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Cross-Modal Causal Relational Reasoning for
Event-Level Visual Question Answering

Yang Liu , Member, IEEE, Guanbin Li , Member, IEEE, and Liang Lin , Senior Member, IEEE

Abstract—Existing visual question answering methods often
suffer from cross-modal spurious correlations and oversimplified
event-level reasoning processes that fail to capture event tempo-
rality, causality, and dynamics spanning over the video. In this
work, to address the task of event-level visual question answering,
we propose a framework for cross-modal causal relational reason-
ing. In particular, a set of causal intervention operations is intro-
duced to discover the underlying causal structures across visual
and linguistic modalities. Our framework, named Cross-Modal
Causal RelatIonal Reasoning (CMCIR), involves three modules:
i) Causality-aware Visual-Linguistic Reasoning (CVLR) module
for collaboratively disentangling the visual and linguistic spurious
correlations via front-door and back-door causal interventions;
ii) Spatial-Temporal Transformer (STT) module for capturing the
fine-grained interactions between visual and linguistic semantics;
iii) Visual-Linguistic Feature Fusion (VLFF) module for learning
the global semantic-aware visual-linguistic representations adap-
tively. Extensive experiments on four event-level datasets demon-
strate the superiority of our CMCIR in discovering visual-linguistic
causal structures and achieving robust event-level visual question
answering.

Index Terms—Visual question answering, causal inference,
cross-modal reasoning, video event understanding.

I. INTRODUCTION

W ITH the rapid development of deep learning [1], event
understanding [2] has become a prominent research

topic in video analysis [3], [4], [5] because videos have good
potential to go beyond image-level understanding (scenes, peo-
ple, objects, activities, etc.) to understand event temporality,
causality, and dynamics. Accurate and efficient cognition and
reasoning over complex events are extremely important in video-
language understanding. Since natural language can potentially
describe a richer event space [6] that facilitates deeper event
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Fig. 1. Example of an event-level counterfactual visual question answering
task. The counterfactual inference is to obtain the outcome of certain hypothesis
that does not occur in the visual scene. To infer the causality-aware answer,
the model is required to explore the visual-linguistic causal dependencies and
spatial-temporal relation.

understanding, we focus on the complex (temporal, causal)
event-level visual question answering task in a cross-modal
(visual, linguistic) setting. Our task aims to fully comprehend the
richer multi-modal event space and answer the given question
in a causality-aware way. To achieve event-level visual question
answering [7], [8], [9], the model needs to have a fine-grained
understanding of video and language content involving var-
ious complex relations, such as spatial-temporal visual rela-
tion, linguistic semantic relation, and visual-linguistic causal
dependency. Therefore, robust and reliable multi-modal relation
reasoning is essential in event-level visual question answering.
Actually, understanding events in multi-modal visual-linguistic
context is a long-standing challenge. Existing visual question
answering methods [10], [11], [12], [13] use recurrent neural
networks (RNNs) [14], attention mechanisms [15] or Graph
Convolutional Networks [16] for relation reasoning between
visual and linguistic modalities. Although achieving promising
results, these methods suffer from two common limitations.

First, existing visual question answering methods usually
focus on simple events that do not require a deep understanding
of causality, temporal relations, and linguistic interactions, and
tend to overlook more challenging events. In Fig. 1, given a
video and an associated question, a typical human reasoning
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Fig. 2. Example (Fig. 1) shows why the visual question answering model without causal reasoning tends to learn spurious correlations. (a) A training dataset
constructed with visual and linguistic biases where the concepts “person” and “motorbike” frequently appear. (b) The structured causal model (SCM) shows how
the confounder induces the spurious correlation in event-level visual question answering. The green path denotes the unbiased visual question answering (the true
causal effect). The red path is the biased visual question answering caused by the confounders (the back-door path). (c) As a result, if we provide some samples
where the “vehicle” concept is highly related to the “accident” to reason how the accident actually happens, the model does not really exploit the true question
intention and dominant visual evidence to infer the answer.

process involves first memorizing the relevant objects and their
interactions in each video frame (e.g., car runs on the road,
person rides a motorbike across a crossing), then deriving the
corresponding answer based on this memorized video content.
However, the event-level counterfactual visual question answer-
ing task in Fig. 1 requires the outcome of certain hypotheses (e.g.,
“the person did not ride the motorbike across the crossing”) that
do not occur in the given video. Simply correlating relevant
visual contents cannot get the right inference result without
discovering the hidden spatial-temporal and causal dependen-
cies. To accurately reason about the imagined events under the
counterfactual condition, the model must conduct hierarchical
relational reasoning and fully explore the causality, logic, and
spatial-temporal dynamic structures of the visual and linguistic
content. This involves performing causal intervention to dis-
cover the true causal structure that facilitates answering the ques-
tion truthfully based on the imagined visual evidence and the
correct question intention. However, the multi-level interaction
and causal relations between the language and spatial-temporal
structure of complex multi-modal events are not fully explored.

Second, the current visual question answering models tend
to capture spurious linguistic or visual correlations introduced
by the confounders rather than the true causal structure and
causality-aware multi-modal representations, leading to an un-
reliable reasoning process [17], [18], [19], [20]. Fig. 2 shows
that some frequently appearing concepts in linguistic and visual
modalities can be considered as the confounders. The “linguistic
bias” represents strong correlations between questions and an-
swers, while the “visual bias” represents the strong correlations
between certain key visual features and answers. For example,
the training dataset is built with visual and linguistic biases,
where the concepts “person” and “motorbike” frequently appear
(Fig. 2). Such biased dataset entails two causal effects: visual and
linguistic biasesB leads to confounderZ, which then affects the
visual featureV , question featureQ, visual-linguistic featureX ,
and the answerA. Thus, we can draw two causal links to describe
these causal effects: Z → {V,Q} → X and Z → A. If we want
to learn the true causal effect {V,Q} → X → A while using
the biased dataset to train this model (Fig. 2(a)), the model may

simply correlate the concepts “person” and “motorbike”, i.e.,
through Z → {V,Q} → X , and then use this biased knowledge
to infer the answer, i.e., through Z → A. In this way, this
model learns the spurious correlation between {V,Q} and A
through the backdoor path A← Z → {V,Q} → X induced by
the confounder Z, as shown in Fig. 2(b). Therefore, the model
may learn the spurious correlation between “motorbike” and
“person” without considering the “vehicle” concept (i.e., exploit
the true question intention and dominant visual evidence) to
reason how the accident occurred. Since the potential visual and
linguistic correlations are complicated in complex events, there
are significant differences in visual and linguistic biases between
the training and testing sets. To mitigate the dataset bias, causal
inference [21] has shown promising performance in scene graph
generation [22], image classification [23] and image question
answering [17], [24]. However, directly applying existing causal
methods to the event-level visual question answering task may
yield unsatisfactory results due to the unobservable confounder
in the visual domain and the complex interaction between visual
and linguistic content.

To mitigate the aforementioned limitations, this paper pro-
poses a framework named Cross-Modal Causal RelatIonal
Reasoning (CMCIR) for event-level VQA. The proposed
Causality-aware Visual-Linguistic Reasoning (CVLR) module
addresses the confounders’ bias and uncovers causal struc-
tures in visual and linguistic modalities through front-door and
back-door causal interventions. To address the unobservable
confounder in the visual modality, a Local-Global Causal At-
tention Module (LGCAM) is proposed, which uses attention
to aggregate local and global visual representations causality-
awarely. Additionally, a back-door intervention module is de-
signed to discover the causal effect within the linguistic modal-
ity. A Spatial-Temporal Transformer (STT) is introduced to
model the multi-modal interaction between appearance-motion
and language representations, containing Question-Appearance
(QA), Question-Motion (QM), Appearance-Semantics (AS),
and Motion-Semantics (MS) modules. Finally, a novel
Visual-Linguistic Feature Fusion (VLFF) module is proposed
to adaptively fuse causality-aware visual and linguistic features.
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Experimental results on various datasets show that CMCIR
outperforms state-of-the-art methods. The main contributions
of the paper can be summarized as follows:
� We propose a causality-aware event-level visual question

answering framework named Cross-Modal Causal Re-
latIonal Reasoning (CMCIR), to discover true causal struc-
tures via causal intervention on the integration of visual
and linguistic modalities and achieve robust event-level
visual question answering performance. To the best of our
knowledge, we are the first to discover cross-modal causal
structures for the event-level visual question answering
task.

