl

i ∈ CI D and a large-size

unlabeled set DU = {(xu
i )}

nu
i=1 is given, where CI D is the

label set of DL , consisting of the in-distribution (ID) target
classes that we aim to classify. In contrast, the label set of
DU consists of not only the ID classes but also the out-of-
distribution (OOD) classes, e.g., CU = CI D ∪ CO O D . Active
Learning (AL) aims to employ the model to select a set of
informative unlabeled samples Xquery for querying labels from
the annotators, and this process iterates over R rounds. In each
round r , the labeled set Dr

L is used to train the model. In the
open-set scenario, the annotator will label the ID samples with
their ground truth and the OOD samples as a single unknown
class.

The existing work LfOSA [19] addresses the problem by
selecting the unlabeled samples that are most likely to belong
to the ID classes. An OOD detector is trained to classify
the labeled ID and OOD samples to K + 1 classes and
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Fig. 2. Illustration of our proposed framework. f is the backbone, g is the classification head, and h is the projection head for contrastive learning. Given
the ID features z I D and the unlabeled features zU , the prototypical prediction p and the historical prediction of zU are first calculated. Then, two criteria,
contrastive confidence (Eq. 2) and historical divergence (Eq. 4), are calculated and then balanced to obtain the final score (Eq. 5) for sample selection. The
contrastive clustering consists of two parts: i) LI D (Eq. 6) that pulls the positive pairs (e.g., same class samples) and pushes the negative pairs (e.g., different
class samples and OOD samples) away from each other, and ii) LO O D (Eq. 8) that first estimates the OOD clusters, then contrasts the batch prototypical
predictions of two augmented views, qA and qB , enforcing the correlation matrix close to the identity matrix. Note that the unlabeled data are only used for
selection, not training.

select the samples with high maximum ID activation values.
Although LfOSA can select most ID samples, there are several
drawbacks. Firstly, the selected samples are too easy and less
informative, thereby contributing little to the model training.
Secondly, the method does not consider diversity, which may
lead to class imbalance. Finally, the classifier does not fully
leverage the OOD samples, as they are only used to train the
OOD detector.

Accordingly, we propose a contrastive framework for the
open-set active learning problem to address the above issues.
Our framework has two components: i) a sample selection
method that leverages contrastive confidence and the histor-
ical divergence to select hard and diverse ID samples; ii) a
contrastive clustering method that fully leverages both ID and
OOD samples, pushing ID features away from OOD ones, and
helps the network to learn compact and highly discriminative
features for both ID and OOD samples that benefit the sample
selection in return. The overview of our method is shown in
Figure 2.

B. Sample Selection

Given the small-sized initial labeled set DL , the trained
neural network may easily mis-classify OOD samples as ID
samples due to poorly learned representations. To address this
issue, we propose first training a self-supervised network, i.e.,
SimCLR [71], using both the labeled data DL and the unla-
beled data DU . With the contrastive features of the pre-trained
network, samples similar to those in DL are more likely to be
ID samples. However, this criterion tends to select easy ID
samples, as hard samples are usually not well-clustered in the
embedding space. To balance the trade-off between “hardness”
and the quantity of ID samples, we propose leveraging the
contrastive confidence and the historical divergence of the
unlabeled sample. We also propose selecting samples in a

class-wise manner to ensure diversity. Our selection method
is detailed as follows:

1) Contrastive Confidence: This step aims to differentiate
ID and OOD samples in DU with contrastive confidence.
Formally, let f : X → Rd denote the backbone network.
After each active learning round r , given the labeled set Dr

L ,
we first compute the prototypes {vc}

CI D
c=1 of ID classes:

vc =
1

Nc

Nc∑
i

f (xi )/||
1

Nc

Nc∑
i

f (xi )||2, (1)

where Nc denotes the number of samples of class c in
Dr

L . We normalize the prototypes as the original contrastive
features f (xi ) are l2 normalized [71]. With the computed
prototypes, we define the prototypical prediction pi ∈ R|CI D |

and the contrastive confidence pi as follows:

p j
i =

exp(v j · f (xi )/τ)∑|CID |

c=1 exp(vc · f (xi )/τ)
,

pi = max pi , (2)

where xi ∈ Dr
U , τ is a temperature parameter. It can be

observed that the contrastive confidence pi is higher when
the sample is closer to the ID prototypes, implying that the
sample is more likely to be an ID sample.

