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ABSTRACT

In Open Set Domain Adaptation (OSDA), large amounts of
target samples are drawn from the implicit categories that
never appear in the source domain. Due to the lack of their
specific belonging, existing methods indiscriminately regard
them as a single class “unknown”. We challenge this broadly-
adopted practice that may arouse unexpected detrimental ef-
fects because the decision boundaries between the implicit
categories have been fully ignored. Instead, we propose Self-
supervised Class-Discovering Adapter (SCDA) that attempts
to achieve OSDA by gradually discovering those implicit
classes, then incorporating them to restructure the classifier
and update the domain-adaptive features iteratively. SCDA
performs two alternate steps to achieve implicit class discov-
ery and self-supervised OSDA, respectively. By jointly op-
timizing for two tasks, SCDA achieves the state-of-the-art in
OSDA and shows a competitive performance to unearth the
implicit target classes.

Index Terms— Domain Adaptation, Open Set Recogni-
tion, Class Discovery, Unsupervised Learning

1. INTRODUCTION

Unsupervised Domain Adaptation (UDA) methods aim to
transfer the knowledge from a labeled source domain to clas-
sify unlabeled samples in a target domain by minimizing the
cross-domain distribution discrepancy. Despite their impres-
sive progress, UDA methods usually operate under the close-
set assumption, i.e., the source categories and the target cate-
gories should be exactly identical. However, this assumption
is probably violated in the real world since target samples are
collected from diverse classes even beyond source categories.
Therefore, Open Set Domain Adaptation (OSDA) [1, 2] has
attracted increasing attention, where the target domain con-
tain implicit classes that never appear in the source domain.

Due to the absence of both the corresponding categories
for target samples and the number for implicit classes, ex-
isting OSDA methods regard all target samples of implicit

* Liang Lin is the corresponding author. This work is supported by
NSFC (No.62006253, No.61976250, No.U1811463) and Guangdong Basic
and Applied Basic Research Foundation under Grant No.2020B1515020048.

Fig. 1: Existing OSDA methods unitedly treat implicit classes as a
single negative class “unknown”. Our work challenges this broadly-
accepted practice, since ignoring decision boundaries between im-
plicit classes results in all implicit-class features converging together
due to the cluster assumption, which further causes a detrimental ef-
fect. For instance, suppose husky, lion denote the implicit classes
and wolf, deer denote the known classes. Given a known class sim-
ilar with an implicit class, e.g., wolf v.s. husky, the wolf target fea-
tures could be attracted to the feature field of lion since husky and
wolf features are hard to distinguish, yet husky and lion tend to con-
verge to the identical center in the “unknown”.

classes as a single class “unknown”. This practice is straight-
forward but probably problematic. Specifically, existing
OSDA methods [3–5] aim to minimize the cross-entropy
losses of known classes and the “unknown” class. Under the
cluster assumption [6], the features of unknown target sam-
ples are optimized to converge to an identical center due to the
shared labels. Whereas, since their intrinsic structure and di-
versity have been ignored, the convergence is hard to achieve
in practice. Especially when unknown target samples con-
tain more categories, the features of unknown samples will
be more probably mixed up with the known-class features
around the decision boundaries between known classes and
the “unknown” class (Figure.1.b), hence, breeding the poten-
tial performance drop.

In this paper, we focus on a new methodology to achieve
OSDA from another point of view. Instead of fabricating the
“unknown”, we aim to transfer the source knowledge along
with discovering implicit classes [7] in unknown target sam-
ples. The process automatically estimates the number of im-
plicit classes and how they are distributed, then leverages
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Fig. 2: An overview of SCDA. SCDA starts from a pre-training to obtain unknown target samples. Then SCDA designs an algorithm to
discover the implicit classes in the unknown target samples; Afterwards, SCDA restructures the classifier and updates it to recognize them.

this self-supervised information to progressively update the
OSDA model to improve the performance of OSDA.