� We introduce a linguistic back-door causal intervention
module guided by linguistic semantic relations to mitigate
the spurious biases and uncover the causal dependencies
within the linguistic modality. To disentangle the visual
spurious correlations, we propose a Local-Global Causal
Attention Module (LGCAM) that aggregates the local and
global visual representations by front-door causal interven-
tion.

� We construct a Spatial-Temporal Transformer (STT) that
models the multi-modal co-occurrence interactions be-
tween the visual and linguistic knowledge, to discover
the fine-grained interactions among linguistic semantics,
spatial, and temporal representations.

� To adaptively fuse the causality-aware visual and linguistic
features, we introduce a Visual-Linguistic Feature Fusion
(VLFF) module that leverages the hierarchical linguis-
tic semantic relations to learn the global semantic-aware
visual-linguistic features.

� Extensive experiments on SUTD-TrafficQA, TGIF-QA,
MSVD-QA, and MSRVTT-QA datasets show the effec-
tiveness of our CMCIR for discovering visual-linguistic
causal structures and achieving promising event-level vi-
sual question answering performance.

II. RELATED WORKS

A. Visual Question Answering

Compared to image-based visual question answering (i.e.,
ImageQA) [25], [26], [27], event-level visual question answer-
ing (i.e., VideoQA) is much more challenging due to the extra
temporal dimension. To solve the VideoQA problem, the model
needs to capture spatial-temporal and visual-linguistic relations
to infer the answer. To explore relational reasoning in VideoQA,
Xu et al. [28] proposed an attention mechanism to exploit the ap-
pearance and motion knowledge with the question as a guidance.
Jang et al. [29], [30] released a large-scale VideoQA dataset
named TGIF-QA and proposed a dual-LSTM based method
with both spatial and temporal attention. Later on, some hierar-
chical attention and co-attention based methods [11], [31], [32]
are proposed to learn appearance-motion and question-related
multi-modal interactions. Le et al. [12] proposed hierarchical
conditional relation network (HCRN) to construct sophisti-
cated structures for representation and reasoning over videos.
Jiang et al. [33] introduced the heterogeneous graph align-
ment (HGA) nework that aligns the inter- and intra-modality

information for cross-modal reasoning. Huang et al. [10] pro-
posed a location-aware graph convolutional network to reason
over detected objects. Lei et al. [34] employed sparse sam-
pling to build a transformer-based model named CLIPBERT
and achieve end-to-end video-and-language understanding. Liu
et al. [35] proposed a hierarchical visual-semantic relational
reasoning (HAIR) framework to perform hierarchical relational
reasoning.

Unlike the works that focus on relatively simple events like
movie, TV-show or synthetic videos, our CMCIR framework
focuses on complex event-level visual question answering and
performs cross-modal causal relational reasoning on the spatial-
temporal and linguistic content. The only existing work for
event-level urban visual question answering is Eclipse [36],
which built an event-level urban traffic visual question answer-
ing dataset and proposed an efficient glimpse network to achieve
computation-efficient and reliable video reasoning. Different
from the Eclipse that focuses on the exploration of the efficient
and dynamic reasoning in urban traffic events, our work aims
to uncover the causal structures behind the visual-linguistic
modalities and models the interaction between the appearance-
motion and language knowledge in a causality-aware manner.
In addition, these previous works tend to capture spurious
linguistic or visual correlations within the videos, while we
build a Causality-aware Visual-Linguistic Reasoning (CVLR)
module to mitigate the bias caused by confounders and uncover
the causal structures for the integration of complex event-level
visual and linguistic modalities.

B. Relational Reasoning for Event Understanding

Besides VideoQA, relational reasoning has been explored
in other event understanding tasks, such as action recogni-
tion [37], [38], [39] and spatial-temporal grounding [40]. To
recognize and localize actions, Girdhar et al. [41] introduced
a transformer-style architecture to aggregate features from the
spatiotemporal context around the person. For action detection,
Huang et al. [42] introduced a dynamic graph module to model
object-object interactions in video actions. Ma et al. [43] utilized
an LSTM to model interactions between arbitrary subgroups of
objects. Mavroudi et al. [44] built a symbolic graph using action
categories. Pan et al. [45] designed a high-order actor-context-
actor relation network to realize indirect relation reasoning for
spatial-temporal action localization. To localize a moment from
videos for a given textual query, Nan et al. [46] introduced a
dual contrastive learning approach to align the text and video
by maximizing the mutual information between semantics and
video clips. Wang et al. [47] proposed a causal framework to
learn the deconfounded object-relevant association for robust
video object grounding. However, these methods only perform
relational reasoning over visual modality and neglects potential
causal structures from linguistic semantic relation, resulting in
incomplete and unreliable understanding of visual-linguistic
content. Additionally, our CMCIR conducts causality-aware
spatial-temporal relational reasoning to uncover the causal struc-
ture for visual-linguistic modality and utilizes hierarchical se-
mantic knowledge for spatial-temporal relational reasoning.
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Fig. 3. Overview of CMCIR. The Linguistic Representation Learning (LRL) aims to parse the question into relation-centered tuples (subject, action, object) and
then learns the hierarchical linguistic representations. The Causality-aware Visual-Linguistic Reasoning (CVLR) contains a visual front-door causal intervention
module and a linguistic back-door causal intervention module. The visual front-door causal intervention module contains the Local-Global Causal Attention Module
(LGCAM) that aggregates the local and global appearance and motion representations in a causality-aware way. The linguistic back-door causal intervention module
models the linguistic confounder set from the perspective of semantic roles and de-confounds the language bias based on a structured causal model (SCM). Based
on the causality-aware visual and linguistic representations, the Spatial-Temporal Transformer (STT) models the interaction between the appearance-motion and
language knowledge in a coarse-to-fine manner. Finally, the Visual-Linguistic Feature Fusion (VLFF) module applies semantic graph guided adaptive feature fusion
to obtain the multi-modal output.

C. Causal Inference in Visual Representation Learning

Compared to the conventional debiasing techniques [48],
causal inference [21], [49], [50] shows its potential in mitigating
spurious correlations [51] and disentangling model effects [52]
for better generalization. Counterfactual and causal inference
have attracted increasing attention in several computer vision
tasks, including visual explanations [53], [54], scene graph
generation [22], [55], image recognition [19], [24], video anal-
ysis [46], [56], [57], and vision-language tasks [17], [18], [58],
[59], [60]. Specifically, Tang et al. [61], Zhang et al. [62],
Wang et al. [24], and Qi et al. [63] computed the direct causal
effect and mitigated the bias based on observable confounders.
Counterfactual based solutions are also effective, for example,
Agarwal et al. [64] proposed a counterfactual sample synthe-
sising method based on GAN [65]. Chen et al. [66] tried to
replace critical objects and critical words with a mask token
and reassigned a answer to synthesis counterfactual QA pairs.
Apart from sample synthesising, Niu et al. [17] developed a
counterfactual VQA framework that reduce multi modality bias
by using causality approach named Natural Indirect Effect and
Total Direct Effect to eliminate the mediator effect. Li et al. [20]
proposed an Invariant Grounding for VideoQA (IGV) to force
the VideoQA models to shield the answering process from
the negative influence of spurious correlations. Liu et al. [59]
introduced Visual Causality Discovery (VCD) architecture to
find question-critical scene temporally and disentangle the visual
spurious correlations by the front-door causal intervention.

However, most of the existing causal visual tasks are relatively
simple without considering more challenging tasks such as
video understanding and event-level visual question answer-
ing. Although some recent works CVL [58], Counterfactual
VQA [17], CATT [18], IGV [20] and VCD [59] focused on

visual question answering tasks, they adopted structured causal
model (SCM) to eliminate either the linguistic or visual bias
without considering cross-modal causality discovery. Different
from previous methods, our CMCIR aims for event-level visual
question answering that requires fine-grained understanding of
spatial-temporal visual relation, linguistic semantic relation, and
visual-linguistic causal dependency. Moreover, our Causality-
aware Visual-Linguistic Reasoning (CVLR) applies front-door
and back-door causal intervention modules to discover cross-
modal causal structures.