2) Historical Divergence: After obtaining the prototypical
predictions of the current active learning round r , we compute
the divergence between them and the historical prototypical
predictions of round r − 1. As storing the historical predic-
tions of all previous rounds and computing the divergence
is inefficient, we propose to update the historical prediction
with the exponential moving average. Formally, the historical
prediction of the i th sample at round r is defined as follows:

p̄i,r =
1
2

(
p̄i,r−1 + pi,r

)
. (3)
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Then we define the historical divergence as the Jensen-
Shannon (JS) divergence between the prototypical prediction
and the historical prediction:

di,r = J SD(p̄i,r−1, pi,r ). (4)

It can be observed that the historical divergence of a sample
measures how the network prediction changes over different
active learning rounds. In other words, the higher di,r , the
“harder” the sample as the prediction is more unstable.

3) Class-Wise Selection: Given the contrastive confidence
pi,r and historical divergence di,r of the i th sample at round
r , we derive its final score as follows:

si,r =
r

αR
di,r + (1 −

r
αR

)pi,r , (5)

where r/(R · α) ∈ (0, 1) is a weighting parameter to balance
the ID possibility and “hardness”, R is the total number of
rounds and α ≥ 1 is a hyper-parameter. It can be observed that
r/(R · α) ∈ (0, 1) is small in early rounds and large in later
rounds. The motivation is that the network lacks ID samples
in early rounds, so selecting more ID-like samples will benefit
the training. In contrast, the network is more well-trained in
later rounds and can more accurately select “hard” ID samples.

Subsequently, the samples are sorted according to their final
score s in descending order, and the first b samples are chosen,
where b represents the budget size. In order to ensure diversity,
the selection is performed in a class-wise manner: for each
class, the samples that are predicted to that class are sorted,
and ⌈b/|CI D|⌉ samples are chosen. If there are insufficient
samples in some classes, the remaining samples are randomly
selected to fulfill the budget.

C. Contrastive Clustering

Given the labeled set, the ground truth of ID samples is fully
available, and all the OOD samples have the same “unknown”
label. To fully exploit the label information of ID samples,
we propose two different clustering losses for ID and OOD
samples, respectively.

1) Contrastive Clustering for ID Samples: Similar to
sample selection, we exploit the features extracted by the
projection head h. For the ID samples, clustering is performed
with the guidance of the ground truth. Conversely, instead of
simply discarding OOD samples, we propose training them
using a self-supervised contrastive loss and pushing them away
from ID samples. The ID and OOD samples are treated as
negative pairs of each other.

Given a training batch with size N , we perform two random
augmentations to create two views of the batch and stack
them together. Let j (i) denote the index of the augmented
counterpart of the i th sample in the batch. Then, the loss for
the i th sample is defined as follows:

LI D = −
1

|T (i)|

∑
t∈T (i)

log
exp(zi · zt/τ)∑

a∈A(i) exp(zi · za/τ)
, (6)

where z∗ = f (x∗), A(i) = {1, . . . , 2N } \ i is the set of
indices other than i , T (i) = T (i)I D ∪ T (i)O O D , T (i)I D =

{t ∈ A(i) : yt = yi } and T (i)O O D = { j (i)} are the sets of
indices of positives in the multi-view batch for ID and OOD

samples, respectively. The above loss aims to pull together
the ID samples belonging to the same class, push apart the
ID samples from different classes, and push ID samples away
from OOD samples.

