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Abstract

3D Question Answering (3D QA) requires the model to
comprehensively understand its situated 3D scene de-
scribed by the text, then reason about its surrounding envi-
ronment and answer a question under that situation. How-
ever, existing methods usually rely on global scene percep-
tion from pure 3D point clouds and overlook the importance
of rich local texture details from multi-view images. More-
over, due to the inherent noise in camera poses and com-
plex occlusions, there exists significant feature degradation
and reduced feature robustness problems when aligning 3D
point cloud with multi-view images. In this paper, we pro-
pose a Dual-vision Scene Perception Network (DSPNet),
to comprehensively integrate multi-view and point cloud
features to improve robustness in 3D QA. Our Text-guided
Multi-view Fusion (TGMF) module prioritizes image views
that closely match the semantic content of the text. To
adaptively fuse back-projected multi-view images with point
cloud features, we design the Adaptive Dual-vision Per-
ception (ADVP) module, enhancing 3D scene comprehen-
sion. Additionally, our Multimodal Context-guided Rea-
soning (MCGR) module facilitates robust reasoning by inte-
grating contextual information across visual and linguistic
modalities. Experimental results on SQA3D and ScanQA
datasets demonstrate the superiority of our DSPNet. Codes
will be available at https://github.com/LZ-CH/DSPNet.

1. Introduction

Recently, 3D Question Answering (3D QA), the task of an-
swering questions about 3D scenes, has emerged as a sig-
nificant research area in artificial intelligence [22]. Unlike
traditional 2D Question Answering (2D QA), which relies
on flat images, 3D QA offers the potential for richer spa-
tial comprehension and immersive interaction. The expan-
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Figure 1. Comprehensive scene perception with dual-vision (point
clouds and multi-view images).

Q: Which side of the
picture is the TV located?

Multi-view Images

sion of QA tasks from 2D to 3D also broadens the scope of
cross-domain applications, such as visual language naviga-
tion [2, 36], embodied agents [14, 31], and autonomous
driving [4, 28, 37]. However, compared with the 2D VQA
task, 3D QA introduces unique challenges that extend be-
yond planar visual understanding. These challenges primar-
ily manifest in the necessity to accurately perceive complex
geometric relations among multiple scene entities and effec-
tively reason about spatially semantic dependencies through
natural language interactions in 3D environments.

Many efforts have been made to address the challenges
of 3D QA. For example, ScanQA [3] introduced a 3D
perception-based model to fuse 3D and language informa-
tion. To capture rich high-level semantic relations among
objects, 3DGraphQA [38] proposed a Graph Transformer-
based model for intra-graph and inter-graph feature fusion.
However, most of these methods predominantly rely on 3D
point clouds as the primary source of visual information,
overlooking the critical role of multi-view images for com-
prehensive 3D scene perception and reasoning. For exam-
ple, consider the question given in Fig. 1, “Which side of
the picture is the TV located?” not only requires recogniz-
ing entities in geometric scenes but also understanding the
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complex semantic and spatial relations between scene enti-
ties and questions. However, it is difficult for existing 3D
QA models to accurately identify some flat and small ob-
jects (e.g., TV, picture, carpet, phone, etc.) by relying solely
on point cloud information, while multi-view images can
make up for this with rich local texture details [8, 12].

To take advantage of multi-view images, a naive ap-
proach inspired by 3DMV [9] is to back-project the multi-
view image features into point cloud coordinates, pool the
features from multiple views for aggregation, and then sim-
ply concatenate them with the point cloud features. How-
ever, experiments conducted by ScanQA [3] demonstrated
that this straightforward approach is ineffective for their 3D
QA tasks. We believe this is due to the inherent limitations
of the back-projection. As shown in Fig. 2(a), the weights
of each view remain fixed when aggregating multi-view fea-
tures, though ideally, the importance of features from differ-
ent views should vary based on the specific question. Fur-
thermore, as shown in Fig. 2(b), inherent noise in camera
poses, the absence of certain views, and complex occlu-
sions lead to unavoidable feature degradation during back-
projection from multi-view images to 3D point cloud space.
This reduces feature reliability, especially at the edges of
the field of view and in occluded regions.