To this end, we propose Self-supervised Class-Discovering
Adapter (SCDA). After an adversarial pre-training, SCDA
separates unknown target samples roughly. Unlike previous
OSDA methods that regard all unknown target samples as the
“unknown” and neglect their inter-class structure, SCDA de-
signs an unsupervised algorithm, i.e., implicit class discovery,
to estimate the number of the implicit classes and group the
unknown samples belonging to each implicit class. Based on
the results of implicit class discovery, SCDA restructures and
updates the model to push features of different classes away
from each other to reduce the risk of confusing them. Our
contributions are summarized in two aspects:

• We consider OSDA from a new point of view: Instead of
regarding target samples beyond categories in the source
domains as the “unknown” class, we attempt to discover
their structure along with the domain adaption.

• We propose Self-supervised Class-Discovering Adapter
(SCDA) which combines discovering the implicit classes
and learning domain-invariant features in a framework.

• Extensive experiments on three OSDA benchmarks are con-
ducted to evaluate SCDA. The results evidence the superi-
ority of SCDA on both OSDA and implicit class discovery.

2. RELATED WORK

Close-set domain adaptation (UDA). Assuming labeled
source and the unlabeled target domains share their label sets,
closed-set UDA methods aim at reducing the domain shift
across the source and target domains. Most existing algo-
rithms are based on either domain discrepancy matching or
adversarial learning. Under this assumption, [8] proposes
multiple source domain adaptation and [9] proposes blending-
target domain adaptation. UDA is also applied in other visual
task, like scene parsing [10] and segmentation [11].
Open-set domain adaptation (OSDA). OSDA learners cat-
egorize target samples into the known classes or unknown.
OSBP [2] learns representations to separate unknown target

samples through an adversarial method. STA [12] trains a bi-
nary classifier to perform fine separation on all target samples
and weight each target sample to alleviate negative-transfer
caused by unknown target samples. Besides, there are a few
works, e.g., TIM [4], SHOT [3], JPOT [5] and PGL [13].
However, all these approaches simply assign target samples
beyond the label-set of source classes to the unknown.
Novel-class discovery. Provided the labeled data from related
but different classes, novel-class discovery aims to find novel
classes in unlabeled data. However, existing methods, e.g.,
DTC [14] and [7], assume that the labeled and unlabeled data
are drawn from identical distribution and non-overlapping
classes. They can not be directly adopted for OSDA, since the
domain shift between the labeled and unobserved data would
incur a severe performance degeneration.

3. METHODOLOGY

3.1. Problem Setting
Suppose ns labeled images S = (xs

i ,y
s
i )

ns

i=1 are drawn
from a source density PS,CS (x,y) and nt unlabeled images
T = (xt

i)
nt

i=1 are drawn from a target density PT ,CS (x) =∫
PT ,CS (x,y)dy. CS denotes the set of the source classes,
CT denotes that of the target, and CT /CS denotes the implicit
classes in T . In OSDA, due to CT /CS 6= ∅, we are required
to classify target samples of |CS | known classes correctly (|A|
indicates the number of members in A) and simultaneously
reject the unknown target samples belonging to CT /CS .

3.2. Overall Architecture
SCDA can be flexibly deployed to existing neural network ar-
chitectures. As shown in Figure.2, the architecture of SCDA
consists of two modules: a feature extractor F proposed to
learn class-aware domain-invariant features; a dynamically
restructuring classifier C proposed to classify unlabeled tar-
get samples into the known classes CS and the implicit classes
CT . The output dimension of C is initialized as |CS | + 1,
where the (|CS | + 1)′-th class indicates the unknown target
samples. It is worth noting that, according to the results of
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implicit class discovery, the output dimension of C alters to
|CS |+ k∗t , where k∗ refers to the newly discovered classes.

3.3. Self-supervised Class-Discovering Adapter
The pipeline of SCDA mainly consists of two alternate steps,
i.e., implicit class discovery (Sec.3.3.2) and self-supervised
OSDA (Sec.3.3.3). Briefly, SCDA employs a pre-training to
roughly separate the unknown target samples. Then, it alter-
nately performs two steps to discover the implicit classes in
CT /CS and further improve the performance of OSDA based
on the results of discovery. First, SCDA discovers the implicit
classes in CT /CS by estimating their number and constructing
the pseudo implicit classes through a clustering assignment.
Then based on the pseudo implicit classes, SCDA restructures
the C to recognize newly discovered classes; SCDA trains C
along with F to diminish the domain gap so that the model
can be generalized to classify the target samples in implicit
classes. SCDA repeatedly executes two alternate steps until
the maximal epoch is reached. We elaborate the pre-training
and the two steps in the following three subsections. The
pipeline of SCDA is found in Supplementary Algorithm.2.