2) Contrastive Clustering for OOD Sample: Although LI D
helps the network to learn good representations, the OOD
samples are not fully leveraged as they are only trained to
pull together with the augmented counterpart. To this end,
we propose to cluster the OOD samples into compact and
discriminative clusters, which will benefit the representation
learning of the network. The clustering process has two steps:
i) estimate the number of clusters and the initial cluster centers,
and ii) cluster the samples dynamically. The first step is
performed after each active learning round, and then the cluster
labels are exploited in the next round. Our clustering method
is detailed as follows:

Step 1. Cluster estimation. A straightforward approach to
estimate the number of clusters is to cluster all the selected
data Dr

L into K clusters and evaluate the cluster accuracy
solely on the ID samples, then find the optimal K that
have the highest ID cluster accuracy. However, the brute-
force estimation of K is challenging as the OOD data may
contain many classes. Therefore, we propose dividing the
OOD samples into subsets based on their predicted labels
and then performing the aforementioned estimation for each
subset. We use k-means to perform clustering and find the
optimal k using Brent’s algorithm.1 Specifically, we treat k
as the variable and the ID clustering accuracy as the function
value. Finally, we merge the clustering results of each subset
and assign each OOD sample a cluster label.

Step 2. Contrastive clustering. Since the network is re-
initialized at the beginning of each round, we re-compute
the OOD cluster centroids {oc}

M
c=1 by the cluster labels. Note

that the cluster centroids are also l2 normalized. Then, for
each OOD sample xi , we calculate its prototypical prediction
qi ∈ RM against the cluster centroids,

q j
i =

exp(o j · f (xi )/τ)∑M
c=1 exp(oc · f (xi )/τ)

. (7)

It is worth noting that when a sample is very close to a cen-
troid, its corresponding vector qi will be sharp, e.g., it will be
a one-hot vector. If the OOD samples are well-clustered, each
one will have a sharp q∗, and the predictions will be diverse.
This observation motivates us to develop the clustering loss.
Additionally, we leverage consistency regularization between
the multi-view augmented samples, represented as qA and qB .
We obtain a batch of prototypical predictions, denoted as QA
and QB , for views A and B, respectively. Here, q ∈ RM and
Q ∈ RN×M , where N is the batch size, and M is the number
of OOD cluster centroids. Finally, we compute the correlation
matrix R: R = QT

AQB , where R ∈ RM×M . Then the clustering
loss is defined as follows,

LO O D = −
1
K

Tr
(
φ(R + R⊤)

)
, (8)

where Tr(·) is the trace of a matrix, φ(·) is a row normalization
operation where each element is divided by the row sum. As R

1https://en.wikipedia.org/wiki/Brent%27s_method
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is asymmetric and the row summations differ, we convert it
to be symmetric before row normalization. Minimizing the
above loss function not only maximizes the diagonal values
but also reduces the off-diagonal values of R. It can be shown
that the optimal solutions fulfill the following conditions: i)
QA = QB , ii) QA and QB have sharp (one-hot-like) and
diverse rows (each row is a q∗). This indicates that OOD
samples are clustered into compact clusters. Finally, the OOD
cluster centroids are updated with gradients. More detailed
analysis of this loss can be found in Secs. IV-D.9–IV-D.11.

D. Overall Pipeline

In addition to the contrastive clustering losses, a cross-
entropy loss LC E is applied to the classification head g with
the labeled ID samples. Therefore, the overall loss can be
formulated as follows:

Ltotal = LC E + LI D + LO O D. (9)

The overall active learning pipeline iterates the following steps
in each round: (i) training with the above loss functions, and
(ii) sample selection and cluster estimation.

IV. EXPERIMENTS

A. Datasets

Following [19], we evaluate our method on three benchmark
datasets, including CIFAR-10 [72], CIFAR-100 [72], and Tiny-
Imagenet [73]. CIFAR-10 consists of 50,000 training images
and 10,000 test images from 10 classes, where the image size
is 32 × 32. CIFAR-100 has the same size as CIFAR-10 while
containing 100 classes. TinyImagenet is a subset of the Ima-
genet [74] dataset consisting of 200 natural image classes, each
containing 500 training images and 50 test images, where the
image size is 64 × 64. For ease of implementation, we resize
them to 32 × 32. In addition, we conduct the experiments on
the settings with the ID classes ratio ξ = 20%, 30% and 40%,
where ξ is defined as ξ = |CID|/|CID ∪ COOD|. Specifically,
for each dataset, the samples from the first |CID| classes are
defined as the ID samples while the rest are defined as the
OOD samples. Similar to [19], we perform evaluations on the
test set samples from the ID classes and report the accuracy.

