
1192 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

Decouple and Couple: Exploiting Prior Knowledge
for Visible Video Watermark Removal

Junye Chen , Chaowei Fang , Member, IEEE, Jichang Li , Yicheng Leng, and Guanbin Li , Member, IEEE

Abstract— This paper aims to restore original background
images in watermarked videos, overcoming challenges posed
by traditional approaches that fail to handle the temporal
dynamics and diverse watermark characteristics effectively. Our
method introduces a unique framework that first “decouples” the
extraction of prior knowledge—such as common-sense knowledge
and residual background details—from the temporal model-
ing process, allowing for independent handling of background
restoration and temporal consistency. Subsequently, it “couples”
these extracted features by integrating them into the temporal
modeling backbone of a video inpainting (VI) framework. This
integration is facilitated by a specialized module, which includes
an intrinsic background image prediction sub-module and a dual-
branch frame embedding module, designed to reduce watermark
interference and enhance the application of prior knowledge.
Moreover, a frame-adaptive feature selection module dynamically
adjusts the extraction of prior features based on the corruption
level of each frame, ensuring their effective incorporation into
the temporal processing. Extensive experiments on YouTube-VOS
and DAVIS datasets validate our method’s efficiency in water-
mark removal and background restoration, showing significant
improvement over state-of-the-art techniques in visible image
watermark removal, video restoration, and video inpainting.

Index Terms— Visible video watermark removal, prior knowl-
edge extraction, temporal modeling.

I. INTRODUCTION

VISIBLE watermarking serves as a critical tool for copy-
right protection, enabling creators to safeguard their

intellectual property [4], [5]. Developing visible watermark
removal techniques is valuable for evaluating the robustness
and security of watermarks [1], [5]. This paper addresses the
pressing need for reliable and robust visible video watermark
removal strategies, a relatively under-explored area despite the
proliferation of videos on the Internet.
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The task of removing visible watermarks entails restoring
the background image from the watermark-distorted content,
posing a challenge compounded by the unpredictable variety of
watermark characteristics such as size, orientation, and opac-
ity. Conventional visual obstruction patterns such as haze [6],
snow [7], or rains [8]) usually have regular underlying texture
patterns which are obviously distinct to the background con-
tent. However, watermarks have diversified irregular patterns
and may cause severe distortion to the background content.
These issues bring unique obstacles to the task of visible
watermark removal.

Although significant strides have been made in image water-
mark removal [1], [4], [5], [9], [10], [11], translating these
successes into video content is hampered by the inability of
existing methods to account for temporal information, a crucial
element for maintaining consistency across frames. Video
restoration (VR) methods [2], [12], [13] effectively model
temporal relationships between frames but are designed for
conventional obstruction patterns. Due to the diversity and
high obstruction level of visible watermarks, they have limited
performance in removing complex watermarks (see Figure 7).
Video inpainting (VI), considered the most promising option,
also falls short in precise content recovery. While VI thor-
oughly removes content in corrupted regions and generates
visually plausible and coherent content [14], it often compro-
mises the accuracy of background restoration, particularly in
cases of extensive watermark coverage or intricate background
textures (see Figure 7). Moreover, entirely removing content in
the watermarked region leads to excessive loss of background
information.

To address these issues, we revisit two key aspects of
visible video watermark removal: temporal coherence across
frames and thorough watermark removal with high-quality
background content recovery. For temporal coherence, most
methods utilize attention-based mechanisms [15], [16], [17],
[18] or deformable convolutions [19], [20] to aggregate and
propagate features across the time series, thereby modeling
temporal information [2]. The latter aspect requires effectively
erasing watermarks of varying opacity and generating realistic
content in the occluded regions.

In this work, we introduce a novel “decouple and couple”
framework to address the challenge of visible video watermark
removal. This framework seamlessly integrates frame-specific
prior features into a temporal modeling backbone designed
for temporal relation establishment. In particular, two types of
prior features are considered: common-sense knowledge which
is critical for repairing areas severely corrupted by water-
marks and intrinsic background residuals valuable for precisely
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Fig. 1. (A) Visible video watermark removal involves eliminating the watermark according to the location of masks and restoring the original background
of the frames. Our approach entails extracting prior knowledge for restoration from each frame and propagating this information temporally to recover the
background. (B) Visual comparisons from different representative methods: (a) Image Watermark Removal [1], (b) Video Restoration [2], (c) Video Inpainting
[3], our DECO outperforms other types of methods in watermark removal and content recovery.

restoring the original content of corrupted areas. To achieve
this target, a novel frame-specific prior feature extraction
(FPFE) module is introduced to decouple the extraction of
prior information from the temporal modeling process, facili-
tating the frame restoration ability under large-area watermark
occlusion and high-opacity watermarking. To be specific, this
module begins with an intrinsic background image prediction
(IBIP) sub-module to reduce watermark interference, and
adopts a dual-branch frame embedding (DBFE) sub-module
for effective prior feature extraction. The DBFE sub-module
leverages a quantized knowledge retrieval branch and a
straightforward translation branch to explore common-sense
knowledge and intrinsic background residuals, respectively.
Furthermore, we propose a frame-adaptive feature selection
module that effectively couples the extracted prior features
with the temporal modeling process. We conduct extensive
experiments on YouTube-VOS [21] and DAVIS [22] datasets
corrupted by diverse watermarks. The results demonstrate that
our method achieves significantly better performance than
existing techniques in the field of visible image watermark
removal, video restoration, and video inpainting.