To address the aforementioned issues, we propose DSP-
Net, a novel dual-vision scene perception network de-
signed to comprehensively integrate multi-view and point
cloud features, adaptively fuse visual information, and per-
form more effective context-guided reasoning for robust
3D QA. To prioritize view images more closely aligned
with the textual content, we introduce a Text-Guided Multi-
View Fusion (TGMF) module to integrate back-projected
multi-view features by weighting them according to the
learnable importance of each image relative to the ques-
tion. Facing the inherent limitations of feature degra-
dation in back-projection, we design an Adaptive Dual-
vision Perception (ADVP) module to adaptively fuse back-
projected image features with point cloud features into a
unified point-level visual representation by filtering high-
confidence point features and suppressing low-confidence
point features. To achieve efficient and detailed vision-
language interaction, we propose a Multimodal Context-
guided Reasoning (MCGR) module with L layers. This
module mitigates the high computational cost and feature
redundancy of direct cross-modal attention on dense visual
features, as well as the semantic loss caused by downsam-
pling, while preserving spatial fidelity and semantic granu-
larity through context-guided reasoning.

Our DSPNet is validated on the ScanQA [3] and SQA3D
datasets [25]. The results demonstrate that our DSPNet
achieves state-of-the-art performance on these benchmarks.
Our main contributions can be summarized as follows:

* To achieve comprehensive scene perception and reason-

ing for 3D QA, we propose a novel Dual-vision Scene
Perception Network (DSPNet) based on point clouds and
multi-view images. Extensive experiments demonstrate
that our DSPNet outperforms all baseline methods on
SQA3D and ScanQA datasets.

* We introduce a Text-guided Multi-view Fusion (TGMF)
module to integrate multi-view image features, allowing
the model to prioritize views that are more closely aligned
with the text content.

* We design an Adaptive Dual-vision Perception (ADVP)
module that adaptively fuses back-projected image fea-
tures with point cloud features into a unified visual rep-
resentation, coupled with a Multimodal Context-guided
Reasoning (MCGR) module for comprehensive 3D scene
reasoning with cross-modal contextual interaction.

2. Related Work
2.1. 3D Question Answering

The current 3D question answering (QA) methods primar-
ily focus on two key task settings [17]: 3D visual question
answering (3D VQA) [3] and 3D situated question answer-
ing (3D SQA) [25]. 3D VQA focuses on question answer-
ing tasks in complex scenes, requiring the model to have
strong spatial perception and reasoning capabilities. In con-
trast, 3D SQA introduces a contextual description of the
agent’s position and orientation in the task setting, requir-
ing the agent to perceive scene and answer questions from a
first-person perspective. Inspired by 2D VQA models (e.g.,
MCAN [40], GraghVQA [21]), researchers have attempted
to design similar architectures in the 3D QA domain to ef-
fectively fuse features from 3D point clouds and text.

For 3D VQA, ScanQA [3] designed a fusion module
composed of Transformer [32] layers and a fusion layer [40]
integrate contextualized word representations of question
with object proposal features, followed by a classification
layer for answer prediction. For 3D SQA, SQA3D [25]
built upon ScanQA [3] by utilizing a shared-parameter text
encoder for additional situation description encoding. It se-
quentially fuses 3D object proposal features with situation
description and question features through Transformer [32].
To capture rich high-level semantic relations among objects,
3DGraphQA [38] proposed a graph-based 3D QA method,
which consists of a graph transformer model for intra-graph
feature fusion and a bilinear graph neural network for inter-
graph feature fusion.

Following the recent success of 2D VLM pre-training in
various downstream tasks, researchers have begun explor-
ing the pre-training paradigms in 3D scene understanding.
These methods aim to obtain universal 3D vision-language
representations through knowledge transfer from 2D VLMs
or large-scale data pre-training. Multi-CLIP [11] utilized
contrastive learning to align 3D scene representations with

14170



(a) Aggregation of multi-view
Q1: Which side of
the picture is the
TV located?
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the picture is the
lamp located on?
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(b) Visualization of back-projected result
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Figure 2. Inherent limitations of back-projection illustrated with a sample from the ScanQA dataset. (a) When aggregating features for
coordinates from n mapped multi-view images, each view’s weight remains constant at % regardless of the question context. (b) Feature
degradation occurs during back-projection from multi-view images to 3D point cloud space. Red color points indicate points missed during
back-projection, and red ellipses highlight areas with noticeable degradation compared to the original point cloud features.