III. METHODOLOGY

The framework of the CMCIR is shown in Fig. 3, which is
an event-level visual question answering architecture. In this
section, we present the detailed implementations of CMCIR.

A. Visual Representation Learning

The goal of event-level visual question answering is to deduce
an answer ã from a video V with a given question q. The answer
ã can be found in an answer space A which is a predefined
set of possible answers for open-ended questions or a list of
answer candidates for multiple-choice questions. The videoV of
L frames is divided into N equal clips. Each clip of Ci of length
T = �L/N� is presented by two types of visual feature: frame-
wise appearance feature vectors F a

i = {fa
i,j |fa

i,j ∈ R1536, j =

1, . . . , T} and motion feature vector at clip level fm
i ∈ R1024. In

our experiments, Swin-L [67] is used to extract the frame-level
appearance features F a and Video Swin-B [68] is applied to
extract the clip-level motion features Fm. Then, we use a linear
feature transformation layer to map F a and Fm into the same
d-dimensional feature space. Thus, we have fa

i,j , f
m
i ∈ Rd.
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Fig. 4. Proposed Hierarchical Semantic-Role Parser (HSRP) parses the ques-
tion into verb-centered relation tuples (subject, action, object).

B. Linguistic Representation Learning

From the perspective of linguistic semantic relations, a ques-
tion usually contains the vocabulary of a subject, an action,
and an object, since most videos can be described as “some-
body doing something”. Therefore, we propose an efficient
approach to approximate the confounder set distribution from
the perspective of natural language. Specifically, we build a
Hierarchical Semantic-Role Parser (HSRP) to parse the ques-
tion into verb-centered relation tuples (subject, action, ob-
ject) and construct three sets of vocabulary accordingly. The
verb-centered relation tuples are subsets of the words of the
original question around the key words subject, action, and
object. The HSRP is based on the state-of-the-art Open In-
formation Extraction (OpenIE) model [69], which discovers
linguistic semantic relations from a large-scale natural language
knowledge base, as shown in Fig. 4. For the whole question
Q, subject Qs, action Qr, object Qo, and answer candidates
A, each word is respectively embedded into a vector of 300
dimensions by adopting pre-trained GloVe [70] word embed-
ding, which is further mapped into a d-dimensional space using
linear transformation. Then, we represent the corresponding
question and answer semantics as Q = {q1, q2, . . . , qL}, Qs =
{qs1, qs2, . . . , qsLs

}, Qr = {qr1, qr2, . . . , qrLr
}, Qo = {qo1 , qo2 , . . . ,

qoLo
}, A = {a1, a2, . . . , aLa

}, where L, Ls, Lr, Lo, La indicate
the length of Q, Qs, Qr, Qo, and A.

To obtain contextual linguistic representations that aggre-
gate dynamic long-range temporal dependencies from multiple
time-steps, a BERT [71] model is employed to encode Q, Qs,
Qr, Qo, and the answer A, respectively. Finally, the updated
representations for the question, question tuples, and answer
candidates can be written as

Q = {qi|qi ∈ Rd}Li=1, Qs = {qsi |qsi ∈ Rd}Ls
i=1,

Qr = {qri |qri ∈ Rd}Lr
i=1, Qo = {qoi |qoi ∈ Rd}Lo

i=1, (1)

and

A = {ai|ai ∈ Rd}La
i=1. (2)

C. Causality-Aware Visual-Linguistic Reasoning

For visual-linguistic question reasoning with spatial-temporal
data, we employ Pearl’s structural causal model (SCM) [21]
to model the causal effect between video-question pairs and

the answer, as shown in Fig. 5(a). The nodes are variables
and edges are causal relations. Conventional VQA methods
only learn: {V,Q} → X → A, which learn the ambiguous
statistics-based association P (A|V,Q). They ignore the spuri-
ous association brought by the confounder, while our method
address these problems in a causal framework and propose a
fundamental solution. In the following, we detail the rationale
behind our causal graph. The bottom part of Fig. 5 presents
the high-level explanation of the visual-linguistic causal inter-
vention. Here, we provide the detailed interpretation for some
subgraphs.
{Bv, Bl} → {Zv, Zl} → {V,Q}: The visual and linguistic

confounders Zv and Zl (probably an imbalanced distribution of
the dataset caused by data sampling biases Bv and Bl) may lead
to spurious correlations between videos and certain words. The
do-operation on {V,Q} can enforce their values and cuts off the
direct dependency between {V,Q} and their parents Zv and Zl

(Fig. 5(b) and (c)).
{Bv, Bl} → {Zv, Zl} → A: Since Zv and Zl are the visual

and linguistic confounders for the dataset, we must also have
Zv and Zl connected to prediction A via directed paths exclud-
ing {V,Q}. This ensures the consideration of the confounding
impact from Zv and Zl to A.
A← {Zv, Zl} → {V,Q} → X: There are two back-door

paths where confounders Zv and Zl affect the video V and
question Q respectively, and ultimately affect answer A, leading
the model to learn the spurious association. As discussed before,
if we had successfully cut off the path {Zv, Zl}� {V,Q} →
X → A, {V,Q} and A are deconfounded and the model can
learn the true causal effect {V,Q} → X → A.

To train a video question answering model that learns the
true causal effect {V,Q} → X → A: the model should rea-
son the answer A from the video V and the question Q in-
stead of exploiting the spurious correlations induced by the
confounders Zv and Zl (i.e., overexploiting the co-occurrence
between the visual and linguistic concepts). For example, since
the answer to the question “What the color of the vehicle
involved in the accident?” is “white” in most cases, the model
will easily learn the spurious correlation between the concepts
“vehicle” and “white”. Conventional visual-linguistic ques-
tion reasoning models usually focus on correlations between
video and question by directly learning P (A|V,Q) without
considering the confounders Zv and Zl. Thus, when given
an accident video of black vehicle, the model still predicts
answer “white” with strong confidence. In our SCM, the
non-interventional prediction can be expressed using Bayes
rule as

P (A|V,Q) =
∑
z

P (A|V,Q, z)P (z|V,Q). (3)

However, the above objective learns not only the main direct
correlation from {V,Q} → X → A but also the spurious one
from the unblocked back-door path {V,Q} ← Z → A. An in-
tervention on {V,Q} is denoted as do(V,Q), which cuts off
the link {V,Q} ← Z to block the back-door path {V,Q} ←
Z → A and the spurious correlation is eliminated. In this way,
{V,Q} and A are deconfounded and the model can learn the
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Fig. 5. Proposed causal graph of visual-linguistic causal intervention. The green path represents the unbiased visual question answering, which is the true causal
effect. The red path shows the biased visual question answering caused by the confounders, also known as the back-door path. The bottom part of the figure provides
an intuitive explanation of a real VideoQA sample using visual-linguistic causal intervention.

true causal effect {V,Q} → X → A. Actually, there are two
techniques to calculate P (A|do(V,Q)), which are the back-
door and front-door adjustments [21], [72], respectively. The
back-door adjustment is effective when the confounder is ob-
servable. However, for the visual-linguistic question reasoning,
the confounder in visual and linguistic modalities is not always
observable. Thus, we propose both back-door and front-door
causal intervention modules to discover the causal structure
and disentangle the linguistic and visual biases based on their
characteristics.

