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ABSTRACT

Advances in assisted reproductive technology allow more and
more infertile patients to benefit from in vitro fertilization
(IVF) treatment. For an IVF treatment, selecting embryos
that have developed into the blastocyst stage is a crucial step
for the subsequent embryo transfer. In the clinic, it requires
embryologists to keep observing the developmental status of
embryos, which not only highly depends on the professional
level of reproductive experts but greatly increases patients’
economic cost. To address this problem, we propose a novel
task termed early blastocyst development prediction, which
aims at predicting the potential that an embryo can develop
into the blastocyst stage by partially observing its early devel-
opment status so as to assist embryologists with early embryo
selection. To achieve this goal, we collect a new IVF dataset
with 2,898 time-lapse videos of embryo development. Based
on this, we also propose a benchmark solution named Atten-
tive Multi-focus Selection Network (AMSNet). Specifically,
AMSNet is a deep learning-based time-lapse video analysis
method that includes a separate attention mechanism to ex-
ploit the features of embryoscope images captured at multi-
ple focal planes and a temporal feature channel shift opera-
tion to obtain memory capability over time-lapse videos. Ex-
perimental results demonstrate the effectiveness and clinical
significance of our proposed AMSNet on our IVF dataset.

Index Terms— carly blastocyst development prediction,
time-lapse video analysis.

1. INTRODUCTION

With the development of assisted reproductive technology, in
vitro fertilization (IVF) has become an important technique
in the treatment of infertility. Due to the limited survival rate
of embryos in vitro culture, it generally requires to simulta-
neously culture multiple embryos in each IVF cycle. All IVF
embryos are cultured in the time-lapse [1] incubator, as it can
provide a stable culture environment, and continuously record
the morphological information of embryos. Fig. 1 illustrates
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the developmental stages of an embryo. After being placed
in incubator, the zygote will divide continuously and enter
the morula and blastocyst stages successively. Most embryos
take about 5 days to develop into blastocysts, and a few take 7
days. During this period, some embryos may stop developing
and fail to enter the blastocyst stage, and only blastocysts will
be considered for transfer [2]. Therefore, identifying whether
an embryo has become a blastocyst is a critical step in IVF
and lies an important foundation for the subsequent embryo
transfer.
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Fig. 1. An example of early blastocyst development predic-
tion.

In an IVF cycle, to determine whether an embryo devel-
ops into the blastocyst state, embryologists need to carefully
observe the development of the embryo under the microscope
at certain time points (e.g., Day 5 and Day 6). This highly de-
pends on the embryologists’ experience. Moreover, failure to
identify the embryos with low blastocyst development poten-
tial early will severely limit the size of the group that can ben-
efit from high quality IVF and greatly increase the economic
expenditure. Therefore, an automatic and accurate blastocyst
development prediction technique is of great clinical signifi-
cance for IVF. To achieve this goal, we draw inspiration from
a sub-direction in the field of computer vision called early ac-
tion prediction [3, 4, 5, 6] and propose a novel task named
early blastocyst development prediction, which aims at pro-
viding an early prediction of the probability of an embryo
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developing into a blastocyst in an IVF cycle. Instead of rec-
ognizing the blastocyst stage by observing the whole culture
process, this task tries to predict the potential of blastocyst
formation by observing the early incubation. Therefore, it can
assist the embryologists to stop the culture of embryos with
low potential for blastocyst formation in an earlier stage, so as
to release more IVF space and alleviate the financial burden.

Time-lapse incubator can take embryoscope images of
embryos at a regular interval from 7 focal planes and com-
bine those images into a time-lapse video. Benefiting from
time-lapse videos, algorithms could be easily applied to assist
embryo selection. Recently, several algorithms [7, 8, 9] have
been proposed to apply the morphokinetic analysis to detect
the occurrence of key developmental events including the
blastocyst formation. Although developmental event detec-
tion can benefit embryo selection, these methods still rely on
embryologists to annotate a large number of developmental
events by observing the morphological changes of embryos.
Moreover, it’s unfeasible for these methods to capture the
full temporal and spatial richness of time-lapse videos with
only a few handcrafted morphological parameters. To solve
this problem, Tran et al. [10] proposed a deep learning-based
model to analyze the entire time-lapse videos and predict the
fetal heart (FH) pregnancy probability of embryos to assist
the embryo selection. Nevertheless, a successful FH preg-
nancy also depends on the maternal pregnancy environment.
Unfortunately, none of existing methods are able to explore
the developmental potential in the early stage of embryos and
predict the probability of blastocyst formation for embryos,
which means they are powerless for stopping the culture for
embryos with low developmental potential in an early stage.