3.3.1. Pre-training
Due to the absence of target samples’ labels, SCDA utilizes
adversarial learning in this pre-training step to preliminarily
separate the unknown target samples. In brief, C is trained
to confuse the known and unknown target samples while F is
trained oppositely to distinguish them. We utilize the correla-
tion confusion derived from [15] to implement the adversarial
training. Specifically, given a mini-batch of m target samples,
each element in a class correlation matrix R presents as:

Ri,j= ŷ>i,·

m
(
1 + exp

(
−H(x

(t)
i ;F,C)

))
∑m

i′=1

(
1 + exp

(
−H(x

(t)
i′ ;F,C)

)) ŷj,· (1)

where ŷj,· represents the softmax output for the class-j pre-
dictionover m target examples in the mini-batch and H (Eq.7)
is a measure to increase the weight of the reliable examples.

The j′-th column in R measures the correlation between
the j′-th class and other classes when C classifies a mini-
batch of samples. The higher Rj,j′ implies that C will more
probably classify the samples drawn from the j-th class to the
j′-th class. So we can adjust the value of R between known
and unknown classes to cause confusion. To be specific, after
normalizing R by the sum of each row, we obtain R̂ where the
summation over each row is 1. Then we optimize the value of
R̂j,|CS |+1 to 0.5 which means the probability that C classifies
samples into the unknown class or j′-th known class is equal,
i.e., C can not distinguish the known and unknown samples.
While, we train F in the opposite direction by inserting a re-
versed gradient layer [16] between C and F . The adversarial
learning loss is defined as:

Ladv = E(x)∼T Lbce(
1

|CS |

|CS |∑
j=1

R̂j,|CS |+1,
1

2
) (2)

Algorithm 1 Implicit Class Discovery in Sec.3.3.2
Input: Target dataset T ; pre-trained feature extractor F and
classifier C; max implicit classes number kmax.
Output: The estimation number k∗ of implicit classes;
pseudo-labeled known target data T̂kn; pseudo-labeled newly
discovered target data {T̂i}k

∗

i=1.
1: Compute the entropy for xt ∼ T by Eq. 7. Sort xt

based on their entropies. Select samples according to the
entropy to build T̂kn with pseudo labels ŷt and T̂im.

2: Extract feature of T̂kn and T̂im using F .
3: For 0 ≤ k ≤ kmax do
4: Run k-means++ on the extracted feature with k clusters.
5: Compute CA for T̂kn and SSE for T̂kn ∪ T̂im.
6: End for
7: Let k̂=(k∗CA+k∗elbow)/2. k∗CA is the value of k maximizes

CA. k∗elbow is generated by the elbow method.
8: Let k∗=k̂−|CS |. Run k-means++ on the features of T̂im to

obtain k∗ clusters {T̂i}k
∗

i=1. Categorize T̂im into {T̂i}k
∗

i=1

with pseudo labels.
9: Return k∗=|CO|; T̂kn; {T̂i}k

∗

i=1

Simultaneously, provided with source labeled data S, we
have a standard cross-entropy loss Ls to correctly categorize
the known classes in CS :

Ls = − E(x,y)∼S yT log C
(
F (x)

)
(3)

Besides, to alleviate the cross-known-class confusion
caused by domain shift, we optimize Lkcc (Eq.4). It is worth
noting that, Lkcc does not punish the confusion to CT /CS ,
leading to the cross-domain features only aligned on CS .

Lkcc = E(x)∼T
1

|CS |

|CS |∑
j=1

|CS |∑
j′ 6=j

R̂j,j′ (4)

Combing the above items, the pre-train objective is:
min
F

Ls − Ladv + Lkcc (5)

min
C

Ls + Ladv + Lkcc (6)

After preparation, SCDA alternately runs two steps to
achieve implicit class discovery and self-supervised OSDA.