The main contributions of this paper are summarized as
follows:

• We introduce a novel DEcouple and COuple (DECO)
framework that extracts frame-wise prior features and
adaptively integrates them into a temporal modeling back-
bone for visible video watermark removal.

• We introduce a new prior feature extraction module,
which comprises an intrinsic background image predic-
tion and a dual-branch frame embedding sub-modules,
effectively utilizing common-sense knowledge and intrin-
sic background residuals.

• Extensive experiments on YouTube-VOS [21] and
DAVIS [22] demonstrate our method’s effectiveness and
adaptability. DECO significantly outperforms existing
techniques in visible image watermark removal, video
restoration, and video inpainting.

II. RELATED WORK

A. Visual Watermark Removal

In visual media, pasting visible watermarks into images is
a widely used method for copyright protection. Conversely,

visible watermark removal is regarded as an adversarial tech-
nology that has attracted significant interest. Prior approaches
for visible watermark removal, such as those in [1], [4],
[5], [9], and [10], mainly utilize multi-task learning networks
to locate visible watermarks and restore the visual back-
ground simultaneously. For instance, Liang et al. [1] propose
watermark localization by predicting corresponding masks
and leveraging cross-level features to enhance output quality,
achieving high-quality watermark-free background restoration.
In comparison, Cun and Pun [4] propose adopting a two-
stage “split-then-refine” framework for watermark localization
and background restoration. Additionally, Sun et al. [5] dis-
tinguish watermark and background semantic embeddings
in high-dimensional space, achieving state-of-the-art perfor-
mance. However, these methods tailored for image watermark
removal lack the capability to model temporal information,
crucial for addressing the temporal consistency required in
video content. Video watermark removal necessitates frame-
by-frame restoration while maintaining temporal consistency
for aesthetically pleasing results. In contrast to established
image techniques, video watermark removal is seldom studied
in academia. Our work aims to bridge this gap by addressing
the unique challenges of removing visible watermarks from
videos.

B. Video Restoration

Video restoration focuses on restoring high-quality content
from videos affected by various noises, such as deraining [8],
snow removal [7], denoising [13], and dehazing [6]. These
“noises” generally cause limited background corruption or
significantly differ semantically from the background. Thus,
existing restoration methods model and remove noise based on
these semantic differences or propagate features from aligned
adjacent frames. For instance, Wang et al. [8] separate rain
from backgrounds using mutual exclusion, while Xu et al. [6]
and Chen et al. [7] utilize atmospheric scattering models and
their variants for background restoration. Maggioni et al. [13]
enhance corrupted pixels by aggregating features from adja-
cent frames. In the VVWR task, watermarks in video frames
pose a more significant challenge due to their complexity and
potential semantic similarity to the background, causing more
severe content corruption and greater recovery challenges.
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C. Video Inpainting

Video inpainting aims to fill missing areas in video
sequences with spatially and temporally coherent content.
It typically removes objects using a binary mask, while effec-
tive for object removal, which results in significant content
loss. This poses challenges for video inpainting’s feature prop-
agation and alignment capabilities, impacting visual quality.
Ren et al. [23] propose to encode frame features into discrete
latent codes and use a transformer to model temporal depen-
dencies and predict the indices of discrete codes in the missing
regions across time series. Zhang et al. [24] leverage optical
flow completed by a flow completion network to guide the
transformer to fill missing content. Li et al. [14] introduce an
end-to-end framework for accurate flow completion, enhancing
feature propagation and content repairing. Zhou et al. [3] fur-
ther advance feature propagation and alignment both spatially
and temporally. However, these methods [3], [14], [24] are
often misled by inaccurate completed optical flow and struggle
with generating large-area content, resulting in sub-optimal
outcomes with blurred backgrounds and unpleasant artifacts.
Lee et al. [25] propose a semantic-aware transformer based on
a mixture-of-experts scheme, achieving high-quality content
recovery in large-area occlusions by leveraging semantic infor-
mation selection within inputs. In this work, we harness prior
knowledge from watermark-free images for feature restoration
and collaborate with a temporal video inpainting backbone
for feature alignment and propagation from adjacent frames,
significantly improving the performance of video watermark
removal.

III. THE PROPOSED METHOD

A. Preliminaries

1) Problem Formulation: Visible video watermark removal
(VVWR) aims to restore the original video from the input
watermarked video corrupted by visible watermarks. A triplet
dataset < X, M∗, X∗ > is used to develop our method.
Here, X = {Xt }

T
t=1 represents the watermarked video with T

frames, M∗
= {M∗

t }
T
t=1 represents the corresponding masks of

coarsely annotated watermarks, and X∗
= {X∗

t }
T
t=1 represents

the original background (ground-truth) video. Each frame
Xt ∈ RH×W×3 denotes an image with dimensions of height
H , width W , and 3 channels. M∗

t ∈ RH×W×1 denotes a binary
mask with dimensions of height H , width W , and 1 channel.
In form, the goal of VVWR is to convert a watermarked video
X into a watermark-free video Y = {Yt }

T
t=1 under the guidance

of M∗.
2) Generation of Watermarked Video: Following the defi-

nition of watermarked image in [10], the watermarked video
frame can be generated by blending the watermark image
Wt ∈ RH×W×3 with the original background image X∗

t :

Xt = (1 − αMt ) ⊙ X∗
t + αMt ⊙ Wt , (1)

where Mt ∈ RH×W×1 represents the binary mask of water-
mark, α ∈ (0, 1] is the opacity level of the watermark, and ⊙

denotes element-wise multiplication. The term highlighted in
blue of Eqn. (1) is referred to as the intrinsic background
image. To simplify, we denote Gint

t = (1 − αMt ) ⊙ X∗
t .