1) Linguistic Back-Door Causal Intervention: For linguis-
tic modality, the confounder set Zl caused by selection bias
cannot be observed directly due to the unavailability of the
sampling process. Due to the existence of linguistic confounders,
existing approaches that mainly rely on the entire question
representations tend to capture spurious linguistic correlations
and ignore semantic roles embedded in questions. To miti-
gate the bias caused by confounders and uncover the causal
structure behind the linguistic modality, we design a back-door
adjustment strategy that approximates the confounder set dis-
tribution from the perspective of linguistic semantic relations.
Based on the linguistic representation learning in Section III-B,
our latent confounder set is approximated based on the verb-
centered relation roles for the whole question, subject-related
question, action-related question, object-related question Q,
Qs, Qr, Qo. Blocking the back-door path Bl → Zl → Q
makes Q have a fair opportunity to incorporate causality-
aware factors for prediction (as shown in Fig. 5(b)). The
back-door adjustment calculates the interventional distribution
P (A|V, do(Q))

P (A|V, do(Q)) =
∑
zl

P (A|V, do(Q), zl)P (zl|V, do(Q))

≈
∑
zl

P (A|V, do(Q), zl)P (zl). (4)

To implement the theoretical and imaginative interven-
tion in (4), we approximate the confounder set Zl to a set
of verb-centered relation vocabularies Zl = [z1, z2, z3, z4] =
[Q,Qs, Qr, Qo]. We compute the prior probability P (zl) in (4)
for verb-centered relation phrases z in each set z1, z2, z3, z4
based on the dataset statistics

P (zl) =
|zl|∑
j∈zi

l
|j| , ∀zl ∈ zil , i = 1, . . . , 4, (5)

where zil is one of the four verb-centered relation vocabulary
sets, |zl| is the number of samples in zl, and |j| is the number of
occurrences of the phrase j. The representation of zl is calculated
in a similar way as in (1). Since P (A|V, do(Q)) is calculated
by softmax, we apply Normalized Weighted Geometric Mean
(NWGM) [73] to (4) to approximate the deconfounded predic-
tion

P (A|V, do(Q)) =
∑
zl

P (A|V, concat(Q, zl))P (zl)

≈ P (A|
∑
zl

(V, concat(Q, zl))P (zl)), (6)

where concat(·) represents vector concatenation. According to
(6), each element of the causality-aware hierarchical linguistic
representation Qh = {Q,Qs, Qr, Qo} needs to be integrated
into the QA inference phase using (6), which is essentially a
weighted sum of the occurrences of the values of the linguistic
confounders in the dataset.

2) Visual Front-Door Causal Intervention: As shown in (4),
the back-door adjustment requires us to determine what the con-
founder is in advance. However, in visual domains, data biases
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are complex and it is hard to know and disentangle different
types of confounders. Existing approaches usually define the
confounders as the average of visual features [19], [24]. Actually,
the average features may not properly describe a certain con-
founder especially for complex heterogeneous spatial-temporal
data. Fortunately, the front-door adjustment gives a feasible way
to calculateP (A|do(V ), Q)when we cannot explicitly represent
the confounder. As shown in Fig. 5(c), to apply the front-door ad-
justment, an additional mediator M should be inserted between
X and A to construct a front-door path V → X →M → A
to transmit knowledge. For visual-linguistic question reasoning
task, an attention-based model will select a few regions from the
video V based on the question Q to predict the answer A, where
m denotes the selected knowledge from mediator M

P (A|V,Q) =
∑
m

P (M = m|V,Q)P (A|M = m). (7)

Then, the answer predictor can be represented by two parts:
a feature extractor V → X →M and a answer predictor M →
A. Thus, the interventional probability P (A|do(V ), Q) can be
represented as

P (A|do(V ), Q) =
∑
m

P (M = m|do(V ),

×Q)P (A|do(M = m)). (8)

Next, we discuss the above feature extractor V → X →M
and answer predictor M → A, respectively.

Feature Extractor V → X →M : As shown in Fig. 5(c), for
the causal link V → X →M , the back-door path between V
and M : X ← V ← Zv →M → A is already blocked. Thus,
the interventional probability is equal to the conditional one

P (M = m|do(V ), Q) = P (M = m|V,Q). (9)

Answer PredictorM → A: To realizeP (A|do(M = m)), we
can cut off M ← X to block the back-door path M ← X ←
V ← Zv → A

P (A|do(M = m)) =
∑
v

P (V = v)P (A|V = v,M = m).

(10)
To sum up, by applying (9) and (10) into (8), we can calculate

the true causal effect between V and A

P (A|do(V ), Q) =∑
m

P (M = m|V,Q)
∑
v

P (V = v)P (A|V = v,M = m).

(11)

To implement visual front-door causal intervention (11) in a
deep learning framework, we parameterize the P (A|V,M) as a
network g(·) followed by a softmax layer since most of visual-
linguistic tasks are transformed into classification formulations

P (A|V,M) = Softmax[g(M,V )]. (12)

From (11), we can see that both V and M are required to be
sampled and fed into the network to complete P (A|do(V ), Q).
However, the cost of forwarding all the samples is high. To tackle

Fig. 6. Structure of Local-Global Causal Attention Module (LGCAM), which
jointly estimates M̂ and V̂ in an unified attention module.

this problem, we apply the Normalized Weighted Geometric
Mean (NWGM) [73] to incorporate the outer sampling into the
feature level, thereby requiring only one forward pass of the
“absorbed input” in the network, as shown in (13)

P (A|do(V ), Q) ≈ Softmax[g(M̂, V̂ )] =

Softmax

[
g(
∑
m

P (M=m|f(V ))m,
∑
v

P (V =v|h(V ))v)

]
,

(13)

where M̂ and V̂ denote the estimations of M and V , h(·) and
f(·) denote the network mapping functions.

Actually, M̂ is essentially an in-sample sampling process
where m denotes the selected knowledge from the current input
sample V , and V̂ is essentially a cross-sample sampling process
since it comes from other samples. Therefore, both M̂ and V̂ can
be calculated by attention networks [18]. Specifically, we pro-
pose a novel Local-Global Causal Attention Module (LGCAM)
that jointly estimates M̂ and V̂ in a unified attention module
to increase the representation ability of the causality-aware
visual features. M̂ can be calculated by learning local-local
visual feature FLL, V̂ can be calculated by learning local-global
visual feature FLG. Here, we use the computation of FLG as an
example to clarify our LGCAM, as shown in the upper part
of Fig. 6.

Specifically, we first calculate FL = f(V ) and FG = h(V )
and use them as the input of the LGCAM, where f(·) denotes
the visual feature extractor (frame-wise appearance feature or
motion feature) followed by a query embedding function, and
h(·) denotes the K-means-based visual feature selector from
the whole training samples followed by a query embedding
function. Thus, FL represents the visual feature of the current
input sample (local visual feature) and FG represents the global
visual feature. The FG is obtained by randomly sampling from
the whole clustering dictionaries with the same size as FL. The
LGCAM takes FL and FG as inputs and computes local-global
visual feature FLG by conditioning global visual feature FG on
the local visual featureFL. The output of the LGCAM is denoted
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Fig. 7. Illustration of the (a) Spatial-Temporal Transformer (STT), and the
(b) Multi-modal Transformer Block (MTB) in the STT.

as FLG, which is given by

Input : Q = FL,K = FG, V = FG

Local-Global Fusion : H = [WV V,WQQ	WKK]

Activation Mapping : H ′ = GELU(WHH + bH)

Attention Weights : α = Softmax(WH ′H
′ + bH ′)

Output : FLG = α	 FG, (14)

where [.,.] denotes a concatenation operation, 	 represents the
Hadamard product, WQ, WK , WV , WH ′ represent the weights
of the linear layers, bH and bH ′ denote the biases of the linear
layers. From Fig. 3, the visual front-door causal intervention
module has two branches for appearance and motion features.
Therefore, the FLG has two variants, F a

LG for the appearance
branch, and Fm

LG for the motion branch.
The FLL can be computed similarly as FLG when setting

Q = K = V = FL. Finally, the FLG and FLL are concatenated
FC = [FLG, FLL] for estimating P (A|do(V ), Q).

D. Spatial-Temporal Transformer

After performing linguistic and visual causal intervention,
we need to conduct visual-linguistic relation modeling and fea-
ture fusion. However, existing vision-and-language transform-
ers typically neglect the multi-level and fine-grained interac-
tion between text and appearance-motion information, which
is crucial for the event-level visual question answering task.
Therefore, we propose a Spatial-Temporal Transformer (STT)
that includes four sub-modules, namely Question-Appearance
(QA), Question-Motion (QM), Appearance-Semantics (AS) and
Motion-Semantics (MS), as depicted in Fig. 7(a), to uncover the
fine-grained interactions between linguistic and spatial-temporal
representations. The QA (QM) module consists of an R-layer
Multi-modal Transformer Block (MTB) (Fig. 7(b)) for multi-
modal interaction between the question and the appearance
(motion) features. Similarly, the AS (MS) uses the MTB to

deduce the appearance (motion) information given the question
semantics.