B. Implementation Details

Similar to [19], we use Resnet-18 as the backbone network.
Different from [19] that sets the backbone feature dimension
as 2, we set it to the original dimension, i.e., 512. For the
self-supervised pre-training, we employ SimCLR [71] as the
training framework. Specifically, a 2-layer MLP is utilized
as the projection head h, which first projects the backbone
feature to 512 dimensions and then 128 dimensions. We train
the network for 10 rounds with an initial budget size of 4%
of the whole dataset and a query budget size of 500. For
each round, we fine-tune from the self-supervised pre-trained
network using SGD with a learning rate 1e-3 and batch size
128. We report the mean and standard error of the results
over 4 runs for each experiment. The temperature τ of the
prototypical prediction and the contrastive clustering is set to

0.1 for all experiments. In addition, the α for the trade-off
between contrastive confidence and historical divergence is set
to 8.

C. Comparison Experiments

We compare our method to the following methods: (1)
Random sampling. (2) Least confidence - lowest max soft-
max output. (3) Uncertainty - highest entropy of softmax
outputs. (4) MSP - the max softmax posterior probability.
(5) BADGE [7] - employing both uncertainty and diversity
of samples. (6) CCAL [65] - using two pre-trained OOD
detectors to select more ID samples. (7) LfOSA [19] - using
a K + 1 way classifier to differentiate ID samples from OOD
ones. (8) MQNet [67] - using a mete-network to assist the
selection. All of the above methods are trained on the same
protocol, e.g., starting from a SimCLR pre-trained model at
each round.

Results: The comparison results are presented in Figure 3.
The results indicate that our proposed method outperforms all
previous methods across all datasets with varying ID ratios,
providing evidence of its efficacy. Remarkably, the model
attains satisfactory performance at early training stages, even
at the first active round, implying that our proposed contrastive
clustering approach can potentially reduce the number of
active rounds required. Additionally, it is notable that our
method exhibits a smaller variance than most other methods,
indicating greater stability.

D. Ablation Studies

We perform several ablation studies to validate our proposed
method.

1) Sample Selection: To verify the efficacy of each compo-
nent of the proposed sample selection method, we perform an
ablation study on CIFAR100 with ID ratio ξ = 40%:

a) Contrastive confidence: Contrastive confidence
(Eq. 2) aims to measure the possibility that a sample belongs
to ID. In contrast, the absence of contrastive confidence
leads to suboptimal performance, as evidenced in Figure 4a.
We conjecture that this is due to the selection criterion being
based solely on the historical divergence, resulting in the
selection of more uncertain samples, which are more likely
to be OOD, as illustrated in Figure 4b. Therefore, contrastive
confidence plays a vital role in identifying ID samples.
Additionally, it is worth highlighting that, even in the absence
of contrastive confidence, our method can select more ID
samples than random selection, indicating that the historical
divergence can implicitly identify the ID samples.

b) Historical divergence: The goal of historical diver-
gence (Eq. 4) is to measure the uncertainty of a sample. The
higher the historical divergence, the higher the uncertainty and
informativeness. The result of not using historical divergence
is shown in Figure 4a. It can be observed that the performance
drops by 3% - 5% when historical divergence is not used.
Interestingly, as Figure 4b shows, many more ID samples are
selected in this case, almost twice as many as when historical
divergence is used. However, selecting more ID samples does
not improve performance. We conjecture that there are two
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Fig. 3. Comparison results on CIFAR-10 (first row), CIFAR-100 (second row) and TinyImagenet (third row). The ID ratio ξ is 20% (first column), 30% (second
column) and 40% (third column). Note that all of the above methods start from a SimCLR pre-trained model at each round.