corresponding text embeddings and multi-view image em-
beddings in the feature space of CLIP [29] , transferring
knowledge from CLIP to enhance 3D vision-language un-
derstanding capabilities. 3D-VisTA [42] pre-trained on the
large-scale scene-text paired dataset ScanScribe [42], em-
ploying masked language modeling, masked object model-
ing, and scene-text matching strategies. During fine-tuning,
3D-VisTA efficiently adapted to various downstream tasks
by adding lightweight task-specific head structures, without
requiring additional auxiliary losses or task-specific opti-
mization techniques.

However, most of the existing methods overlook the sig-
nificance of multi-view images in comprehensive scene per-
ception and reasoning. To address the existing limitations
in multi-view image feature fusion and to enhance compre-
hensive 3D scene reasoning through cross-modal contextual
interaction, we propose a novel Dual-vision Scene Percep-
tion Network (DSPNet) for robust 3D question answering.

2.2. 3D Visual Grounding

3D visual grounding(3D VGQG) [1, 6] is a 3D language ob-
ject localization task. ScanRefer [6] proposed a novel ap-
proach for 3D object localization using natural language
and presents the first large-scale scene-language dataset
(i.e., ScanRefer dataset). Subsequently, the Referlt3D
dataset [ 1] was introduced to support fine-grained 3D object
identification in real-world scenes, providing detailed multi-
instance labels to facilitate distinguishing instances within
the same object class. Based on the two datasets, a large
amount of research [5, 7, 41] have been dedicated to the
3D VG tasks. Additionally, these datasets have also been
explored for pre-training in 3D QA (e.g., 3D-VisTA [42],
Multi-CLIP [11]). 3D VG focuses on identifying and lo-
calizing specific objects in 3D scenes based on natural lan-
guage descriptions, while 3D QA extends beyond localiza-
tion to include spatial reasoning and scene understanding to

answer questions about the environment.

2.3. Multi-view Based 3D Perception

Recently, fusing point cloud and multi-view images in 3D
detection has attracted increasing interest. Early works [8,
9, 19, 39] projected 3D queries to multi-view images for
collecting useful semantics. While PointPainting [33] and
PointAugmenting [34] directly decorated raw 3D points
with 2D semantics. 3D-CVF [39] performed multi-modal
fusion at both point and proposal levels. However, since
3D points are inherently sparse, a hard association approach
wastes the dense semantic information in 2D features. Re-
cently, multi-modal 3D detectors [15, 18, 20, 35] back-
projected dense 2D seeds to 3D space for learning the 2D-
3D joint representation in a shared space. However, most
of them overlook the limitation of feature degradation in
back-projection from 2D to 3D. Moreover, they neglect the
influence of textual semantics in multi-view feature fusion.

3. Methodology

In this section, we provide a detailed introduction to our
DSPNet, which employs dual-vision comprehensive scene
perception to address the task of 3D question answering.

3.1. Overall Architecture

As illustrated in Fig. 3(a), the point cloud P of the 3D scene,
the question 7', and the multi-view images [ are served as
input for DSPNet, which aims to predict correct answer vec-
tor « € RMe for the N, answer candidates. DSPNet first
encodes the text via a text encoder, encodes the multi-view
images via a frozen image encoder, and processes the point
cloud via a 3D encoder. Then, we introduce a Text-guided
Multi-view Fusion (TGMF) module to fuse the features
from multi-view and design an Adaptive Dual-vision Per-
ception (ADVP) module to adaptively perceive the vision
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Figure 3. (a) The overall architecture of the DSPNet: it takes the 3D scene, multi-view images, and question as the inputs, ultimately output
answers to questions. (b) The Text-guided Multi-view Fusion (TGMF) module aims to fuse the multi-view features. (c) The Adaptive Dual-
vision Perception (ADVP) module aims to adaptively perceive the vision information derived from point cloud and multi-view images.

information derived from point cloud and multi-view im-
ages. Finally, we incorporate a Multimodal Context-guided
Reasoning (MCGR) module that facilitates efficient cross-
modal interaction between visual and language for compre-
hensive scene reasoning and question answering.