The QA and AM modules aim to develop a comprehensive
comprehension of the question concerning the visual appearance
and motion content, respectively. For QA and QM modules,
the input of MTB are Qh = {Q,Qs, Qr, Qo} obtained from
Section III-C1 and F a

C , Fm
C obtained from Section III-C2, re-

spectively. To maintain the positional information of the video
sequence, the appearance featureF a

C and motion featureFm
C are

first added with the learned positional embeddings P a and Pm,
respectively. Thus, for r = 1, 2, . . . , R layers of the MTB, with
the input F a

C = [F a
C , P

a], Fm
C = [Fm

C , Pm], Qa, and Qm, the
multi-modal output for QA and QM are computed as

Q̂a
r = Ua

r + σa(LN(Ua
r ))

Q̂m
r = Um

r + σm(LN(Um
r ))

Ua
r = LN(Q̂a

r−1) + MMAa(Q̂a
r−1, F

a
C)

Um
r = LN(Q̂m

r−1) + MMAm(Q̂m
r−1, F

m
C ), (15)

where Q̂a
0 = Qh, Q̂m

0 = Qh, Ua
r and Um

r are the intermediate
features at the rth layer of the MTB. LN(·) denotes the layer
normalization operation and σa(·) and σm(·) denote the linear
projections. MMA(·) is the Multi-head Multi-modal Attention
layer. We denote the output semantics-aware appearance and
motion features of QA and MA as La = Q̂a = Q̂a

R and Lm =

Q̂m = Q̂m
R , respectively.

Since an essential step of VideoQA is to infer the visual
information within the appearance-motion features given the
question semantics, we propose the Appearance-Semantics (AS)
and Motion-Semantics (MS) modules to infer the visual infor-
mation from the interactions between the linguistic semantics
and the spatial-temporal representations, with a similar architec-
ture to the Multi-modal Transformer Block (MTB). Given the
semantics-aware appearance and motion featuresLa andLm, we
use the AS and MS to discover visual information to answer the
question based on the spatial-temporal visual representations,
respectively.

Similar to (15), given the visual appearance and motion
features F̂ a

LG, F̂m
LG and question semantics La, Lm, the multi-

modal output for AS and MS are computed as

L̂a
r = Ua

r + σa(LN(Ua
r ))

L̂m
r = Um

r + σm(LN(Um
r ))

Ua
r = LN(F a

C,r−1) + MMAa(F a
C,r−1, L

a)

Um
r = LN(Fm

C,r−1) + MMAm(Fm
C,r−1, L

m), (16)

where the MTB has r = 1, 2, . . . , R layers, and F a
C,0 = F a

C ,
Fm
C,0 = Fm

C . The output visual clues of QA and MA are denoted

as F a
s = L̂a

R and Fm
s = L̂m

R , respectively. Then, the output
of the AS and MS is concatenated to make the final visual
output F = [F a

s , F
m
s ] ∈ R2d. The output of the QA and QM

are concatenated to make the final question semantics output
L = [La, Lm] ∈ R2d.
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Fig. 8. Illustration of the Visual-Linguistic Feature Fusion (VLFF) module, which leverages the hierarchical linguistic semantic relations to learn the global
semantic-aware visual-linguistic features, and finally fuses the causality-aware visual and linguistic features adaptively.

E. Visual-Linguistic Feature Fusion

According to (6) in Section III-A4 each item of the
causality-aware hierarchical linguistic representation Qh =
{Q,Qs, Qr, Qo} is required to conduct the QA prediction
process respectively, and then integrate their results by their
semantic relations. Thus, for Q, Qs, Qr, Qo, their respective
visual and linguistic outputs of the STT model are denoted as
F, Fs, Fr, Fo and L,Ls, Lr, Lo, respectively. Specifically, a se-
mantic graph is constructed, and the representation of the graph
nodes is denoted as Lg = {L,Ls, Lr, Lo}, as shown in Fig. 8.
The feature vectors in Lg are treated as the nodes. According
to the hierarchical linguistic semantic relations among Q, Qs,
Qr and Qo learned by the HSRP, we build the fully-connected
edges and then perform g-layer semantic graph convolutional
(GCN) [16] embedding

Le
g = GCN(Lg) = {Le, Le

s, L
e
r, L

e
o}, (17)

where GCN(·) denotes the g-layer graph convolutions.
As the linguistic features from different semantic roles are

correlated, we have built an adaptive linguistic feature fusion
module that receives features from different semantic roles and
learns a global context embedding. This embedding is then
used to recalibrate the input features from different semantic
roles, as shown in Fig. 8. The linguistic features of nodes
learned from semantic GCN are denoted as {Le

1, L
e
2, L

e
3, L

e
4} =

{Le, Le
s, L

e
r, L

e
o}, where Le

k ∈ R2d(k = 1, . . . , 4). To leverage
the correlation among linguistic features, we concatenate them
and obtain joint representations Gk

u for each semantic role Le
k

by passing them through a fully-connected layer

Gk
u = W k

s [L
e
1, L

e
2, L

e
3, L

e
4] + bks , k = 1, . . . , 4, (18)

where [·, ·] denotes the concatenation operation, Gk
u ∈ Rdu

denotes the joint representation, W k
s and bks are weights and

bias of the fully-connected layer. We choose du = d to restrict
the model capacity and increase its generalization ability. To
utilize the global context information aggregated in the joint
representations Gk

u, we predict an excitation signal for them via
a fully-connected layer

Ek = W k
e G

k
u + bke , k = 1, . . . , 4, (19)

where W k
e and bke are the weights and biases of the fully-

connected layer. After obtaining the excitation signal Ek ∈ Rc,

we use it to adaptively recalibrate the input feature Le
k by a

simple gating mechanism

L̃e
k = δ(Ek)	 Le

k, (20)

where 	 is a channel-wise product operation for each element
in the channel dimension, and δ(·) is the ReLU function. In
this way, we can allow the features of one semantic role to
recalibrate the features of another semantic role while pre-
serving the correlation among different semantic roles. Then,
these refined linguistic feature vectors {L̃e, L̃e

s, L̃
e
r, L̃

e
o} are

concatenated to form the final semantic-ware linguistic feature
L̃ = [L̃e, L̃e

s, L̃
e
r, L̃

e
o] ∈ R4d.

To obtain the semantic-aware visual feature, we com-
pute the visual feature F̃k by individually conditioning each
semantic role from the visual features {F1, F2, F3, F4} =
{F, Fs, Fr, Fo} to each semantic role from the refined linguistic
features {L̃e

1, L̃
e
2, L̃

e
3, L̃

e
4} = {L̃e, L̃e

s, L̃
e
r, L̃

e
o} using the same

operation as in [12]. For each semantic role k (k = 1, 2, 3, 4),
the weighted semantic-aware visual feature is

Ik = ELU
(
W I

k [W
f
k Fk,W

f
k Fk 	W l

kL̃
e
k] + bIk

)
F̃k = Softmax(W I ′

k Ik + bI
′

k )	 Fk. (21)

Then, these semantic-aware visual features F̃k (k = 1, . . . , 4)
are concatenated to form the final semantic-aware visual feature
F̃ = [F̃1, F̃2, F̃3, F̃4] ∈ R4d. Finally, we infer the answer based
on the semantic-aware visual feature F̃ and linguistic feature L̃.
Specifically, we apply different answer decoders [12] depending
on the visual question reasoning tasks, which are divided into
three types: open-ended, multi-choice, and counting.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the performance of our CMCIR model. To verify the effective-
ness of CMCIR and its components, we compare CMCIR with
state-of-the-art methods and conduct ablation studies. Then,
we conduct parameter sensitivity analysis to evaluate how the
hyper-parameters of CMCIR affect the performance. We further
show some visualization analysis to validate the ability of causal
reasoning of CMCIR.
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TABLE I
STATISTICS OF THE TGIF-QA DATASET