In Section III-B, we utilize Gint
t as the ground truth to

supervise our model in learning to eliminate the interference
of the watermark.

3) Overview: In this paper, we introduce the decouple
and couple framework to address the challenge of visible
video watermark removal. The term “decouple” refers to our
approach of separating the extraction of prior features, such
as common-sense knowledge and residual background infor-
mation, from the temporal modeling process. This separation
is facilitated by the Frame-specific Prior Feature Extraction
(FPFE) module, which includes the Intrinsic Background
Image Prediction (IBIP) sub-module and the Dual-Branch
Frame Embedding (DBFE) sub-module, allowing for inde-
pendent handling of feature extraction and restoration. The
term “couple” denotes the subsequent integration of these
extracted prior features into the temporal modeling backbone,
ensuring temporal coherence. This integration is managed
by the Frame-adaptive Feature Selection Module (FFSM),
which adaptively incorporates the prior features based on the
corruption level indicated by the IBIP features, thus maintain-
ing temporal consistency. Figure 2 provides a comprehensive
illustration of our proposed DECO framework.

B. Frame-Specific Prior Feature Extraction Module

This section details the Frame-specific Prior Feature Extrac-
tion (FPFE) module that harnesses prior information for
background restoration in video frames. As illustrated in
Figure 2, FPFE is composed of two key parts: the Intrinsic
Background Image Prediction (IBIP) sub-module, and the
Dual-Branch Frame Embedding (DBFE) sub-module. IBIP
removes watermark interference and thus obtains the intrin-
sic background of corrupted regions in each video frame.
Then, DBFE restores the corrupted regions in the intrinsic
background image, comprising knowledge retrieval (KR) and
straightforward translation (ST) branches. The KR branch
retrieves common-sense knowledge extracted from natural
images for feature reconstruction in the corrupted regions,
whereas the ST branch focuses on directly restoring residual
features. DBFE then merges the output features of both
branches through a corruption-aware fusion component (CFC),
optimizing restoration based on the corruption degree. Such a
two-stage paradigm can effectively remove the watermark and
leverage the common-sense knowledge and residual features
to restore the frames.

Intrinsic Background Image Prediction (IBIP): From coarse
to fine is a commonly used paradigm in watermark removal
[1], [4], [5], which reduces the learning difficulty at each
stage. Inspired by them, we propose IBIP with a U-Net-
like [26] structure to mitigate the watermark interference by
learning to predict the intrinsic background image at the first
stage. This IBIP sub-module comprises an encoder EIBIP and
a decoder DIBIP, each consisting of 4 and 3 residual blocks
[27], respectively. Furthermore, neural networks excel at fitting
residual noise rather than restoring images [28]. In this work,
we regard watermarks as noise in the images and employ
a long skip connection to encourage the network to learn
watermark noise directly.
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Fig. 2. The overview of the proposed method DECO. In this work, we first present a Frame-specific Prior Feature Extraction module (FPFE), leveraging
common-sense knowledge and maximizing the exploitation of residual background content. Then, we present the Frame-adaptive Feature Selection Module
(FFSM) designed to incorporate better the FPFE, associated with a temporal backbone for temporal dependency modeling. We detail the sub-modules of FPFE
in Fig. 3.

Fig. 3. The illustration of our IBIP and DBFE sub-module of FPFE. “CFC”
represents the corruption-aware fusion component. The skip-connection of
IBIP is hidden for visual comfort. The details of the KR branch are further
elaborated in Fig. 4.

Specifically, let Xint
t ∈ RH×W×3 represent the intrinsic

background image corresponding to the input image Xt , which
can be computed as follows:

Xint
t = DIBIP(EIBIP([Xt , M∗

t ])) + Xt . (2)

For enabling IBIP to capture the intrinsic background from the
watermarked image Xt , we utilize Gint

t (defined in Eqn. 1) as
the ground truth to supervise the optimization of the model
through the following training loss:

LI B I P =
||M∗

t ⊙ (Xint
t − Gint

t )||1

||M∗
t ||1

+
||(1 − M∗

t ) ⊙ (Xint
t − Gint

t )||1

||1 − M∗
t ||1

, (3)

where || · ||1 refers to the L1 norm function.
Dual-Branch Frame Embedding (DBFE): In the second

stage, we propose DBFE to restore the corrupted regions in the
intrinsic background image. To be specific, we first feed the
intrinsic background image Xint

t with its corresponding mask

Fig. 4. The architecture of our KR branch in DBFE. The first row pre-trains
the codebook and decoder of the network by a reconstruction task, which is
then frozen to restore corruption. The second row restores the background by
retrieving knowledge from the pre-trained codebook using different ways in
the intact and corrupted regions.

M∗
t into the DBFE encoder EDBFE, yielding the feature map

Zint
t = EDBFE([Xint

t , M∗
t ]) ∈ Rh×w×c that is subsequently fed

into the KR and ST branches and the corruption-aware fusion
component for feature restoration.

1) The KR Branch: Inspired by the success of the
super-resolution task demonstrated in [29], which proves that
pre-trained codebooks and decoders can extract and store prior
knowledge from natural images, we utilize two image datasets
to pre-train a VQ-VAE-like [30] network with an efficient
codebook [31]. The codebook, denoted as C = {ĉk}

K
k=1 ⊂ Rc′

,
is a representation dictionary comprising K prototype embed-
dings, which is trained to learn discrete latent representations
for image generation tasks [32]. Thus, leveraging extensive
and diverse scenarios in image datasets, the pre-trained VQ-
VAE-like network can learn rich prior knowledge from various
scenarios for corruption reconstruction. The process of pre-
training stage of this network is shown in Figure 4.