Fig. 4. (a) Ablation study on sample selection. (b) The accumulated number of ID samples during active learning. (c) The class distribution score (CDS,
Eq. 10) of selected ID samples and the accumulated ID samples. CDS ∈ [0, 2 − 2/n] and lower is better.

reasons: i) those samples are more likely to be easy samples
that lack informativeness, and ii) the contrastive clustering can
handle the OOD samples properly, which benefits network
training.

c) Class-wise selection: This module aims to select
class-balanced samples. Without class-wise selection, all sam-
ples are sorted based on their final scores and selected in
descending order. As Figure 4a shows, the model performs
poorly in the early rounds when class-wise selection is not

utilized. While the performance improves in the subsequent
rounds, it remains far from the performance achieved with
class-wise selection. To quantify the degree of class balance,
we introduce a metric called class distribution score (CDS),
which measures the l1 distance between the class distribu-
tion of the selected ID samples and a uniform distribution.
Formally,

CDS = 1⊤
|y − ȳ|, (10)
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Fig. 5. (a) Ablation study on the proposed contrastive clustering framework. (b) Plug-and-play evaluation on CIFAR-100 with ID ratio ξ = 30%. The dashed
lines represent the performance of baseline methods without using contrastive clustering. (c) Plug-and-play evaluation on CIFAR-100 with ID ratio ξ = 40%.

Fig. 6. (a) Analysis on trade-off parameters. (b) Performance on CIFAR-100
closed-set setting.

where y ∈ Rn
≥0 is the class distribution with a summation of 1,

ȳ is the uniform distribution, and 1 is a vector of ones. Note
that CDS ∈ [0, 2 − 2/n], and lower is better. As Figure 4
shows, the class-wise selection can effectively select more
class-balanced samples, demonstrating its efficacy despite the
simple implementation. Furthermore, we compare the CDS of
LfOSA [19] and find that the samples selected by LfOSA [19]
exhibit severe class imbalance problems.

2) Contrastive Clustering: We conducted an ablation study
on CIFAR-100 with an ID ratio of ξ = 40% to evaluate
the effectiveness of each component of the proposed con-
trastive clustering. Specifically, we performed the following
experiments: i) without OOD clustering LO O D , ii) without ID
clustering LI D , and iii) without contrastive clustering LI D and
LO O D . As Figure 5a shows, both LI D and LO O D contribute
significantly to the performance improvement when used inde-
pendently. Furthermore, combining LI D and LO O D results
in further performance gains. These findings demonstrate the
efficacy of the proposed contrastive clustering approach. Addi-
tionally, our selection method outperforms other baselines even
without contrastive clustering, as demonstrated in Figure 3.

3) Plug-and-Play Evaluation: We evaluate other AL selec-
tion methods on our contrastive clustering framework. The
experiments are conducted on CIFAR-100 with ID ratio ξ =

30% and ξ = 40%. As illustrated in Figures 5b and 5c, the
proposed contrastive clustering consistently enhances the per-
formance of the baseline methods considerably, indicating that
it consistently aids the network in learning better representa-
tions. Furthermore, our selection method outperforms the other
methods, providing further evidence for its efficacy. Notably,
the performance improvement achieved by LfOSA [19] is not
as significant as other methods. This may be due to the highly

imbalanced selection of samples by LfOSA, as illustrated in
Figure 4c.

4) Trade-Off Parameters: In this study, we investigate the
sensitivity of our proposed method to the hyper-parameter
α (Eq. 5), which controls the trade-off between contrastive
confidence and historical divergence. A larger value of α

assigns greater importance to contrastive confidence, implying
that historical divergence is not utilized when α → ∞.
Our experiments are performed on CIFAR-100 with ID ratio
ξ = 20%. As illustrated in Figure 6a, the proposed method
achieves optimal performance when α = 8. Additionally, the
results reveal that our method is not significantly sensitive to
the choice of α.

5) Closed-Set Active Learning: While our focus is on
addressing the open-set active learning problem, it is inter-
esting to investigate the performance of our methods in the
closed-set setting. We perform such experiments on CIFAR-
100, where all classes are considered in-distribution (ID).
In this scenario, only the ID clustering loss LI D is utilized
since there is no OOD data. The compared methods are also
trained with LI D . As depicted in Figure 6, our proposed
method outperforms baseline methods by a significant margin,
demonstrating the versatility of our sample selection method
and the ID clustering loss.