TABLE II
STATISTICS OF THE MSVD-QA DATASET

A. Datasets

In this paper, we evaluate our CMCIR on the event-level
urban dataset SUTD-TrafficQA [36] and three benchmark real-
world datasets TGIF-QA [29], MSVD-QA [28], and MSRVTT-
QA [28]. The detailed descriptions of these datasets are as
follows:

SUTD-TrafficQA: This dataset consists of 62,535 QA pairs
and 10,090 videos collected from traffic scenes. There are
six challenging reasoning tasks including basic understanding,
event forecasting, reverse reasoning, counterfactual inference,
introspection and attribution analysis. The basic understanding
task is to perceive and understand traffic scenarios at the basic
level. The event forecasting task is to infer future events based
on observed videos, and the forecasting questions query about
the outcome of the current situation. The reverse reasoning
task is to ask about the events that have happened before the
start of a video. The counterfactual inference task queries the
consequent outcomes of certain hypothesis that do not occur.
The introspection task is to test if models can provide preventive
advice that could have been taken to avoid traffic accidents. The
attribution task seeks the explanation about the causes of traffic
events and infer the underlying factors.

TGIF-QA: This dataset has 165 K QA pairs collected from
72 K animated GIFs. It has four tasks: repetition count, repeating
action, state transition, and frame QA. Repetition count is a
counting task that requires a model to count the number of
repetitions of an action. Repetition action and state transition
are multiple-choice tasks with 5 optional answers. FrameQA is
an open-ended task with a predefined answer set, which can be
answered from a single video frame. Table I shows the statistics
of the TGIF-QA dataset.

MSVD-QA: This dataset is created from the Microsoft Re-
search Video Description Corpus [81], which is widely used
in the video captioning task. It consists of 50,505 algorithm-
generated question-answer pairs and 1,970 trimmed video clips.
Each video lasts approximately 10 seconds. It contains five
questions types: What, Who, How, When, and Where. The
statistics of the MSVD-QA dataset are presented in Table II.

MSRVTT-QA: This larger dataset contains more complex
scenes constructed from the MSRVTT [82]. It contains 10,000
trimmed video clips of approximately 15 seconds each. A total of

TABLE III
STATISTICS OF THE MSRVTT-QA DATASET

243,680 question-answer pairs contained in this dataset are auto-
matically generated by the NLP algorithm. The dataset contains
five question types: What, Who, How, When, and Where. The
statistics of the MSRVTT-QA dataset are presented in Table III.

B. Implementation Details

For fair comparisons with other methods, we follow [12] to
divide the videos into 8 clips for the SUTD-TrafficQA and TGIF-
QA datasets, and 24 clips for the MSVD-QA and MSRVTT-QA
datasets that contain long videos. The Swin-L [67] pretrained
on ImageNet-22 K dataset is used to extract the frame-level
appearance features, and the video Swin-B [83] pretrained on
Kinetics-600 is applied to extract the clip-level motion features.
For the question, we adopt the pre-trained 300-dimensional
GloVe [70] word embeddings to initialize the word features in
the sentence. For parameter settings, we set the dimension d of
hidden layer to 512. For the Multi-modal Transformer Block
(MTB), the number of layers r is set to 3 for SUTD-TrafficQA,
8 for TGIF-QA, 5 for MSVD-QA, and 6 for MSRVTT-QA. The
number of attentional heads H is set to 8. The dictionary is
initialized by applying K-means over the whole visual features
from the whole training set to get 512 clusters and is updated
during end-to-end training. The number of GCN layers g is set to
1 in the semantic graph embedding. In the training process, we
train the model using the Adam optimizer with an initial learning
rate 2e-4, a momentum 0.9, and a weight decay 0. The learning
rate reduces by half when the loss stops decreasing after every 5
epochs. The batch size is set to 64. The dropout rate is set to 0.15
to prevent overfitting. All experiments are terminated after 50
epochs. We implement our model by PyTorch with an NVIDIA
RTX 3090 GPU. For multi-choice and open-ended tasks, we use
the accuracy to evaluate the performance of our model. For the
counting task in TGIF-QA dataset, we adopt the Mean Squared
Error (MSE) between the predicted answer and the right answer.

C. Comparison With State-of-the-Art Methods

1) Results on SUTD-TrafficQA Dataset: Since the splits of
six reasoning tasks are not provided by the original SUTD-
TrafficQA dataset [36], we divide the SUTD-TrafficQA dataset
into six reasoning tasks according to the question types. The
overall accuracy and the accuracy of each reasoning types are
reported.

The results in Table IV demonstrate that our CMCIR achieves
the best performance for six reasoning tasks including basic
understanding, event forecasting, reverse reasoning, counterfac-
tual inference, introspection and attribution analysis. Specif-
ically, the CMCIR improves the best state-of-the-art method
Eclipse [36] by 1.53% for all reasoning tasks. Compared with
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TABLE IV
RESULTS ON SUTD-TRAFFICQA DATASET

the re-implemented methods VQAC†, MASN†, DualVGR†, and
HCRN†, our CMCIR performs better than these methods in
all six tasks by a significant margin. For example, compared
with HCRN†, our CMCIR improves the accuracy by 1.93%
for basic understanding, 2.30% for attribution analysis, 4.98%
for introspection, 5.30% for counterfactual inference, 4.22% for
event forecasting, 2.12% for reverse reasoning, and 2.32% for
all tasks. It is obvious that our method improves three types
of questions the most: introspection, counterfactual inference,
and event forecasting. The introspection task is to test if models
can provide preventive advice that could have been taken to
prevent traffic accidents. The event forecasting task is to infer
future events based on observed videos, and the forecasting
questions inquire about the outcome of the current situation. The
counterfactual inference task queries the consequent outcomes
of certain hypotheses that did not occur. All of these three
question types require causal relational reasoning among the
causal, logic, and spatial-temporal structures of the visual and
linguistic content. This validates that our CMCIR can model
multi-level interaction and causal relations between the language
and spatial-temporal structure of the event-level urban data.

2) Results on Other Benchmark Datasets: To evaluate
the generalization ability of CMCIR on other event-level
datasets, we conduct experiments on TGIF-QA, MSVD-QA,
and MSRVTT-QA datasets and compare our model with the
state-of-the-art methods. The comparison results on the TGIF-
QA dataset are presented in Table V. We can see that our CMCIR
achieves the best performance for the Action and FrameQA
tasks. Additionally, our CMCIR also achieves relatively high
performance for the Transition and Count tasks. Specifically,
the CMCIR improves the best performing method HAIR [35]
by 0.3% for the Action task, 2.1% for the FrameQA task. For the
Transition task, the CMCIR also outperforms other comparison
methods except CASSG [84] and Bridge2Answer [13]. For the
Count task, our CMCIR also achieves a competitive MSE loss
value.

Table VI shows the comparison results on the MSVD-QA
dataset. From the results, we can see that our CMCIR outper-
forms nearly all the state-of-the-art comparison methods by a
significant margin. For example, our CMCIR achieves the best
overall accuracy of 43.7%, which leads to 4.7% improvement

TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS ON TGIF-QA DATASET

TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS ON MSVD-QA DATASET

over the best performing method DualVGR [80]. For What, Who,
and When types, the CMCIR significantly outperforms all the
comparison methods. Although GMIN [86] and CASSG [84]
perform marginally better than our CMCIR for How and Where
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TABLE VII
COMPARISON WITH STATE-OF-THE-ART METHODS ON MSRVTT-QA DATASET

types, our CMCIR performs significantly better than GMIN for
What (+8.3%), Who (+9.0%), When (+1.6%), and the overall
(+8.3%) tasks.

Table VII shows the comparison results for the MSRVTT-QA
dataset. It can be observed that our CMCIR outperforms the
best performing method ASTG [89], with the highest accuracy
of 38.9%. For What, Who, and When question types, the CMCIR
performs the best compared to all the previous state-of-the-art
methods. Although CASSG [84] and GMIN [86] achieve better
accuracies than our CMCIR for How and Where question types
respectively, our CMCIR achieves a significantly performance
improvement over these two methods for other question types.