3.2. Modal Encoder

3D Encoder. Given an RGB-colored input point cloud
pE RN*6 where N represents the number of points, most
prior methods [3, 11, 25] adopt a pre-trained VoteNet [27]
detector to acquire object-level tokens Z, € RNoxDo ag
the visual representation, where NV, is the number of object
proposals, and D, is the dimension of object-level feature.
However, these methods exhibit several limitations: (1) De-
tection based feature extraction approaches often overlook
non-object areas within the scene, which are essential in
some reasoning scenarios (e.g., carpets on the floor, pic-
tures on the wall, hanging lamps on the ceiling). (2) After
object-level abstraction, high-level information of the scene
(e.g., the layout of a bedroom, the corners of a kitchen) is
lost in the visual representation. (3) Joint optimization of
detection and reasoning tasks requires careful balancing of
their respective loss functions, potentially diverting focus
from the primary objective of scene reasoning.

In light of these, we adopt a pre-trained PointNet++ [26]
from VoteNet [27] (i.e., VoteHead of VoteNet is discarded)
as our 3D encoder. Specifically, the 3D encoder comprises
several set abstraction layers and feature propagation (up-
sampling) layers with skip connections. It processes the in-
put point cloud and outputs a subset of points, referred to as
seed points. These seed points are represented by their XYZ
coordinates and an enriched feature vector Z,, € RNo XDy
where N,, denotes the number of seed points, and D, rep-

resents the dimension of the point-level features.

Image Encoder. Given M multi-view images, we employ
a pre-trained Swin Transformer [23] to extract multi-view
image features U; € RM*HXWxDi ywhere M denotes the
number of images, D; represents the feature dimension, and
H x W indicates the spatial resolution of the feature maps.
Text Encoder. To robustly capture both local and global
features of the situation description and question, we adopt
a pre-trained Sentence-BERT (SBERT) [30] to extract con-
text word-level features Z, € REt*Pm where L, denotes
the sequence length and D,, represents the feature dimen-
sion. To unify two task settings of 3D VQA and 3D SQA, in
3D SQA, we directly concatenate the situation description
and question as the input of the text encoder as in [42].

3.3. Text-guided Multi-view Fusion
To fuse M multi-view image features U; € RM*HxWxD;
from the image encoder, we design a Text-guided Multi-
view Fusion (TGMF) module that performs back-projection
[9] and text-guided fusion to merge these features.

As illustrated in Fig. 3(b), we initially back-project U;
into 3D coordinates space of Z,, by leveraging the known
camera intrinsic and extrinsic parameters associated with
each image, obtaining multi-view back-projected features
U, € RN»*MxDi hased on point-to-pixel correspondences.
Since feature representations of the same entity often vary
across different views, especially for entity relations in first-
person perspective, we introduce an attention mechanism to
learn context-specific importance weights s € RV» XM of
multi-view for each point location. These weights are then
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used to preferentially aggregate multi-view information:

QK"
— W, K=GW., ho=2%2 @
Q q tVVEk \/@ ( )
s = SoftMax(h,dim = 1), Zi=sU, ()

where G; € RM*Pi is the global pooling feature of multi-
view image features U;, G; € R'*Pm is the global pool-
ing feature of contextualized word-level text features Z;
extracted by the text encoder, W, < RPixdk and W, €
RPm*dk are Jearnable weights that project G; and G into
a same latent space, h € RNe*M g derived by dupli-
cating hy, € RM across all valid back-projected points,
Z; € RNoxDi denotes the weighted aggregated feature
from multi-view back-projected features.

3.4. Adaptive Dual-vision Perception

Given the back-projected features Z; and point cloud fea-
tures Z,, we aim to adaptively fuse the texture-rich back-
projected features with spatially-informative point cloud
features into a unified visual representation.