We found that directly mapping features from corrupted
regions to their corresponding intact embeddings in the
codebook for reconstruction presents optimization challenges.
Therefore, we deliberately designed two retrieval strate-
gies to maximize the diversity and relevance of prior
features for the intact and corrupted regions. Specifically,
we retrieve the embeddings from the codebook C in two

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on September 26,2025 at 07:26:46 UTC from IEEE Xplore.  Restrictions apply. 



1196 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

ways: 1) Distance-based retrieval for intact regions, and
2) Classification-based retrieval for corrupted regions. In intact
regions, following [30], for each spatial position on the fea-
ture map Zint

t , we retrieve the nearest embedding ĉk ∈ C
corresponding to the feature vector Z(i j)

t ∈ Zint
t , thus obtain

the embedding map ḞKR as follows,

ḞKR :=

(
arg min

ĉk∈C
||Z(i j)

t − ĉk ||

)
∈ Rh×w×c′

. (4)

This strategy of knowledge retrieval effectively reduces infor-
mation loss in intact regions and ensures that the retrieved
features are contextually aligned with the target frame, con-
tributing to the precise reconstruction of the background.
On the other hand, the classification-based retrieval approach
utilizes categorical priors that are representative of broader
common-sense knowledge. Specifically, to overcome the
optimization challenges in corrupted regions, we simplify
the feature-mapping task into a classification task. Inspired
by [33], we employ a mask-query guided attention transformer
(MQGA-Transformer) to capture the correlations between
corrupted and intact regions and then predict the corresponding
embedding indices of the corrupted regions, reducing the
learning difficulty. Specifically, given the inputs Zint

t and the
downsampled mask M∗

↓
∈ Rh×w×1, we define the specific

MQGA function HMQGA as follows,

HMQGA(Zint
t , M∗

↓
) = so f tmax

(
(Q ⊙ M∗

↓
)K⊤

√
dk

)
V, (5)

where Q = Zint
t WQ , K = Zint

t WK , and V = Zint
t WV ,

with WQ , WK , and WV denoting linear projections, and
dk ∈ R represents the feature dimension. We construct the
MQGA-Transformer block BMQGA by replacing the vanilla
self-attention mechanism with MQGA in the standard trans-
former block [34]. Consequently, the MQGA-Transformer
TMQGA is formed by stacking multiple MQGA-Transformer
blocks BMQGA, which predicts the index of embedding at each
position by the softmax function. The predicted index map
Ï ∈ Rh×w×1 and its corresponding embedding map F̈KR ∈

Rh×w×c′

retrieved from the codebook C can be computed as,

Ï = TMQGA(Zint
t , M∗

↓
), F̈KR = query(Ï), (6)

where query(·) denotes the query function that retrieves the
embedding map F̈KR from codebook C according to the index
map Ï. This approach enables the model to leverage general
patterns and structures, which are particularly beneficial in
scenarios where significant portions of the background are
occluded or damaged by watermarks. Finally, we obtain the
embedding map FKR ∈ Rh×w×c′

by combining the two
embedding maps above, and feed it into the decoder DKR to
reconstruct the background image YKR,

FKR = ḞKR ⊙ (1 − M∗

↓
) + F̈KR ⊙ M∗

↓
, (7)

YKR = DKR(FKR), (8)

where the subscript t of YKR is hidden for brevity.
By integrating these two complementary strategies, the KR
branch ensures both specificity and generalizability in feature
retrieval, thereby enhancing the robustness of the restoration

process. The following loss function is exploited to optimize
the KR branch:

LK R = ||X∗
t − YKR||1 + λTMQGALTMQGA + λadvLadv,

LTMQGA =

∑
(i, j)

−I(i j)
GT log(Ï(i j)

),

Ladv =

∑
−E[DP(YKR)], (9)

where X∗
t represents the ground truth of the background image.

Additionally, the ground truth of index map IGT is obtained by
encoding X∗

t with EKR and utilizing its feature map to retrieve
the embeddings from the pre-trained codebook C, which is
used to supervise the MQGA-Transformer. Similar to [35],
Ladv is an adversarial loss measured by a PatchGAN [35]
discriminator DP with hinge loss to generate realistic output.
λTMQGA and λadv are balanced weights that are set to 0.5 and
0.01, respectively.

2) The ST Branch: For residual background features
restoration, we employ Restormer blocks [36] to construct
the straightforward translation (ST) branch within our DBFE
sub-module. Benefiting from the remarkable performance of
Restormer [36] in feature restoration, our ST branch is capable
of effectively restoring residual background features. In this
work, we construct the ST branch by stacking six Restormer
blocks and denote it as RST. Then, upon inputting the encoded
feature Zint

t into the ST branch, the restored feature FST can
be derived as follows,

FST = RST(Zint
t ). (10)

This output feature FST is then processed by a reconstruction
decoder, denoted as DST, to produce the reconstructed image,
denoted as YST = DST(FST), where the subscript t of YST is
also hidden for brevity. To supervise the reconstructed image
YST with its corresponding ground truth X∗

t , we employ the
loss function LST , which is represented as follows,

LST = ||X∗
t − YST||1 + λperc · Lperc,

Lperc =

∑
v∈{1,2,3}

||φv
VGG(G) − φv

VGG(YST)||1. (11)

Here, we enhance the visual quality of the output YST by the
perceptual loss Lperc [37] with a balance weight λperc set to
0.25, where φv

VGG(·) indicates the activation map at the v-th
layer of VGG16 [38].