3.3.2. Implicit class discovery
In this step, SCDA attempts to determine the number of im-
plicit classes in T with the help of the labeled data. However,
if we directly use the labeled source data, the domain shift
between source and target domain would affect the accuracy
of the estimation. Hence, SCDA first constructs two high-
confident target candidates sets T̂kn and T̂im with pseudo la-
bels, indicating target samples in known classes and implicit
classes, respectively. Then SCDA estimates |CT /CS | by eval-
uating the clustering consistency between T̂kn and T̂im, and
assigns pseudo labels to the newly discovered classes. This
step has been summarized in Algorithm.1.
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High-confident target candidates. Instead of analyz-
ing whole T , we select target candidates with higher cross-
domain classification consistency, because the target samples
with higher consistency are more reliable. The cross-domain
classification consistency can be measured by Eq.7. The
lower entropy to classify target samples with a source clas-
sifier implies the higher consistency.

H(xt;F,C) = −
|CS |+k∗∑

i=1

Ci(F (x(t))) logCi(F (x(t))) (7)

where Ci(F (x(t))) denotes the softmax value of xt with re-
spect to the i′-th class; k∗=CD denotes the optimal estimation
of |CT /CS | in the previous epoch (k∗=1 in the initialization).
CD indicates the newly discovered target classes and the goal
of SCDA is to iteratively update CD to approximate CT /CS .

Specifically, for each class in CS , SCDA picks out the
samples in with T the corresponding pseudo label and selects
the first half of them with low entropies to construct the target
candidate subset of known classes T̂kn. Similarly, as for those
in CD, SCDA also selects the half of them to construct the
target candidate subset of implicit classes T̂im. Obviously, the
domain gap between T̂kn and T̂im has been erased, and thus,
SCDA executes a dynamical cluster algorithm which splits
the features of T̂kn ∪ T̂im by varying the clustering number k
then compares their clustering consistency value to obtain an
optimal k as the estimation of |CT /CS |.

Criteria for the clustering consistency. We employ two
criteria to evaluate the clustering consistency value. The first
criterion refers to the elbow method widely adopted in clus-
tering analysis. It plots the sum of squared error (SSE) as a
function of k to search the elbow point. Specifically, we take
the kneedle algorithm [17] to locate the point with the ideal
cluster number k∗elbow. The elbow method balances the diver-
sity and the granularity of the clusters, but it can not reflect
the prior knowledge of CS .

Hence, as a supplement, we compute the clustering ac-
curacy (Eq.8) on T̂kn to measure the clustering quality. CA
measures the clustering accuracy between the clustering as-
signment and the pseudo label over T̂kn. Higher CA indicates
the clustering results are more consistent with CS in the target
domain. We select the k∗CA with the highest CA.

kCA = argmax
k∈{1+|CS |,··· ,kmax+|CS |}

1

n

n∑
i=1

1ŷi=M(ci) (8)

where 1 denotes the indicator function and M(ci) is permu-
tation mapping that maps each cluster label ci to the pseudo
label ŷi over total n xi ∈ T̂kn.

SCDA takes k̂ = (k∗CA + k∗elbow)/2 as the optimal clus-
tering number. Excluding |CS | source classes, we consider
k∗ = k̂ − |CS | as the optimally estimated number of CT /CS ,
and use the corresponding clustering assignment to divide T̂im
into k∗ pseudo classes {T̂i}k

∗

i=1. It refers to the update of CD.

3.3.3. Self-supervised open-set adaptation

Step 1 has provided an estimation result for the open-set class
discovery, while it is not able to improve OSDA since the
result has not been fed back to the domain-invariant fea-
ture learning yet. Provided with this, we develop the self-
supervised OSDA which enables the classifier C to recognize
more target samples that belong to the classes in CT /CS , fur-
ther improving the OSDA performance.

Restructuring C. Since CD dynamically changes to ap-
proximate CT /CS , the softmax classifier C is also dynami-
cally restructured in order to classify CD: Its output dimension
alters from |CS | + k∗t−1 to |CS | + k∗t , in which the first |CS |
corresponds the number of classes in CS and the latter refers
to k∗ classes in CD. The parameters are reset and trained in
terms of CS and the current ĈD.