Inspired by SENet [13], we design an Adaptive Dual-
vision Perception (ADVP) module to point-wise and
channel-wise filter high-confidence features and suppress
low-confidence ones. As illustrated in Fig. 3(c), after con-
catenating the back-projected features Z; and point cloud
features Z,,, we utilize a MLP : RPiTP» — RPi+Dp and
sigmoid function (o) to learn the importance of each feature
channel at each point. Let Z;, € RN»*(Pi+D») denote the
refined features, which are calculated as follows:

3)

where o(MLP([Z;, Z,])) € RN»*(Pi+Dp) and © denotes
element-wise multiplication. Finally, a fully connected lay-
ers (FC), are employed to map and obtain refined point-level
visual features Z,, € RVpXDm:

Zn = o(MLP([Z;, Z,])) © [Zi, Zy)

Z, = FC(Z,) (4)

3.5. Multimodal Context-guided Reasoning

After acquiring refined point-level visual features Z, and
the contextualized word-level text features Z, extracted by
the text encoder, we aim to derive cross-modal represen-
tations through vision-language interaction in the shared
semantic space. Therefore, we introduce a Multimodal
Context-guided Reasoning (MCGR) module with L lay-
ers, which ensures computational efficiency while mitigat-
ing the semantic information loss caused by downsampling.

Initially, we apply farthest point sampling (FPS) to sam-
ple K points from the dense point-level visual features Z,,,
resulting in sparse candidate features Z, € RX*Pm_  We
then get the position embeddings P, (.) by passing the cor-
responding coordinates p,.) through a learnable MLP, ) :
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R3 — RPm. The position embeddings are added to Z,
and Z,. to form the dense visual embeddings F,, and sparse
visual embeddings ., respectively:

Ev(c) = Zv(c) + MLP'U(C) (pv(c)) &)

We send E,, E. and text features Z, € RILtXDPm 1o
MCGR module, each layer of which contains a cross-
attention and transformer sub-layer. Inside the ¢-th layer,
the cross-attention sub-layer is first applied. The query are
the fused visual output E:~1 (where E? = E, initially) of
the (i-1)-th layer, and context vectors are the dense visual
embeddings F,:

hi = CrossAtt(E'" ', E,) (6)

This interactive process can capture essential point features
from dense point visual features under context guidance.
And then h! interacts with the fused text feature Ej *
(where EY = Z, initially) through a transformer sub-layer:

[E!, E{] = Transformer([h%, E:71]) 7
where [-, -] denotes the concatenation operation along the
sequence dimension.

3.6. Training Objective

Question Answering Head. Following [3], we feed the
fused text features output EX € RL+*Pm and the fused
visual features output EX € RE*Pm into a modular co-
attention network (MCAN) [40] to predict answer o € RNa
for the N, answer candidates.

3D VQA task. We model the final loss as a linear combina-
tion of answer classification loss L, s, object classification
loss L.;s and reference object center localization 1oss L.
For L;,, the location closes to a ground truth object center
(within 0.3 meters) is considered a ground truth location, as
in [3, 27]. We consider the above three training objectives
as multi-label classification problems. Since the labels are
noisy (e.g., some samples’ answers do not include all the
correct answers with different expressions in the candidate
set, and some samples do not have the ground truth labels
of the reference objects), we use soft-ranked cross entropy
loss as the loss function for multi-class classification:

N
Z yiPi)
where y; € {0, 1} is the target label, p; € [0, 1] is the pre-

i=1
dicted label confidence through softmax normalization. The
final loss is computed as:

L(y,p) = —log ( ®)

L3DVQA = Lans + )\1Lcls + )\2Lloc (9)

where \; and \q are the weighting factors. In our experi-
ments, we set all these hyper-parameters to 1.

3D SQA task. We use the answer classification loss for
training (i.e., L3psga = Lans) asin [42].



Test set

Method Pre-trained g 7147 15 (652) How (d65) Can (338) Which (351) Other (366) &
ClipBERT [16] x 30.2 60.1 387 633 425 427 33
MCAN [40] x 28.9 59.7 44.1 68.3 40.7 40.5 43.4
ScanQA [3] x 28.6 65.0 473 66.3 43.9 42.9 45.3
SQA3D [25] x 33.5 66.1 42.4 69.5 43.0 46.4 472
Multi-CLIP [11] v - - ; ] - ; 48.0
3D-VisTA [42] x 32.1 62.9 477 60.7 459 48.9  46.7
3D-VisTA [42] V 34.8 63.3 45.4 69.8 472 48.1 48.5
3DGraphQA [38] x 36.4 64.7 46.1 69.8 47.6 48.2 49.2
DSPNet (ours) x 3822 66.0 512 66.6 425 51.6 50.4

Table 1. The question answering accuracy on the SQA3D dataset. In the test set column: the brackets indicate the number of samples for
each type of question. The best results are in bold, and the second-best ones are underlined.