3) The Corruption-Aware Fusion Component: Because
watermarks with different opacity levels lead to different
corruption degrees, it is necessary to tailor the restoration
for different levels of corruption. For watermarks with low
opacity, using features directly restored from the ST branch
can avoid quantization loss. Conversely, direct translation may
lead to incorrect feature recovery for severe corruption, which
can be avoided by the features from KR branches. We model
the correlation between corrupted and intact regions to predict
the degree of corruption, thereby achieving the adaptive feature
fusion from different branches to adapt to the watermarks with
different opacity.

Specifically, given the input Zint
t , we leverage the MQGA

function to model the correlation between corrupted and intact
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regions and generate the similarity map, then determine the
adaptive fusion weights by refining the similarity map for
merge features from the two branches. This process can be
computed as follows:

S = HMQGA(Zint
t , M∗

↓
),

[w1, w2] = Spli t(GELU(Conv1×1(Dconv3×3(S))))), (12)

where Spli t(·) represents the splitting function along the
channel dimension. Therefore, we can obtain the final fusion
feature F̂ by the predicted fusion weights for reconstruction
as follows,

F̂ = Conv1×1(FKR ⊙ w1 + FST ⊙ w2). (13)

Afterwards, we feed F̂ into the fusion reconstruction decoder
Df, and then yield its reconstructed image, i.e. Y f usion =

Df(F̂). Similarly, the reconstruction loss can be subsequently
constructed to optimize this component as follows,

L f usion = ||X∗
t − Y f usion||1. (14)

As stated above, we train the DBFE sub-module by compos-
ing the three loss functions LK R , LST , and L f usion of three
parts in an end-to-end manner as follows,

LDB F E = LK R + LST + L f usion . (15)

C. The DECO Framework

In this section, we introduce the Frame-adaptive Feature
Selection Module (FFSM) and the temporal modeling back-
bone, respectively, and then summarize the whole framework
we proposed. We begin by presenting the FFSM tailored
for enhancing the integration with the FPFE module. Next,
we adopt MSVT [3], a leading transformer backbone for video
inpainting, as our temporal modeling backbone to ensure tem-
poral consistency due to its effective capabilities in temporal
information aggregation and propagation. Finally, we derive
the training objective of the whole DECO framework.

1) Frame-Adaptive Feature Selection Module (FFSM):
Variations in watermark opacity significantly impact the
performance of removing visible watermarks from videos.
A naive idea is to grade the watermark opacity and then
use adaptive model weights for different opacity. However,
the diversity of watermarks and backgrounds makes directly
grading watermark opacity a challenging task with large ambi-
guity. This is because watermarks of the same opacity level
may have different effects on light-colored and dark-colored
backgrounds. It can be argued that the varying degrees of
corruption caused by different watermark opacities necessitate
distinct prior features. Therefore, to address this, we develop a
Frame-adaptive Feature Selection Module, designed to deter-
mine the amount of prior features to be applied for feature
restoration. As shown in Figure 2, by considering the corrupted
information extracted from the feature map in IBIP as an indi-
cator to adjust the prior features, we can achieve customized
restoration tailored to varying degrees of corruption.

To be specific, we utilize the encoded feature Zt =

EIBIP([Xt , M∗
t ]) ∈ Rh×w×c from IBIP as input to capture the

Algorithm 1 The Training Procedure of DECO

correlation C between the corrupted and intact regions. Then
we refine the correlation to generate the gate weight as follows,

C = BMQGA(Zt , M∗

↓
), (16)

wg = GELU(BAConv(BAConv(C)) + C), (17)

where BAConv(·) = Conv1×1(Dconv3×3(GELU(BN(·)))),
with BN(·) denoting batch normalization [39] and BMQGA(·)

representing the MQGA-Transformer block. Thus, the tailored
feature map F′ is obtained by,

Fg = Conv1×1(F̂ ⊙ wg), (18)
F′

= F + Fg. (19)

2) Temporal Backbone: Accurate temporal alignment is
crucial for temporal dependency across time series. Given
the inherent temporal redundancy in video sequences, we can
leverage this redundancy by aligning inter-frame features to
enhance visual quality. In this work, we adopt the MSVT
backbone from [3] as our temporal backbone for temporal
alignment in video processing. It aligns features within a
sliding window sequence and utilizes mask-guided sparse
attention to dissect frame sequences into sub-window tokens
for local and global alignment. This comprehensive approach
ensures spatial and temporal coherence, significantly enhanc-
ing video restoration. The excellent blend of computational
efficiency and performance makes efficient feature aggregation
and propagation possible.

3) Training Procedure for DECO: Upon constructing our
full DECO, following [3], we use L1 as the reconstruction loss
and an adversarial loss [40] for the generation of high-quality
and realistic content in training the temporal modeling back-
bone. To be specific, we supervise the output Y = {Yt }

T
t=1 by

the ground truth video X∗
= {X∗

t }
T
t=1, the full model can be

optimized using the loss function L f ull as follows,

L f ull =

T∑
t=1

||Yt − X∗
t ||1 + λadvLadv,

Ladv =

T∑
t=1

−E[DTP(Yt )], (20)

where λadv is set to 0.01 and DTP denotes the T-PatchGAN
[40] discriminator. The whole training procedure of DECO is
described in Algorithm 1.
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TABLE I
QUANTITATIVE COMPARISONS BETWEEN OUR PROPOSED DECO AND PREVIOUS SOTA METHODS ON YOUTUBE-VOS AND DAVIS. HERE, ↑ DENOTES

HIGHER IS BETTER AND ↓ INDICATES LOWER IS BETTER. THE RESULTS WITH THE BEST PERFORMANCE ARE MARKED IN BOLD

Fig. 5. Two examples of our dataset. From left to right are the original
background, watermark, watermarked image, and the corresponding coarse
mask.