Dynamic class correlation matrix. The crucial prob-
lem is to improve the generalization ability of F and C in
terms of the newly discovered classes. To this end, we recon-
sider the class correlation matrix proposed in Eq.1. Indeed,
this class decorrelating technique augments various close-set
UDAs to reap the transfer gain. However, it is rarely ap-
plied in OSDA since its confusion mechanism naturally re-
pels the “unknown”, thus, reducing their confusion would
eliminate the intrinsic diversity of CT /CS . This concern
found an echo of our motivation, inspiring us to generalize
the class correlation matrix to suit OSDA. Specifically, we
reconfigure Eq.1 by using our restructuring softmax classi-
fier output as ŷi,·. Hence, the dimension of R changes from
(|CS |+1)× (|CS |+1) to (|CS |+ k∗)× (|CS |+ k∗), extend-
ing the confusion measurement from the known classes in CS
and the “unknown” class, to the newly discovered classes in
CD and the correlation between CS and CD. OSDA with the
dynamic class correlation matrix aims to minimize:

min
C,F

Ltcc = E{x(t)
i }mi=1∼T

1

|CS |+ k∗

|CS |+k∗∑
j=1

|CS |+k∗∑
j′ 6=j

R̂j,j′

(9)
Compared with Eq.4, Eq.9 iteratively changes its dimen-

sion to measure the confusion of CS∪ĈD. It disambiguates the
pseudo class assignment produced by Algorithm.1 and helps
F learn more discriminative features.

To preserve the knowledge from the known classes, we
also keep training C with the source samples (Eq.3). In or-
der to further approach an ideal performance, we simulta-
neously incorporate the pseudo-labeled target samples drawn
from T̂kn ∪ T̂im to learn transferable features:

Lt = − E(x,ŷ)∼T̂kn∪T̂im ŷT log C(F (x)) (10)

where ŷ denotes the corresponding pseudo label.

min
F,C

Ls + Lt + Ltcc (11)

In summary, the final objective of this step is formulated
as Eq.11. Note that we do not use any hyperparameter to
balance each term in all objectives (Eq.6, Eq.5 and Eq.11).
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Table 1: Results on Office-31 for OSDA. ◦ indicates our re-implementation with the officially released code.

Method
A→W A→D D→W W→D D→A W→A Avg

OS OS* OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

OSBP 86.5±2.0 87.6±2.1 88.6±1.4 89.2±1.3 97.0±1.0 96.5±0.4 97.9±0.9 98.7±0.6 88.9±2.5 90.6±2.3 85.8±2.5 84.9±1.3 90.8 91.3
STA 89.5±0.6 92.1±0.5 93.7±1.5 96.1±0.4 97.5±0.2 96.5±0.5 99.5±0.2 99.6±0.1 89.1±0.5 93.5±0.8 87.9±0.9 87.4±0.6 92.9 94.1
TIM 91.3±0.7 93.2±1.2 94.2±1.1 97.1±0.8 96.5±0.5 97.4±0.7 99.5±0.2 99.4±0.3 90.1±0.2 91.5±0.2 88.7±1.3 88.1±0.9 93.4 94.5
JPOT 92.8±0.6 92.2±0.4 95.2±0.9 96.0±0.6 98.1±0.3 96.2±0.4 99.5±0.1 98.6±0.2 93.0±0.7 94.1±0.4 88.9±1.0 88.4±0.4 94.6 94.3
SHOT◦ 88.8±0.7 91.4±0.4 90.3±0.5 92.6±0.3 96.2±0.4 97.0±0.4 97.4 ±0.3 97.9±0.5 91.6±0.5 93.4±0.7 91.2±0.5 93.5±0.4 92.6 94.3
PGL◦ 89.2±0.5 90.1±0.7 89.6±0.8 91.6±0.5 95.3±0.4 95.1±0.5 96.7±0.5 97.6±0.6 71.0±0.9 72.0±0.5 73.0±0.4 77.6±0.6 85.8 87.4
SCDA 95.7±0.1 97.5±0.2 95.9±0.4 96.5±0.4 99.2±0.1 99.7±0.1 99.8±0.1 100±0.0 92.1±0.1 93.7±0.3 92.2±0.1 93.6±0.1 95.8 96.8

Table 2: Results on Office-Home for OSDA. 4 indicates the method does not report the variance of their results.
Method Ar→Cl Pr→Cl Rw→Cl Ar→Pr Cl→Pr Rw→Pr Cl→Ar Pr→Ar Rw→Ar Ar→Rw Cl→Rw Pr→Rw Avg