4. Experiments

In this section, we validate our DSPNet on two 3D question
answering tasks. The tasks for evaluation are (a) 3D situated
question answering on the SQA3D dataset [25] and (b) 3D
visual question answering on the ScanQA dataset [3].

4.1. Experimental Setup

Dataset. The ScanQA dataset [3] contains 41,363 diverse
question-answer pairs and 3D object localization annota-
tions for 800 indoor 3D scenes of the ScanNet dataset [10].
The SQA3D [25] dataset is designed for embodied scene
understanding by integrating situation understanding and
situated reasoning. It consists of 6.8k unique situations
based on 650 ScanNet scenes, accompanied by 20.4k de-
scriptions and 33.4k diverse reasoning questions for these
situations. ScanNet [10] is a large-scale annotated 3D mesh
reconstruction dataset for indoor spaces, where each scene
contains the raw RGB-D sequences.

Implemetation Details. We begin by uniformly sampling
multi-view images from the original video at a 0.1 ratio
for each scene. Subsequently, we select 20 multi-view im-
ages with a resolution of 224 x 224 as input, utilizing ran-
dom sampling during training and uniform sampling dur-
ing inference. Additionally, for each scene, we sample
40,000 points from the raw point cloud as input, using ran-
dom sampling during training and farthest point sampling
during inference. We use the pointnet++ from pre-trained
VoteNet [27], the pre-trained Swin Transformer [23] and the
MPNet-based pre-trained Sentence-BERT (SBERT) [30]
while training other modules randomly initialized from
scratch following end-to-end manners. The K value is set
to 256 in the FPS stage preceding the MCGR module, and
the hidden size of the MCGR module is set to 768. The
network is trained using AdamW [24] optimizer with (5,
= 0.9, B2 = 0.999 and a weight decay of 1e~5. We use 4
GPUs with 12 training samples on each to train the model
for 12 epochs. The learning rate schedule includes a 500-
step warm-up phase, linearly increasing from 5e¢ =5 to 1le =4,

followed by cosine decay back to 5e~°. The text encoder
use a 0.1x smaller learning rate. We implement DSPNet in
Pytorch and train it with NVIDIA GeForce RTX 3090.
Evaluation Metrics. On the ScanQA dataset [3], we em-
ploy the same evaluation metrics as [3], which include
EM@1 and EM@10, where EM denotes the exact match
and EM @K represents the percentage of predictions that
exactly match any ground truth answer among the top
K predicted answers. Meanwhile, we utilize BLEU-4,
ROUGE, METEOR, and CIDEr as the sentence-level eval-
uation metrics. On the SQA3D dataset [25], we adopt the
answer accuracy under different types of questions.

4.2. Results on SQA3D Dataset

Baseline. We perform a comparison evaluation with several
representative baselines on the SQA3D dataset. In particu-
lar, we evaluate against ClipBERT [16] and MCAN [40]
which are, as reported in prior work [25] baselines focused
on egocentric video and bird-eye view (BEV) image QA.
ScanQA [3] represents a 3D QA baseline that ignores the
situational input. SQA3D [25] allows location descrip-
tions and questions to interact separately with object pro-
posal features. Multi-CLIP [11] and 3D-VisTA [42] are
pre-trained on external 3D-Text paired datasets before being
fine-tuned on this dataset. 3DGraphQA [38] is trained on
SQA3D Pro dataset by incorporating multi-view images to
complement the image information of the first-person per-
spective situations in the SQA3D dataset.