6) Time Cost of Sample Selection: We conducted a com-
parison of our sample selection method’s time cost for a
single query with that of other methods. Table I presents
the results, indicating that our method is one of the most
efficient among the compared methods. While LfOSA [19]
has similar efficiency in sample selection, its OOD detector
training incurs significantly more time costs. Consequently,
our method outperforms the baselines in both performance
and efficiency.

7) Varying Initial and Budget Size: In this study, we inves-
tigate the robustness of our method against the initial and
query budget size. We conducted experiments on CIFAR-100
with an ID ratio of ξ = 30%, and the accuracy of the last
round is reported. Figures 7a and 7b illustrate the results,
indicating that our method outperforms the baseline methods
for various initial and query budget sizes, demonstrating its
robustness. Notably, the performance gap is more significant
when the budget size is smaller, underscoring that our method
can yield more cost savings in realistic scenarios involving
limited annotation resources.
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Fig. 7. (a) Varying initial budget. (b) Varying query budget. (c) Varying openness. (d) Comparison between the subset clustering and the whole set clustering
in the cluster estimation step. (e) The number of estimated clusters in the cluster estimation step. (f) Comparison between the centroids initialization strategies
in OOD clustering.

TABLE I
COMPARISON OF TIME COST FOR SAMPLE SELECTION. NOTE THAT WE

DO NOT INCLUDE THE TIME COST FOR OBTAINING THE PREDICTIONS
AND FEATURES OF UNLABELED SAMPLES

8) Varying Openness: In the main paper, we have demon-
strated that our method can achieve satisfactory performance in
the setting of closed-set active learning. To further explore its
effectiveness across different levels of openness, we conducted
additional experiments on CIFAR-100 with ID ratios ξ ranging
from 10% to 90%, as depicted in Figure 7c. The results
indicate that our method consistently outperforms the other
methods by a significant margin, demonstrating the versatility
of our approach.

9) Subset Clustering: As mentioned in the section on OOD
clustering of the main paper, we first divide the selected
OOD samples into subsets according to their predictions, then
perform cluster estimation in each subset. The rationale stems
from the fact that performing clustering estimation in the
whole set is time-consuming. Accordingly, we compare the
subset and whole set clustering on CIFAR-100 with ID ratio
ξ = 30%. As Figure 7d shows, the subset clustering slightly
outperforms the whole set clustering. Moreover, the whole set
clustering costs almost twice the time as the subset clustering,
demonstrating the efficiency of the subset clustering.

10) Number of Estimated Clusters: In addition to the effi-
ciency and performance of the subset clustering, we also show
the number of estimated clusters. There are 70 OOD classes,

and the estimated number of clusters is presented in Figure 7e.
Notably, the subset clustering estimates more clusters than the
whole set clustering. The whole set clustering, on the other
hand, underestimates the number of clusters, while the subset
clustering overestimates them. As noted in prior research [63],
[75], over-clustering is beneficial to clustering, while under-
clustering is not. These findings indicate that subset clustering
produces better representations than whole set clustering.

11) Centroids Initialization: The OOD contrastive clus-
tering loss LO O D relies on prototypical predictions versus
OOD cluster centroids, which are obtained by computing the
cluster labels estimated at the end of the previous active
learning round. During training, the centroids are updated
using gradient descent. To assess the effectiveness of utilizing
the cluster labels as an initialization for the centroids, we con-
ducted experiments on randomly initialized centroids. The
results, as illustrated in Figure 7f, indicate that cluster label
initialization outperforms random initialization, highlighting
the efficacy of the cluster estimation step. It is worth noting
that even with random initialization, the performance achieved
is decent, further emphasizing the versatility of the OOD
contrastive clustering method.

12) Exclude OOD Samples: Our proposed method employs
selected OOD samples to enhance representation learning.
An interesting question is to investigate the effect of our
approach in the absence of OOD samples. To address this,
we conducted an experiment on CIFAR-100 with ID ratios
of ξ = 30% and ξ = 40%. The results presented in
Table II demonstrate that our method significantly improves
performance by leveraging OOD samples, thereby confirming
its efficacy in enhancing representation learning.
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Fig. 8. First row: our ID and LfOSA ID samples. Second row: ours OOD and LfOSA OOD samples.