IV. EXPERIMENTS

A. Experimental Setups

1) Datasets: To empower IBIP capable of erasing water-
mark patterns from the backgrounds and enrich DBFE with
extensive and diverse prior knowledge from extensive sce-
narios, we utilized two image datasets to train the IBIP and
DBFE sub-modules. CLWD [10] is a popular watermark image
dataset, comprising 60,000 images with 160 different colored
watermarks for training, and 10,000 images with 40 water-
marks for testing. Further, we propose an image dataset called
Images with Large-Area Watermarks (ILAW). The training set
of ILAW comprises 60,000 images of size 256×256, featuring
1,087 distinct colored watermarks, while its testing set consists
of 10,000 images sized 512 × 512, incorporating 160 water-
marks. The background images are sourced from the Places365
Challenge dataset [42], whereas the watermarks are collected
from the Internet. The opacity level of the watermarks is set
within the range of [0.3, 1.0]. We generate the watermarked
image by blending the background image with a watermark
under the guidance of a binary mask and the opacity of
the watermark. Compared to CLWD, ILAW offers a greater
variety of watermark patterns and larger sizes, enhancing the
model’s generalization capability to handle different types of
watermarks. More details of ILAW are shown in Table II,
which suggests that ILAW is a more difficult dataset.

To assess the effectiveness of DECO in addressing the task
of visible video watermark removal (VVWR) task, we tested it
on the YouTube-VOS [21] and DAVIS [22] datasets. YouTube-
VOS includes 3,471 training clips, 474 for validation, and

TABLE II
STATISTICAL DIFFERENCES IN EVALUATION METRICS AND DATASET

ATTRIBUTES W.R.T. WATERMARKS ON BOTH ILAW AND CLWD. THE
LEFT HALF DISPLAYS THE AVERAGE METRICS OBTAINED FROM

DIRECT COMPARISONS BETWEEN THE GIVEN WATERMARKED
IMAGES AND THEIR ORIGINAL BACKGROUND IMAGES FOR

EACH DATASET. “AP” AND “OPACITY” IN THE RIGHT
HALF REPRESENT THE AVERAGE PROPORTION OF

WATERMARK AREAS ACROSS ALL IMAGES AND
THE AVERAGE OPACITY LEVEL OF THESE

WATERMARKS, RESPECTIVELY

508 for testing; DAVIS contains 60 training and 90 testing
videos. Following [3] and [14], we trained our DECO model
using 3,471 videos from the YouTube-VOS training set as
the original background videos. Additionally, we incorporated
1,087 watermarks from the ILAW training set, which include
both simple single-color designs and complex nested patterns.
Each watermark was randomly selected and applied with a
random opacity within [0.1, 1.0] to blend with the original
background video. We randomly generate stationary and mov-
ing watermarked videos with a probability of 50% and the
corresponding coarse masks are created through dilation and
edge disturbance, as illustrated in Figure 5. For stationary
watermarks, we randomly choose a location within the video
to composite them. For moving watermarks, a trajectory of
movement that matches the length of the video clip is ran-
domly created, and the watermarks are subsequently blended
into the video frame-by-frame. For evaluation, we tested
on 508 YouTube-VOS videos and 50 out of 90 DAVIS
testing videos, using 100 colored watermarks: 40 selected from
CLWD [10] and 60 randomly chosen from 160 in ILAW. The
data synthesis process is consistent with training to ensure
comparability. All videos are resized to 432 × 240 for both
training and evaluation.

2) Training Details: We employ the Adam optimizer [43]
to train all the model components. The temporal backbone
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trains with a batch size of 4 and an initial learning rate
of 0.0001, running for 800k iterations. Additionally, we set
the local sequence length to 10 and use horizontal flips for
data augmentation. For the framework architectures, we use
4 blocks for the MQGA-Transformer and 8 MSVT [3] blocks
for the temporal backbone.

3) Evaluation Metrics: Similar to [2] and [3], we employ
peak signal-to-noise ratio (PSNR), structural similarity (SSIM)
[44], RMSEw, and video-based Fréchet inception distance
(VFID) [45] as evaluation metrics to assess the performance
of visible video watermark removal approaches. RMSEw

denotes the root-mean-square error metric applied to the
watermarked region. PSNR, SSIM, and RMSEw are used
to measure low-level similarity, while VFID is employed
to gauge both high-level perceptual quality and temporal
consistency between the output and the ground truth.

4) Comparison Methods: We compared DECO with 6 state-
of-the-art (SOTA) video methods, including Shift-Net [2],
RVRT [12], and EMVD [13] for video restoration, as well
as FuseFormer [41], E2FGVI [14], and ProPainter [3] for
video inpainting. Meanwhile, we also compared DECO with
the SOTA image watermark removal methods, including
WDNet [10], DENet [5], SplitNet [4], and SLBR [1]. Re-
implementations of all algorithms are conducted following
their default experimental setups.