Results Analysis. Our DSPNet leverages dual-vision scene
perception and reasoning, utilizing multi-view images that
contain rich local texture details to achieve a more nuanced
understanding of scene intricacies. As shown in Tab. 1, we
achieve the best results on What, How and Other questions
and outperforms other methods including those pre-trained
on external 3D-Text paired datasets in terms of average ac-
curacy. This validates that our DSPNet has competitive
question reasoning capability. In contrast, SQA3D, 3D-
VisTA, and 3DGraphQA exhibit better performance on sim-
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Method Pre-trsined EM@!  EM@10 BLEU-4 ROUGE METEOR  CIDEr

Image+MCAN [3] x 223/208 53.1/512 143/97 313/292 12.1/11.5 6047556
ScanRefer+MCAN [3] x 206/19.0 524/49.7 75/78 30.7/286 12.0/11.4 57.4/534
ScanQA [3] x 23.5/209 56.5/54.1 12.0/10.8 343/31.1 13.6/12.6 67.3/60.2
Multi-CLIP [11] v 24.0/21.5 /- 12.7/12.9 354/326 140/134 68.7/632
3D-VisTA [42] x 252/204 552/515 105/87 355/29.6 13.8/11.6 68.6/55.7
3D-VisTA [42] v 27.0/23.0 57.9/535 16.0/11.9 38.6/328 152/129 76.6/62.6
3DGraphQA [38] x 256/22.3 58.7/561 15.1/12.9 369/33.0 147/13.6 74.6/62.9
DSPNet (ours) x 26.5/238 58.8/56.1 154/15.7 39.3/351 15.7/143 78.1/69.6

Table 2. Answer accuracy on ScanQA. Each entry denotes “test w/ object” / “test w/o object”. The best results are marked bold, and the

second-best ones are underlined.

TGMF  ADVP  MCGR  ScanQA  SQA3D
x x x 22.35 4933
v x x 22.69 49.58
v v x 22.80 49.87
V. x v 23.23 49.77
v v v 23.47 50.36

Table 3. Ablation study of components in our method.

pler questions with fewer answer options, such as Is, Can,
and Which, where answers can often be inferred correctly
based on only the question without relying on 3D scenes.
However, these methods exhibit limited capabilities in fine-
grained perception and reasoning when answering complex
and open-ended questions like What and How. These vali-
date that our DSPNet can comprehensively understand the
3D scene and infer the correct answer.

4.3. Results on ScanQA Dataset

Baseline. We further perform a comparison evaluation with
several representative baselines on the ScanQA dataset. In
particular, we compare with 2D image VQA MCAN [40]
based baselines [3], ScanQA [3], Multi-CLIP [11], 3D-
VisTA [42] and 3DGraphQA [38].

Results Analysis. In Tab. 2, our method outperforms ex-
isting representative approaches on most evaluation met-
rics, especially in CIDEr, ROUGE and METEOR, where
it significantly surpasses other methods. Specifically, our
method’s high CIDEr score reflects its effective capture
of relevant semantic content in the answers, the elevated
ROUGE score indicates comprehensive coverage of key
information, and the high METEOR score demonstrates
close alignment with reference answers in both vocabu-
lary and structure. Additionally, on the EM @1 metric, our
method requires no additional pre-training but achieves per-
formance comparable to 3D-VisTA, which is pre-trained on
a external large-scale 3D-Text paired dataset.

4.4. Ablation Studies

We conducted ablation studies on the validation split of the
ScanQA dataset and the test split of the SQA3D dataset
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Methods ScanQA SQA3D
w/o 2D 22.26 49.05
DSPNet (ours) 23.47 50.36

Table 4. Ablation study on the effectiveness of using 2D modality.

to evaluate the effectiveness of our proposed components.
Starting from a baseline model without any of our mod-
ules, we incrementally added the Text-guided Multi-view
Fusion (TGMF), Adaptive Dual-vision Perception (ADVP),
and Multimodal Context-guided Reasoning (MCGR) mod-
ules to assess their individual and combined contributions.
Baseline. The baseline model excludes TGMF, ADVP, and
MCGR. It uses average pooling to aggregate back-projected
multi-view features and employs simple concatenation to
combine dual visual features. In the reasoning process, it
removes the cross-attention sub-layer, performing only ba-
sic interactions between text features and candidate visual
features sampled from dense point-level features. As shown
in Tab. 3, the baseline achieves EM @1 scores of 22.35% on
ScanQA and 49.33% on SQA3D.

Text-guided Multi-view Fusion. Incorporating the TGMF
module improves the baseline performance to 22.69% on
ScanQA and 49.58% on SQA3D. This indicates that the
TGMEF, which prioritizes view images aligned with the tex-
tual content, is essential for multi-view feature fusion and
contributes to overall QA performance.