In this paper, to improve the above-mentioned issues
and realize the goal of early blastocyst development predic-
tion, we propose a new time-lapse video dataset, as well
as a benchmark solution. Specifically, we propose Atten-
tive Multi-focus Selection Network (AMSNet), which is
built upon a ResNet-50 [11] with two major components,
i.e., a multi-focus feature selection (MFS) module and a
temporal shift module (TSM) [12]. Firstly, MFS takes the
embryoscope images shot at multiple focal planes as input in
every moment. It includes a channel-wise attention module to
selectively fuse the multi-focus feature channels and a Gaus-
sian non-local [13] mechanism to model pair-wise spatial
correlation. Secondly, TSM is responsible to partially shift
the feature channels along the temporal dimension, which
endows AMSNet with memory capability to achieving a tem-
poral understanding of time-lapse videos. As shown in Fig. 1,
the AMSNet can continuously read time-lapse data and pro-
vide a high-accurate blastocyst development prediction to as-
sist embryologists with early embryo selection. In summary,
the main contributions of this paper include: (1) We pro-
pose a new research task named early blastocyst development
prediction, which has clinical significance for early embryo
selection in clinical IVF. (2) We collect a new time-lapse

incubation dataset from clinical IVF and provide a bench-
mark solution for early blastocyst development prediction.
(3) Experimental results demonstrate the effectiveness of our
proposed AMSNet on our constructed time-lapse dataset.

2. DATASET

We collaborate with the First Affiliated Hospital of Sun Yat-
sen University to collect 2,898 embryo data samples and build
a new IVF dataset. Specifically, we used two EmbryoScope
time-lapse machines as the IVF incubators to fertilize and cul-
ture embryos. During the incubation process, these two incu-
bators acquired the microscope images of all embryos every
10 or 15 minutes at seven focal planes. And the resolution
of an embryoscope image is 500 x 500. All the embryos
would be cultured until they reached the blastocyst stage or
stopped developing, which generally occurs during Day 5 to
Day 7 of the incubation. Experienced embryologists would
determine the timing to stop the incubation of an embryo and
provide an annotation of whether the embryo has developed
into a blastocyst or not. Statistically, the collected IVF dataset
is composed of 2,898 time-lapse videos of embryo develop-
ment, of which 1,634 embryos had developed into the blas-
tocyst stage and 1,264 had not (blastocyst: 56.38%, nonblas-
tocyst: 43.62%). We randomly divide the dataset into three
parts, including 1,746 for training, 576 for validation, and 576
for testing.

Probability

Input frame

Fig. 2. Overview of AMSNet. For each moment ¢, it takes
the embryo images I; from multiple focal planes as input and
generate the probability of blastocyst formulation y; € [0, 1].

3. METHOD

Given a time-lapse video of an IVF treatment V', we sample
T frames from the video Iy, Is, ..., IT. For each frame
I;, we utilize the embryo images taken at m focal planes,
ie, I, = {F} F?,...,F{"}. To achieve the goal of early
blastocyst development prediction, we propose the Atten-
tive Multi-focus Selection Network (AMSNet). As shown
in Fig. 2, AMSNet adopts an ResNet-50 [11] as the back-
bone, which consists of four blocks, i.e., Res-1, Res-2, Res-3,
Res-4 and a fully connected (FC) layer. For each moment
t € {1,2,...,T}, AMSNet takes the multi-focus images
of I, as input. The features from multiple focal planes will
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be selectively integrated through our proposed Multi-focus
Feature Selection Module (MFS) by exploiting both channel-
wise and spatial attention. Then the multi-focus features
produced by MFS will be fed into Res-2 and the rest parts
of ResNet-50 to predict the probability y; € [0, 1] that the
embryo can develop into a blastocyst at the current moment ¢.
Furthermore, we inject the temporal shift module (TSM) [12]
into AMSNet to endow ResNet-50 with memory capability
so as to utilize temporal information more effectively.
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Fig. 3. Multi-focus Feature Selection Module (MFS)
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3.1. Multi-focus Feature Selection Module(MFS)

For each moment, Our IVF dataset provides the embryoscope
images of multiple focal planes. To effectively consider the
image features of different focal planes, we propose the MFS
module to selectively exploit the multi-focus features via an
attention mechanism. Inspired by [14], we propose to de-
compose the attention module into channel-wise attention and
spatial attention as a separate attention scheme is much more
efficient to process the 3D multi-focus feature maps [14]. As
shown in Fig. 3, without adding any parameters, the MFS
module first adopts m individual Res-1 branches with shared
weights to process the input images from m focal planes.
Then the features from m branches are concatenated and en-
hanced by the channel-wise attention module. Next, the chan-
nel dimension of the channel-wise enhanced feature is re-
duced to as same as that of the output feature map of Res-1.
Last, it is further enhanced by the spatial attention module via
a residual connection pattern.