B. Comparisons With the State-of-the-Arts

1) Quantitative Evaluation: Table I summarizes the DECO
framework’s quantitative performance against existing SOTA
methods on YouTube-VOS and DAVIS. Our approach notably
surpasses others in key metrics for video restoration and
inpainting. Specifically, DECO improves PSNR by 3.67 and
2.78, and SSIM by 0.0171 and 0.0143 on YouTube-VOS
and DAVIS, respectively, compared to the Shift-Net baseline.
On the VFID metric, DECO exceeds ProPainter and Shift-
Net, reducing scores to 0.050 and 0.117 from 0.107 and
0.176 respectively, showcasing its superiority and general-
izability in watermark removal while maintaining temporal
consistency. Due to the large variation of watermark shape
and appearance, video restoration methods like EMVD and
RVRT which merely rely on the network’s content recovery
capability perform worse than video inpainting methods such
as FuseFormer and E2FGVI, which employ binary masks for
specifying the location of watermarks. To demonstrate the
necessity and superiority of the video watermark removal
method, we process videos as sequences of watermarked
images, applying established image watermark removal meth-
ods to each frame individually. We report the metric results of
these methods in Table III. Although these methods can pro-
duce relatively high-quality background reconstruction images,
they yield high VFID scores, indicating inferior temporal con-
sistency due to the inability to exploit temporal information.
Our method outperforms these methods that are specifically
designed to cope with watermark removal on all evaluation
metrics.

2) Qualitative Evaluation: Figure 7 presents our qualitative
comparisons with existing video restoration and inpainting

TABLE III
QUANTITATIVE COMPARISONS WITH SOTA IMAGE WATERMARK

REMOVAL MODELS ON DAVIS DATASETS

Fig. 6. Qualitative comparisons of our proposed DECO with other SOTA
watermark removal methods. The inability of image models to model temporal
information leads to temporally inconsistent results.

methods. The results of our method have superior visual
quality in watermark removal and minimized artifact and blur
issues. Existing video restoration methods, including RVRT
and EMVD often fail to completely eliminate watermarks
due to significant damage, whereas existing video inpainting
methods including FuseFormer, E2FGVI, and ProPainter, suf-
fer from loss of important background content and fill the
corrupted regions with other artifacts. In contrast, our DECO
approach addresses these challenges, providing a balanced
solution for watermark removal and video restoration. Shift-
Net, while competitive produces unwanted colored noise in
the second to sixth examples. Besides, Figure 6 presents a
qualitative comparison between our method and three other
competitive image watermark removal methods. We observed
that their results exhibited unpleasant flickering and defi-
cient content coherence. These approaches fail to address the
challenges of moving watermarks and generate temporally
consistent results caused by the inability to model temporal
information. For instance, SplitNet performs well on the first
and third frames but leaves watermark traces in the second
frame.

3) User Study: We conduct a user study to compare the
effectiveness of removing stationary and moving video water-
marks. We select the best video restoration method, Shift-Net
[2]), and the best video inpainting method, ProPainter [3], for
comparison. Fifteen volunteers are invited to grade 30 videos
randomly chosen from the YouTube-VOS and DAVIS test
sets. Each test sample consists of a quadruple: the input
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Fig. 7. Qualitative comparisons between our proposed DECO and other previous SOTA methods. Best viewed zoomed in.

TABLE IV
USER STUDY RESULTS

Fig. 8. Comparison of model parameters and GFLOPs of DECO and
other SOTA methods. DECO outperforms other methods while maintaining
efficiency.

watermarked video, the output of our method, and the outputs
of two comparison methods, with the video orders randomly
shuffled. Volunteers rank the results of the three methods based
on the video’s visual quality, considering criteria such as back-
ground content quality, temporal consistency, and presence of
noise and artifacts. As shown in Table IV, we count the number
of videos corresponding to each ranking for each method,
which suggests that the volunteers prefer results of our method
on majority of test samples.

4) Efficiency Comparison: Figure 8 shows the number
of model parameters and GFLOPs for all video methods.

Fig. 9. Qualitative comparisons of our proposed DECO with different
combination types of model components. “TB”: the temporal backbone.
“ALL”: TB+IBIP+DBFE+FFSM. Zoom in for a better view.

The computationally intensive of our method is slightly
less than Shift-Net but achieving better background recovery
performance.

C. Ablation Analysis

To provide deeper insights into the effectiveness of each
component and the training strategy of the proposed DECO
method, we conduct extensive ablation experiments on the
DAVIS dataset. The results of these ablation experiments are
summarized in Table V and VI, Figure 9 and 10.

1) Effect of IBIP and DBFE of the FPFE Module: To better
understand the effectiveness of the FPFE module, we investi-
gate its sub-modules, IBIP and DBFE, with findings detailed
in Table V and Figure 9. Table V shows that using IBIP
alone (row M-(2) vs. M-(1)) diminishes background recovery
quality. The possible reason is that the predictions of IBIP
disturbs the appropriate modelling of temporal dependencies.
Conversely, integrating the backbone with frame-wise prior
features from DBFE (row M-(3) vs. M-(1)) mitigates these
challenges, enhancing performance on both PSNR and SSIM
metrics. Additionally, removing watermark interference via
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TABLE V
ABLATION STUDY RESULTS OF THE PROPOSED DECO WITH DIFFERENT

COMBINATIONS OF COMPONENTS ON DAVIS DATASET

TABLE VI
ABLATION STUDY RESULTS OF THE PROPOSED DECO WITH DIFFERENT

TYPES OF TEMPORAL BACKBONE ON DAVIS DATASET

IBIP (row M-(3) vs. M-(4)) and incorporating DBFE’s prior
information (row M-(4) vs. M-(2)) significantly improves
the performance, indicating that image-derived information
can boost background recovery quality. Figure 9 provides a
comprehensive qualitative comparison of these components.
As indicated in the red box, the incorporation of the DBFE
(c) helps improve the background restoration performance, and
the adoption of IBIP (d) contributes to more accurate recovery
results.