Adaptive Dual-vision Perception. After building upon the
model with TGMF, adding ADVP further improves perfor-
mance to 22.80% on ScanQA and 49.87% on SQA3D. The
results demonstrate the effectiveness of the ADVP mod-
ule in adaptively fusing back-projected image features with
point cloud features.

Multimodal Context-guided Reasoning. Alternatively,
adding MCGR to the model with TGMF improves per-
formance to 23.23% on ScanQA and 49.77% on SQA3D.
This emphasizes the importance of enhanced multimodal
reasoning provided by the MCGR module, as it incorpo-
rates dense visual features into contextual interactions via
a cross-attention mechanism, significantly preserving scene



Q: What is next to a white
board with pictures on it?

Q: What color is the
refrigerator in the kitchen?

S: I am standing in the bathtub
about to turn the shower
handles.

Q: Is the shower curtain on the
outside of the bathtub?

S: I am sitting on an armchair
and facing desk.

Q: When I turn to my right,
what do I see?

ScanQA

A: bookshelf 3¢

x

A: door v

A: silver v

Figure 4. The qualitative comparison of our method with ScanQA and SQA. Our method achieves higher answer accuracy for questions

A: window v

that directly or indirectly involve some challenging entities, such as those with flat shapes and rich local texture details.

(a) Number of Views (b) Depth of MCGR
ScanQA  SQA3D ScanQA  SQA3D

10 22.87 49.73 2 23.04 49.79

15 23.04 49.99 4 23.47 50.36

20 2347 50.36 6 22.48 49.30

Table 5. Ablation study of various design choices. Our settings
are marked in gray.

information and enhancing the model’s contextual reason-
ing capabilities.

Full Model. Combining all three modules, TGMF, ADVP,
and MCGR, into our full model yielded the highest perfor-
mance, achieving EM @1 scores of 23.47 % on ScanQA and
50.36% on SQA3D. The results confirm that the refined
features from TGMF and ADVP enhance MCGR’s contex-
tual reasoning, which in turn more effectively utilizes these
integrated features, leading to optimal overall performance.

Architectural Design. We compare our full model with
a variant, “w/o 2D”, which removes all multi-view images
and only adopts the 3D point cloud as visual information
input. Tab. 4 shows that incorporating local texture details
from multi-view images for 3D scene perception and rea-
soning can bring large improvements to both 3D QA tasks,
which proves the necessity of dual vision in our method. In
addition, we find that the number of views affects the per-
formance on both 3D QA datasets, especially on ScanQA.
As shown in Tab. 5(a), the more views incorporated, the
better the performance, as additional views provide richer
scene features. We also study the effect of the depth of
Multimodal Context-guided Reasoning module by varying

the number of layers. As shown in Tab. 5(b), using 4 lay-
ers achieves the best performance and simply adding more
layers does not help. This is because under the condi-
tion of limited-scale 3D QA datasets, deeper networks have
stronger representation capabilities but are also more prone

to overfitting, so a balance needs to be struck here.

More ablation studies and analyses are provided in the

supplementary material.

4.5. Qualitative Analysis

We qualitatively compare our method with ScanQA and
SQA3D on the 3D VQA and 3D SQA tasks, respectively.
As shown in Fig. 4, our DSPNet performs well in perceiv-
ing and reasoning about some challenging entities, such as
those with flat shapes and rich local texture details that are
difficult to identify based on point cloud geometry alone.
Furthermore, DSPNet can distinguish subtle color differ-
ences, such as between white and silver, thus enhancing its
robustness in identifying fine-grained visual distinctions.

5. Conclusion

In this paper, we propose DSPNet, a dual-vision network for
3D QA. DSPNet integrates multi-view image features via a
Text-guided Multi-view Fusion module. It adaptively fuses
image and point cloud features into a unified representa-
tion using an Adaptive Dual-vision Perception module. Fi-
nally, a Multimodal Context-guided Reasoning module is
introduced for comprehensive 3D scene reasoning. Experi-
mental results have demonstrated that DSPNet outperforms
existing methods with better alignment and closer semantic

structure between predicted and reference answers.
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