In Tables VI and VII, our method achieves lower performance
than previous best method when the question types are How and
Where. It can be seen from Tables VI and VII that the number of
How and Where samples are much smaller than that of the other
question types. Due to the existence of data bias in these two
datasets, the model tends to learn spurious correlation from other
question types. This may lead to the performance degradation
when testing on these two question types. Nonetheless, we can
still obtain promising performance for question type When,
which also has limited samples. This validates that our CMCIR
indeed mitigate the spurious correlations for most of the question
types including What, Who, and When.

The experimental results in Tables V–VII show that our CM-
CIR outperforms state-of-the-art methods on three large-scale
benchmark event-level datasets. This validates that our CMCIR
generalizes well across different event-level datasets, includ-
ing urban traffic and real-world scenes. Our CMCIR achieves
more promising performance than existing relational reasoning
methods like HGA, QueST, GMIN, Bridge2Answer, QESAL,
ASTG, PGAT, HAIR and CASSG, which validates that our
CMCIR has good potential to model multi-level interaction
and causal relations between the language and spatial-temporal
structure of videos. The main reason for good generalization
across different datasets is that our CMCIR can mitigate both
the visual and linguistic biases through front-door and back-door

causal intervention modules. Due to the strong multi-modal
relational reasoning ability of the CMCIR, we can disentangle
the spurious correlations within visual-linguistic modality and
achieve robust spatial-temporal relational reasoning.

Comparing the average improvement across different
datasets, we notice that CMCIR achieves the best improve-
ment on SUTD-TrafficQA (+1.53%), MSVD-QA (+4.7%) while
relatively moderate gains on TGIF-QA (+0.3%∼0.9%) and
MSRVTT-QA (+1.3%). The reason for such discrepancy is that
SUTD-TrafficQA and MSVD-QA are relatively small in size,
which constrains the reasoning ability of the backbone models
by limiting their exposure to training instances. As a comparison,
SUTD-TrafficQA is four times smaller than MSRVTT-QA in
terms of QA pairs (60 K versus 243 K), while MSVD-QA is five
times smaller than MSRVTT-QA in terms of QA pairs (43 K
versus 243 K). However, such deficiency caters to the focal
point of our CMCIR, which develops better in a less generalized
situation, thus leading to more preferable growth on MSVD-QA.
This validates that our causality-aware visual-linguistic repre-
sentation has good generalization ability.

D. Ablation Studies

We further conduct ablation experiments using the following
variants of CMCIR to verify the contributions of the components
designed in out method.
� CMCIR w/o HSRP: we remove the Hierarchical Semantic-

Role Parser (HSRP), which parses the question into verb-
centered relation tuples (subject, relation, object). The CM-
CIR model only uses the original question as the linguistic
representation.

� CMCIR w/o LBCI: we remove the Linguistic Back-door
Causal Intervention (LBCI) module. The CVLR module
only contains visual front-door causal intervention (VFCI)
module.

� CMCIR w/o VFCI: we remove the Visual Front-door
Causal Intervention (VFCI) module. The CVLR mod-
ule only contains linguistic back-door causal intervention
(LBCI) module.

� CMCIR w/o CVLR: we remove the Causality-aware Visual-
Linguistic Reasoning (CVLR) module. The CMCIR model
combines the visual and linguistic representations using
spatial-temporal transformer (STT) and visual-linguistic
feature fusion modules.

� CMCIR w/o SGE: we remove the Semantic Graph Em-
bedding (SGE) module when conducting visual-linguistic
feature fusion. The linguistic features are directly used for
adaptive linguistic feature fusion.

� CMCIR w/o ALFF: we remove the Adaptive Linguistic
Feature Fusion (ALFF) module when conducting visual-
linguistic feature fusion. The semantic graph embedded
linguistic features are directly used to fused with the visual
features.

Table VIII shows the evaluation results of the ablation study on
SUTD-TrafficQA, TGIF-QA, MSVD-QA, and MSRVTT-QA
datasets. It can be observed that our CMCIR achieves the best
performance compared to the six variants across all datasets and
tasks. Without HSRP, the performance drops significantly due
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TABLE VIII
ABLATION STUDY ON SUTD-TRAFFICQA, TGIF-QA, MSVD-QA, AND

MSRVTT-QA DATASETS

to the lack of the hierarchical linguistic feature representation.
This shows that our proposed hierarchical semantic-role parser
indeed increase the representation ability of question semantics.
To be noticed, the performance of CMCIR w/o LBCI, CMCIR
w/o VFCI, and CMCIR w/o CVLR are all lower than that of the
CMCIR. This validates that both the linguistic back-door and
visual front-door causal interventions contribute to discover the
causal structures and learn the causality-aware visual-linguistic
representations, and thus improve the model performance. For
CMCIR w/o SGE and CMCIR w/o ALFF, their performance
are higher than that of the CMCIR w/o LBCI, CMCIR w/o
VFCI, and CMCIR w/o CVLR, but lower than that of our
CMCIR, which indicates effectiveness of semantic graph em-
bedding and adaptive linguistic feature fusion that leverages
the hierarchical linguistic semantic relations as the guidance
to adaptively learn the global semantic-aware visual-linguistic
representations. With all the components, our CMCIR performs
the best because all these components are beneficial and work
collaboratively to achieve robust event-level visual question
answering.

E. Parameter Sensitivity

To evaluate how the hyper-parameters of CMCIR affect the
performance, we report the results of different values of the
heads h of the Multi-head Multi-modal Attention (MMA) mod-
ule, the layers r of Multi-modal Transformer Block (MTB), and
GCN layers g in the semantic graph embedding. Moreover, the
dimension of hidden states d is also analyzed. The results for the
SUTD-TrafficQA, TGIF-QA, MSVD-QA, and MSRVTT-QA
datasets are shown in Table IX. We can see that the perfor-
mance of CMCIR with 8 MMA heads performs the best across
all datasets and tasks compared to CMCIR with fewer MMA
heads. This indicates that more heads can facilitate the MMA
module to employ more perspectives to explore the relations
between different modalities. For MTB layers, the optimal layer
numbers are different for different datasets. The performance of
the CMCIR is the best when the number of MTB layers is 3
on the SUTD-TrafficQA dataset, 8 on TGIF-QA dataset, 5 on
the MSVD-QA dataset, and 6 on the MSRVTT-QA dataset. For
GCN layers, we can see that more GCN layers will increase the
amount of learnable parameters and thus make model converge
more difficultly. Since one GCN layer can achieve the best
performance, we choose one-layer GCN. For the dimension of
hidden states, we can see that 512 is the best dimensionality of

hidden states of the VLICR model due to its good compromise
between feature representation ability and model complexity.

To validate whether our CMCIR can generalize to different
visual appearance and motion features, we evaluate the per-
formance of the CMCIR on the SUTD-TrafficQA, MSVD-QA
and MSRVTT-QA datasets using different visual appearance
and motion features, as shown in Table X. The best perform-
ing comparison methods on the SUTD-TrafficQA, MSVD-QA
and MSRVTT-QA datasets are also shown in Table X. It can
be observed that when using Swin-L and Video Swin-B as
the visual and motion features, our CMCIR can achieves the
state-of-the-art performance compared with other methods. In
our experiments, visual appearance features are the pool5 out-
put of ResNet-101 [92] and visual motion features are de-
rived by ResNetXt-101 [93], [94]. When using ResNet-101 and
ResNetXt-101 as the visual and motion features, our CMCIR
can also achieve competitive accuracy on SUTD-TrafficQA,
MSVD-QA and MSRVTT-QA datasets. For SUTD-TrafficQA
dataset, the performance of using ResNet and ResNetXt is
38.10%, which is the also the best accuracy among all the
comparison methods (Table IV). For the MSVD-QA dataset, the
performance of using ResNet-101 and ResNetXt-101 is 40.3%,
which also outperforms other comparison methods (Table VI).
For the MSRVTT-QA dataset, the performance of using ResNet-
101 and ResNetXt-101 is 37.0%, which also achieves com-
petitive performance compared to other comparison methods
(Table VI). These results validates that our CMCIR generalizes
well across different visual appearance and motion features due
to the learned causality-aware visual-linguistic representations.
More importantly, the performance improvement of our CMCIR
is mainly attributed to our elaborately designed visual-linguistic
causal reasoning model.