As for channel-wise attention, we exploit the inter-
channel relationship of multi-focus features. Specifically,
we first concatenate the feature maps of m weight-shared
Res-1 branches into U = [ug, ug, ..., Ume), Where ¢ denotes
the number of channels in each feature map. Then we apply
both average pooling and maximum pooling for each channel
u; to obtain the channel features V € R™¢ and M € R™¢,
and forward them to a shared MLP. Then we use element-
wise addition to merge the output features of shared MLP
and get the channel attention feature W € R™€ by a sigmoid
function. After element-wise multiplying W with U and
reducing the channel dimension, we obtain the channel-wise
enhanced feature F' € RXH*W,

As for spatial attention, we propose to utilize a 2D Gaus-
sian non-local module[13] to capture the spatial correlation
from channel-wise enhanced feature F'. By computing inter-
actions between any two positions on feature map F', regard-

less of their position distance, Gaussian non-local can achieve
2D pair-wise spatial correlation learning, and thus enhence F'
in spatial dimension. Experimental results demonstrate that,
by adding few parameters, 2D Gaussian non-local can im-
prove model performance.

3.2. Temporal Shift Module (TSM)

To produce a reliable prediction of blastocyst formulation,
model not only need to learn the appearance features from
embryoscope images but also need to model the developmen-
tal status of embryos along temporal dimension of time-lapse
videos. Therefore, we refer to a widely used residual tem-
poral shift module (TSM)[12] and embed each residual block
in AMSNet with a temporal channel shift operation. Without
adding any parameters, by transferring part of features for-
ward, temporal channel shift operation equips the AMSNet
with temporal modeling and memory abilities. Specifically,
as shown in Fig. 4, for each residual block, TSM shifts part of
the channels of its input feature at moment ¢ — 1, i.e., X;_1,
into that at moment ¢, i.e., X; , to obtain a temporally com-
bined feature X} _,. Then, TSM enhances X; with X} _, viaa
residual addition to obtain a temporally enhanced output fea-
ture Y;. Thus, the appearance features of the embryo at each
moment contain the features of previous developmental state.
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Fig. 4. Residual Temporal Shift Module (TSM)
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4. EXPERIMENT

4.1. Experiment Setup

Implementation Details. The AMSNet is implemented on
PyTorch[15], a flexible framework for deep learning. Dur-
ing the training process, we split each time-lapse video clip
into small segments at a pace of 6h and randomly sample one
frame from each segment. In total, we sample the time-lapse
data of 7 days (168h), i.e, T' = 28 frames from each video.
For those samples with fewer than 168h of time-lapse data, we
pad the number of sample frames to 7" = 28 and ignore the loss
back-propagation of the padded frames. For each frame, the
AMSNet uses the embryoscope images shot at seven focal-
planes at most. The resolution of each video clip is resized
and randomly cropped to 224 x 224, and the format of each
video clip is converted to grayscale as embryo is transparent.
We initialize AMSNet with the ResNet50 pretrained on the
Kinetics [16] dataset, and choose SGD as the optimizer dur-
ing the training process.

Evaluation Metrics. Our formulated early blastocyst devel-
opment prediction problem can be regarded as a video binary
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No. | Methods TSM | Channel Spatial | #F | Day0.5 Dayl Dayl.5 Day2 Day2.5 Day3 Day3.5 Day4 Day4.5 Day5 Day5.5 Day6 Day6.5 Day7 AUC
1 Baseline (ResNet-50 [11]) 1 62.15 6424 6840 7083 71.88 71.60 69.69 7474 77.18 81.04 80.99 8233 8421 100.00 | 0.6987
2 | Baseline+TSM Vv 1 6424 6858 7257 7153 7431 73.69 73.87 7631 81.01 86.23 89.92 89.27 90.18  100.00 | 0.7354
3 | Baseline+TSM Vv 3| 6649 6788 7153  73.09 7292 7265 7474 7735 84.15 8623 8897 8927 8842 100.00 | 0.7360
4 | Baseline+TSM v 5 67.54 69.27 7413 73.09 7448 7491 7474 76.66 8153 8479 87.07 88.01 89.47 100.00 | 0.7371
5 Baseline+TSM Vv 7 67.54 6892 71.88 7326 73.61 7474 7335 79.62 8136 85.69 88.40 8333 89.12 100.00 | 0.7372
6 | Baseline+TSM+Channel vV vV 3 | 6754 7066 7413 7569 7448 7456 7875 81.71 83.80 8694 8878 8927 8877 100.00 | 0.7509
7 | Baseline+TSM+Channel v Vv 5| 67.01 71.01 7500 7517 7691 78.05 78.05 7892 83.10 88.01 90.11 8833 89.12 100.00 | 0.7538
8 | Baseline+TSM+Channel vV vV 7| 6788 7170 75.69 7552 7691 7753 7857 7875 8275 87.12 89.73 88.96 90.53  100.00 | 0.7555
9 | Baseline+ TSM+MFS (AMSNet) | +/ vV vV 3| 6892 7170 7517 7587 7344 7648 79.09 81.53 8519 88.19 9145 9022 90.88 100.00 | 0.7598
10 | Baseline+TSM+MFS (AMSNet) | +/ Vv Vv 5| 6858 7257 7552 7691 7674 77.88 7875 8031 84.15 87.84 9126 8896 90.18  100.00 | 0.7609
11 | Baseline+TSM+MFS (AMSNet) | / vV vV 7 | 6788 7257 7500 7691 7639 7840 7857 8223 84.15 8855 91.83 89.27 90.88 100.00 | 0.7633