2) Effect of FFSM: Table V and Figure 9 showcase the
importance of the FFSM in our DECO, highlighting both
the quantitative and qualitative impacts of FFSM. Specifically,
the comparison in Table V (row M-(5) vs. M-(4)) evidences
a performance drop without FFSM, underscoring its critical
role. Furthermore, in subfigure (e) of Figure 9, the addition
of FFSM helps clarify the building edges. The reason is that
FFSM can enhance the robustness across diverse watermarks.
Additionally, Figure 10 shows DECO’s capability in handling
watermarks of varying opacities, mainly owing to the adoption
of FFSM.

3) Effect of the Temporal Backbone: We assess the gen-
erality of DECO by substituting the MSVT [3] backbone
with FuseFormer [41]. Table VI reveals negligible perfor-
mance drops after replacing MSVT with FuseFormer. This
demonstrates DECO’s compatibility with various temporal
backbones, and underscores the versatility and generality of
DECO.

4) Effect of Training Strategy: To further comprehend the
proposed DECO’s design and training strategies, we conduct
more ablation studies with five variants of DECO. The results
are presented in Table VII. The results suggest that the
enhancement achieved by our proposed method stems not from
an increase in model parameters, but from the specialized
design of each module.

To validate the necessity of independently pretraining IBIP
and DBFE (as outlined in Line 2 and Line 3 of Algorithm 1),
we initially train the entire model, including IBIP and DBFE,
from scratch in an end-to-end manner. The experimental result
in row M-(1) of Table VII indicates a significant performance

Fig. 10. Qualitative comparisons of our proposed DECO in handling
video watermarks with different opacity levels. “Low”, “Mid” and “High”
correspond to low, middle, and high levels of watermark opacity, respectively,
with their associated opacity levels, α, ranging within [0.1, 0.25], [0.45, 0.65],
and [0.9, 0.95].

Fig. 11. Two failure cases. The key regions are zoomed in for better
illustration.

decline. This decline is probably due to the absence of targeted
supervision for IBIP and DBFE during training, which hinders
the effective extraction of prior features needed to assist the
temporal backbone.

To further verify the necessity of separately pretraining
IBIP and DBFE, we combine their pretraining processes by
pretraining the FPFE module on both the CLWD and ILAW
datasets end-to-end. The experimental results, shown in row
M-(3) of Table VII, exhibit worse performance compared to
row M-(6). This may be due to the joint pretraining strategy’s
inability to make IBIP focus on erasing watermark patterns
and predicting intrinsic background images, thereby adversely
impacting the performance of the temporal backbone.

To emphasize the importance of pretraining IBIP and DBFE
on the CLWD and ILAW datasets (as outlined in Line 2
and Line 3 of Algorithm 1), we conduct an experiment
where IBIP and DBFE are pretrained directly using frame
images from the video datasets. The result in row M-(2) of
Table VII indicates inferior performance compared to M-(6).
This decline is attributed to the limited scene diversity in
video datasets, which restricts the ability of IBIP and DBFE to
learn sufficient prior knowledge, while the CLWD and ILAW
datasets have more diverse scenes.

To validate the rationale behind the dual-branch design
of the KR and ST branches, we conducted experiments by
individually removing each branch from DBFE. The results,
shown in rows M-(4) and M-(5) of Table VII, indicate cer-
tain degrees of performance reduction after removing either
branch. Notably, the removal of the KR branch results in a
more significant decrease, suggesting that the KR branch plays
a more critical role in frame restoration.

D. Limitation and Discussion

Failure Cases: In Figure 11, we show two failure cases
of restorations. The left side of Figure 11 shows that when
watermarks feature nested patterns with varying opacities,
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TABLE VII
ABLATION STUDY RESULTS OF TRAINING STRATEGY OF DECO.

“PRETRAIN.” REPRESENTS THE PRETRAINING OF IBIP AND DBFE.
“IMG. DATASET” REPRESENTS THE CLWD AND ILAW DATASETS

FOR THE PRETRAINING OF IBIP AND DBFE. “INDEP.”
REPRESENTS INDEPENDENTLY PRETRAINING IBIP AND

DBFE OF FPFE MODULE. “KR” AND “ST” REPRESENT
THE KR AND ST BRANCHES OF DBFE IN FPFE,

RESPECTIVELY

particularly in the presence of moving watermarks, the
restoration performance deteriorates. Additionally, when the
background texture is intricate, the model may struggle to
restore high-frequency details, leading to blurring and artifacts,
as shown on the right side of Figure 11. This shows that these
situations are still challenging for video watermark removal.
Furthermore, the experimental results indicate that watermarks
with the following characteristics are more resistant to attacks:
complex patterns, parts with varying opacities, and movement,
which offers insights for the design and application of reliable
watermarks.

V. CONCLUSION

In this paper, we propose a novel framework named DECO
to address the challenge of visible video watermark removal.
DECO effectively extracts frame-wise prior features by lever-
aging common-sense knowledge and residual background
information, while accurately modeling the temporal depen-
dencies necessary for video content restoration. Extensive
experiments and comprehensive ablation studies demonstrated
the superiority and generality of DECO. Our method not
only overcomes the limitations of existing video restoration
techniques in handling complex watermark noise but also
significantly improves the quality of the recovered image
content. This innovation and advancement have the potential
to evaluate the robustness and security of watermarks, offering
important practical application value. Nonetheless, our study
has certain limitations. For example, watermarks consisting of
nested patterns with varying opacities have not been addressed.
These limitations indicate areas for improvement and further
investigation, which we plan to pursue in the future.
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