TABLE II
RESULT OF EXCLUDING OOD SAMPLES FROM TRAINING. THE

ACCURACY OF THE FINAL ROUND IS REPORTED

TABLE III
RESULT OF USING FIXED λ

13) Adaptive Scheduling: In order to evaluate the effec-
tiveness of the adaptive scheduling of λ, an experiment was
conducted with λ held constant and set to various values on
CIFAR100 with ξ = 40%. The results presented in Table III
showcase the superiority of our proposed adaptive scheduling
method.

14) Feature Visualization: We visualize the feature learned
by our method and LfOSA (LfOSA is trained with our
clustering method) via t-SNE [76]. Specifically, we sample
10 classes for both ID and OOD classes. As Figure 8 shows,
our method can learn more discriminative and well-clustered
features for ID classes. Furthermore, it is worth noting that our
method can also learn better representations for OOD classes.

Fig. 9. (a) Results on Imagenet-1k. (b) Cross dataset experiment.

15) Results on Large-scale Dataset: In addition to CIFAR
and TinyImageNet, we also evaluated our method on a
large-scale dataset, namely, ImageNet-1K. The ImageNet-1K
dataset is a large-scale, highly diverse collection of over
1 million annotated images across 1000 classes. We use the
first 200 classes as the in-distribution (ID) classes and the
remaining classes as the out-of-distribution (OOD). Since
performing clustering on a million-scale sample set is very
challenging, methods that require clustering are infeasible for
this dataset, for example, LfOSA [19], BADGE [7], and our
contrastive clustering component. Therefore, we only evaluate
our sample selection component on ImageNet-1K. We use
ResNet-50 as the backbone network. As shown in Figure 9a,
our method still outperforms other methods by significant
margins, demonstrating the versatility of our method on large-
scale datasets.
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TABLE IV
RESULT OF ROUND REINITIALIZATION. THE ACCURACY OF THE FINAL

ROUND IS REPORTED

16) Cross Dataset Experiment: In the previous experi-
ments, although the ID and OOD samples were from different
classes, they belonged to the same dataset. To further verify the
effectiveness of our method, we performed an experiment that
involved ID and OOD samples from different datasets. Since
the CIFAR-10/100 and TinyImageNet datasets have a substan-
tial overlap in classes, we employed two additional datasets:
Stanford Cars [77] and Oxford Flowers [78]. Specifically, the
Stanford Cars dataset was regarded as the ID, and the Oxford
Flowers dataset was regarded as the OOD. The results are
shown in Figure 9. It can be observed that our method still
shows superiority over the other methods compared.

17) Round Reinitialization: In this paper, we reinitialize
the network with the pre-trained weights at the beginning
of each round, following the convention of active learning.
However, it is interesting to consider how performance would
change if we were to continue training the network without
reinitialization. We conducted an experiment on CIFAR100
with ID ratios of ξ = 30% and ξ = 40%. Table IV
shows that there is no significant difference between the two
choices. We conjecture that the reason for this is that the
pre-trained backbone has already learned highly discriminative
representations, and continual training will no longer improve
its capacity.

V. CONCLUSION

In this paper, we introduce a novel approach to tackle
the open-set active learning problem. Our proposed method
consists of a simple selection method and a contrastive clus-
tering method. In contrast to previous approaches that focus
on selecting only highly likely ID samples, we consider three
aspects: (i) the possibility of being ID, (ii) the hardness
of the query set, and (iii) the diversity of the query set.
To this end, we present two criteria and a selection opera-
tion, namely contrastive confidence, historical divergence, and
class-wise selection, that can effectively address the above
aspects. Moreover, unlike prior approaches that require an
OOD detector to filter out OOD samples, we propose a
contrastive clustering method that leverages both selected
ID and OOD samples, empowering the network to detect
OOD samples while simultaneously enhancing representation
learning. Experimental results demonstrate that our method
achieves state-of-the-art performance.
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