OSBP 56.7±1.9 51.5±2.1 49.2±2.4 67.5±1.5 65.5±1.5 74.0±1.5 62.5±2.0 64.8±1.1 69.3±1.1 80.6±0.9 74.7±2.2 71.5±1.9 65.7
STA 58.1±0.6 53.1±0.9 54.4±1.0 71.6±1.2 69.3±1.0 81.9±0.5 63.4±0.5 65.2±0.8 74.9±1.0 85.0±0.2 75.8±0.4 80.8±0.3 69.5
TIM 60.1±0.7 54.2±1.0 56.2±1.7 70.9±1.4 70.0±1.7 78.6±0.6 64.0±0.6 66.1±1.3 74.9±0.9 83.2±0.9 75.7±1.3 81.3±1.4 69.6
JPOT 59.6±0.5 54.2±0.7 54.6±0.9 72.3±1.1 70.1±0.6 82.1±0.9 62.9±0.7 68.3±0.8 75.1±1.1 84.8±0.4 77.4±0.5 81.2±0.4 70.2
SHOT4 64.5±0.0 59.3±0.0 64.6±0.0 80.4±0.0 75.4±0.0 82.3±0.0 63.1±0.0 65.3±0.0 69.6±0.0 84.7±0.0 81.2±0.0 83.3±0.0 72.8
PGL4 61.6±0.0 58.4±0.0 65.0±0.0 77.1±0.0 72.0±0.0 83.0±0.0 68.8±0.0 72.2±0.0 78.6±0.0 85.9±0.0 82.8±0.0 82.6±0.0 74.0
SCDA 59.9±0.3 59.0±0.3 62.8±0.5 79.6±0.4 73.8±1.0 83.7±0.8 70.9±0.5 72.3±0.6 75.5±0.4 85.3±0.6 82.9±0.3 85.7±0.9 74.3

4. EXPERIMENT

In this section, we evaluate SCDA on three benchmarks to
demonstrate its superior performance. More implement de-
tails can be found in supplementary material. Code is avail-
able at https://github.com/zjy526223908/SCDA.

Benchmarks. We use two famous datasets: Office-31
and Office-Home, and choose the same label sets of classes
to build CS and CT following [12]. Besides, we introduce
the challenging DomainNet. To simulate a real-world adap-
tation scenario, we combine the Real and Clipart domains
in DomainNet with the Rw and Cl in Office-Home, respec-
tively, to build two target domains Rw? and Cl?. After merg-
ing the same categories, the combined target domains have
362 categories, 279 classes of which are DomainNet-specific.
Then we randomly select 1/4 classes from them to induce the
scarcity: we select 10 samples for each of the classes and
abandon the rest. It breeds a benchmark DomainNet? with
extremely imbalanced target domains Rw? and Cl?.

Baselines. We compare SCDA with a variety of state-
of-the-art OSDA approaches, including OSBP, STA, TIM,
JOPT, SHOT, and PGL. We are also interested in the per-
formance of discovering implicit classes. To this, we com-
pare SCDA’s class-discovering ability with some state-of-the-
art baselines, i.e., Silhouette coefficient (SC) and DTC. We
use ResNet-50 pre-trained on ImageNet as the backbone.

Evaluation Criteria. For a fair comparison, we employ
two evaluation metrics in line with [2], i.e., OS: averaging
the class-wise target accuracy for all the classes including the
unknown as one class; OS*: averaging the class-wise target
accuracy only on known classes. Besides, in terms of class
discovery, we compare SCDA with SC and DTC to estimate
the number of unknown implicit classes k∗.