Table 1. Ablation study using accuracy (%) and AUC on our IVF dataset. The values in each column indicate the accuracy of
different models at a particular incubation time point. “Channel” and “Spatial” denote the channel-wise attention module and
Gaussian non-local module of MFS, respectively. “#F” denotes the number of input focal planes.

classification task by observing different portions of time-
lapse frames. To quantitatively evaluate the performance of
the proposed method, we report the accuracy scores of the
early prediction with respect to different observation times as
well as the area under curve (AUC). In addition, we also re-
port the receiver operating characteristic (ROC) curve and its
AUC at several time points, including Day 3, Day 4, Day 5.

4.2. Results on the IVF Dataset

We report the results of the AMSNet on the test set of our IVF
dataset. The input of AMSNet is time-lapse data with 7 focal
planes. As shown in Fig. 5 and Fig. 6, the AMSNet improves
the performance of its baseline model (ResNet-50 [11]) on
both Accuracy and ROC curves by a large margin. Specifi-
cally, the resulting AUC of its Accuracy curve reaches 0.7633.
The resulting AUC scores of its ROC curves to predict the
blastocyst formulation on Day 3, Day 4, and Day 5 are 0.819,
0.874 and 0.958, respectively. Experimental results demon-
strate that the proposed AMSNet can provide clinically signif-
icant prediction earlier than the blastocyst formulation, such
as on Day 4 (AUC of ROC: 0.874).
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Fig. 5. Results of Accuracy curves on our IVF dataset.
[AUC= *] denotes the area under the Accuracy curve.
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Fig. 6. Results of ROC curves of different observation time
points on our IVF dataset. [AUC= *] denotes the area under
the ROC curve.

4.3. Ablation Study

Effectiveness of TSM. As shown in Table 1, the baseline in-
jected with TSM (Baseline+TSM) can outperform the base-
line (ResNet-50) by 3.67% w.r.t the AUC of Accuracy curve.
Moreover, as shown in Fig. 5 and Fig. 6, its Accuracy and
ROC curves are generally better than those of the baseline
model. These experimental results validate the effectiveness
and necessity of the TSM module.

Effectiveness of Using Data With More Focal Planes. As
show in No.3 to No.11 rows of Table 1, the more focal planes
the input data contains, the heigher prediction accuracy each
model can obtain. Specifically, these models in No.3 to No.5
rows use the directly concatenated multiple focal images as
the input of TSM. These experimental results prove that the
introduction of more focal plane information will inevitably
bring greater model advantages and generalization.
Effectiveness of MFS. As shown in the No.2 and No.11
rows of Table 1, by considering multiple focal planes as input
the MFS module can further assist AMSNet to outperform
the performance w.r.t Baseline+TSM by a large margin, i.e,
2.79% w.r.t AUC of Accuracy curve. The better performance
of Accuracy and ROC curves of AMSNet presented in Fig. 5
and Fig. 6 also validate the effectiveness of MFS. In addition,
we provide the comparison between MFS and its two variants
in the No.3 to No.5 and No.6 to No.8 rows of Table 1. We
observe that the channel-wise attention and 2D Gaussian non-
local [13] module involved in the MFS module both benefit
the model performance and are complementary to each other.

5. CONCLUSION

In this paper, we propose a novel task named early blastocyst
development prediction, which aims at assisting embryolo-
gists to select embryos at an early stage of IVF. To achieve
this goal, we propose a new IVF dataset with 2,898 embryo
time-lapse videos and a benchmark solution named AMSNet.
Experimental results demonstrate the effectiveness of our pro-
posed method. In future work, we will expand the scale of the
proposed dataset. And we plan to further exploit the physio-
logical and genetic information of patients to provide a more
explainable algorithm for embryo selection and fetal heart
pregnancy prediction.
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