F. The Evidence of Reducing Spurious Correlations

Actually, the process of building VideoQA datasets will in-
troduce undesirable spurious correlations rather than the over-
arching reality [46]. Therefore, we can assume that all our
evaluation datasets contain spurious correlations. To validate
the effectiveness of the CVLR module in reducing spurious
correlations in non-causal frameworks, we apply the CVLR
to three state-of-the-art models Co-Mem [85], HGA [33] and
HCRN [12]. Since our CVLR is orthogonal to the backbone,
we can insert the CVLR directly after the feature extraction
layers of these models, which is the same as our CMCIR.
As shown in Table XI, our CVLR brings each backbone a
sharp gain across all benchmark datasets (+0.9%∼6.5%), which
evidences its model-agnostic property. Nevertheless, we notice
that the improvements fluctuate across the backbones. As a
comparison, on MSVD-QA and MSRVTT-QA benchmarks,
CVLR acquires more favorable gains with backbones Co-Mem,
HGA and HCRN than it does with our backbone. This is be-
cause the fine-grained interactions between linguistic seman-
tics and spatial-temporal representations empower our back-
bone with robustness, especially to questions of the descriptive
type on MSVD-QA and MSRVTT-QA benchmarks. Therefore,
it achieves stronger backbone performances on benchmarks
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TABLE IX
PERFORMANCE OF CMCIR WITH DIFFERENT VALUES OF MMA HEADS, MTB LAYERS, GCN LAYERS, AND HIDDEN STATE DIMENSION ON THE

SUTD-TRAFFICQA, TGIF-QA, MSVD-QA, AND MSRVTT-QA DATASETS

TABLE X
PERFORMANCE OF CMCIR WITH DIFFERENT VISUAL APPEARANCE AND

MOTION FEATURES ON SUTD-TRAFFICQA, MSVD-QA, AND MSRVTT-QA
DATASETS

TABLE XI
CVLR MODULE IS APPLIED TO DIFFERENT EXISTING NON-CAUSAL MODELS

that focus on the descriptive question (i.e., MSVD-QA and
MSRVTT-QA), which, in turn, accounts for the contribution of
CVLR to some extent, thus makes improvement of our backbone
less remarkable. In contrast, when it comes to the causal and tem-
poral question (i.e., SUTD-TrafficQA), the CVLR shows equiv-
alent improvements on all four backbones (+1.05%∼2.02%).
These results validate that our CVLR is effective in capturing the
causality and reducing the spurious correlations across different
models.

G. Qualitative Results

To verify the ability of the CMCIR in robust spatial-temporal
relational reasoning, we aim to gain insight into its
visual-linguistic causal reasoning capabilities by inspecting

some correct and failure examples from the SUTD-TrafficQA
dataset and show the visualization results in Fig. 9. We show
how our model conducts robust spatial-temporal relational
reasoning and reduces spurious correlations.

Reliable Reasoning: As shown in Fig. 9(a), there exists
an ambiguity problem where the dominant visual regions of
the accident may be distracted by other visual concepts (i.e.,
different cars/vehicles on the road). In our CMCIR, we learn
the question-relevant visual-linguistic association by causal re-
lational learning, thus mitigating such ambiguity in our in-
ference results where video-question-answer triplets exhibit a
strong correlation between the dominant spatial-temporal scenes
and the question semantics. This validates that the CMCIR
can reliably focus on the correct visual regions when making
decisions.

Reducing Spurious Correlation: In Fig. 9(b), we present a case
reflecting the spurious correlation, where the visual regions of
“van” are spuriously correlated with associated with the “sedan”,
due to their frequent co-occurrences. In other words, the model
without explicitly considering reducing spurious correlations
(e.g., Co-Mem [85], HGA [33] and HCRN [12]) will hesitate
when encountering the visual concepts of “van” and “motorbike”
with regard to region-object correspondence. In our CMCIR, we
reduce such spurious correlation and pursue the true causality by
adopting visual-linguistic causal intervention, resulting in better
dominant visual evidence and question intention.

Generalization Ability: From Fig. 9(a)–(b), we can see that
the CMCIR can generalize well across different question types.
which shows that the CMCIR is sensitive to questions and
can effectively capture the dominant spatial-temporal content
in the videos by conducting robust and reliable spatial-temporal
relational reasoning.

Introspective and Counterfactual Learning: For challenging
question types, such as introspection and counterfactual
inference, the CMCIR model can accurately determine whether
the attended scene reflects the logic behind the answer. This
verifies that the CMCIR can fully explore the causal, logical, and
spatial-temporal structures of the visual and linguistic content,
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Fig. 9. Visualization of visual-linguistic causal reasoning examples from the SUTD-TrafficQA dataset. Each video is accompanied by several question types that
contain spurious correlations. The color windows in the videos denote the concentrated visual concepts for the inference.

due to its promising ability to perform robust visual-linguistic
causal reasoning that disentangles visual-linguistic spurious
correlations.

Additional Failure Cases: Moreover, we provide failure ex-
amples in Fig. 9(c)–(d) to gain further insights into the lim-
itations of our method. In Fig. 9(c), our model mistakenly
correlates the visual concept “suv” with the green “traffic plate”
when conducting visual-linguistic reasoning. This is because
the visual region of “traffic plate” looks like the “truck”, while
only the white “suv” exists in the video. In Fig. 9(d), it is
difficult to distinguish between “rainy” and “snowy” due to
their similar visual appearance in the video. Additionally, the
“reflective stripes” along the road are mistakenly considered as
the dominant visual concepts. As our CMCIR model lacks an
explicit object detection pipeline, some visually ambiguous con-
cepts are challenging to determine. Moreover, without external
prior knowledge of traffic rules, some questions such as “how
to prevent the accident” and “the cause of the accident” are
difficult to answer. One possible solution may be to incorporate
object detection and external knowledge of traffic rules into our
method, which we will explore in our future work.

V. CONCLUSION

We propose an event-level visual question answering frame-
work named Cross-Modal Causal RelatIonal Reasoning (CM-
CIR), to mitigate the spurious correlations and discover the
causal structures for visual-linguistic modality. To uncover
causal structures for visual and linguistic modalities, we pro-
pose a Causality-aware Visual-Linguistic Reasoning (CVLR)
module, which leverages front-door and back-door causal
interventions to disentangle the spurious correlations between

visual and linguistic modalities. Extensive experiments on the
event-level urban dataset SUTD-TrafficQA and three benchmark
real-world datasets TGIF-QA, MSVD-QA, and MSRVTT-QA
demonstrate the effectiveness of CMCIR in discovering visual-
linguistic causal structures and achieving robust event-level
visual question answering. Unlike previous methods that simply
eliminate either the linguistic or visual bias without considering
cross-modal causality discovery, we apply front-door and back-
door causal intervention modules to discover cross-modal causal
structures.

We believe our work could shed light on exploring new bound-
aries of causal analysis in vision-language tasks (Causal-VLR1).
In the future, we will further explore more comprehensive
causal discovery methods to discover the question-critical scene
elements in event-level visual question answering, particularly
in the temporal aspect. By further exploiting the fine-grained
temporal consistency in videos, we may achieve a model that
pursues better causality. Additionally, we can leverage object-
level causal relational inference to alleviate the spurious corre-
lations from object-centric entities. Besides, we will incorporate
external expert knowledge into our intervention process. More-
over, due to the inherent unobservable nature of properties, how
to quantitatively analyze spurious correlations within datasets
remains a challenging problem. Thus, we will discover more
intuitive and reasonable metrics to compare the effectiveness of
different methods in reducing spurious correlations.

1Our visual-linguistic causal learning framework https://github.com/
HCPLab-SYSU/CausalVLR, which is a python toolbox and benchmark that
implements state-of-the-art causal discovery algorithms for visual-linguistic
reasoning tasks, such as VQA, Image/Video Captioning, Medical Report Gen-
eration, etc.
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