4.1. Results for OSDA
Office-31 and Office-Home. In Table 1, SCDA outperforms
other baselines on most transfer tasks in Office-31 with sig-
nificant margins. In the hard tasks, e.g., A→W, SCDA out-
performs the second with a larger gap (2.9%). As illustrated
in Table 2, our SCDA still achieves the best performance
in Office-Home dataset. Notably, the second best model
in Office-31 (TIM) and Office-Home (PGL) both perform
poorly in the other dataset. It is probably due to the chang-
ing setup of unknown. In a comparison, SCDA is designed to
analyze the inter-class structure of CT /CS . Thus, our method
presents the more robust generalization ability in OSDA.
Real-world Scenarios. To further investigate the baselines in
more complicated real world applications, we set up the trans-
fer tasks from Pr and Ar in Office-Home to the challenging
blending-target domains Rw? and Cl? in DomainNet?. As
shown in Table 3, although Rw? and Cl? are noisy, and ex-
tremely imbalanced, SCDA still achieves the state of the art in
3 from 4 transfer combination. Besides, SCDA also presents
a faster convergence rate and a higher upper-bound perfor-
mance in the complicated scenarios (see our supplementary).

4.2. Results for Implicit Class Discovery
In Table 4, we report the results for unknown class number
estimation by SC, DTC, and SCDA. SC performs the worst
across all the benchmarks. DTC is poor in Office-Home
and DomainNet? with numerous implicit classes. By con-
trast, SCDA shows surprisingly accurate results to estimate
the class number in Office-31, where the average error is less
than 1. Despite the large implicit class number in Office-
Home and DomainNet?, SCDA produces a low average er-
ror. The results validate the reliability of SCDA to estimate
the implicit class number. More experiments for class discov-
ery can be found in supplementary material.
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Table 3: OSDA from OfficeHome to DomainNet?

Method
Ar→Rw? Ar→Cl? Pr→Rw? Pr→Cl? Avg

OS OS* OS OS* OS OS* OS OS* OS OS*

OSBP 58.1 57.8 33.0 32.3 59.5 59.3 30.5 29.8 45.4 44.8
STA 60.5 60.4 40.1 39.6 59.1 59.0 32.3 33.9 48.0 48.2

SHOT 64.6 65.1 45.2 45.7 65.4 65.9 40.3 40.4 53.9 54.3
Ours 67.8 68.0 44.2 44.3 68.2 69.1 40.9 41.0 55.3 55.6

Table 4: Unknown categories number estimation results

Dataset GT
SC DTC Ours

k̂ Error k̂ Error k̂ Error

Office-31 11 8∼33 6.8 4∼9 4.2 9∼11 0.9
Office-Home 40 0∼7 38.5 9∼23 21.4 32∼37 6.1
DomainNet? 297 5∼8 290.7 46∼71 238.2 227∼255 58.5

Fig. 3: Average results of SCDA

4.3. Ablation study
To justify the conjecture that the unobserved class discovery
may help OSDA, we compare SCDA with the following mod-
ifications. (1) Pre-training: we use the network only pre-
trained by subsection 3.3.1. (2) unknown (k=1): we utilize
the pseudo labels to update the model. However, without class
discovery, we regard them as a single negative class unknown.
(3) k∗ w/o iters: SCDA trains the model with pseudo discov-
ered classes but without further iteration. (4) k(GT ) w/o iters:
we provide with the true number of CT but without further
iteration. (5) k(GT ) w iters: the algorithm is provided with
k(GT ), then we alternatively train the model.

As illustrated in Figure 3, we report the average OS and
OS* across all six transfer tasks in Office-31. By comparing
(2) with (3), discovering the unobserved classes has a better
performance than regarding them as the “unknown”. It further
verifies our motivation: discovering the structure of the unob-
served classes can improve the performance of OSDA. The
results of (3-5) draw an interesting conclusion. Without fur-
ther iterations, training with k(GT ) outperforms training with
the estimated class number. However, their results are almost
the same when we train model iteratively. It suggests that
the precise prediction of the unobserved classes number and
the iterative optimization are both important and their com-
bination play a key role in addressing OSDA. Besides, more
analysis and visualization are illustrated in SM.

5. CONCLUSION

In this paper, we pay attention to a nontrivial challenge in
OSDA: discovering all implicit classes in the unknown tar-
get samples. The mixed unknown chunk conceives category
mismatching risk. To tackle the problem, we propose Self-
supervised Class-Discovering Adapter (SCDA). SCDA uti-
lizes adversarial learning to preliminarily separate unknown
target samples. Then, SCDA employs an alternate approach
to discover novel target categories and update our model with
the discovery results. Through extensive empirical evalua-
tions, we demonstrate the superiority of our SCDA by the
state-of-the-art OSDA performance.
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