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Abstract—Video virtual try-on aims to generate realistic se-
quences where garments maintain their identity and adapt
accurately to a person’s pose and body shape in source video.
This task can be regarded as video inpainting, whereas previous
methods focus primarily on the specific try-on region while
simply “copying” the remaining parts of the person. However,
this approach limits the degrees of freedom and heavily relies
on precise human parsing. In complex in-the-wild scenarios,
dynamic blurring and limb occlusions can introduce errors and
discontinuities in the inpainting regions, adversely affecting the
video try-on results. Our solution, VidClothEditor, adopts a
relaxed editing approach that allows for full-body inpainting
and treats non-edited regions as a reconstruction task. It utilizes
multiple garment alignment with a proposed region guidance
to enhance the naturalness of video try-on results. Additionally,
we employ garment-augmented video consistency learning, which
significantly reduces the inference time and increases the prac-
tical potential for video editing. Comprehensive experiments on
the VITON-HD and TikTok datasets confirm VidClothEditor’s
ability to generate high-quality images and smooth videos. The
project website is at video-tryon.github.io.

Index Terms—Video try-on in the wild, multiple garment
alignment, controlled diffusion model, video consistency learning

I. INTRODUCTION

IDEO virtual try-on is a video editing task aimed at

generating seamless videos that maintain the appearance
of a particular garment while precisely conforming it to the
pose and body shape of the human in the source video.
This task has garnered increasing attention due to its wide-
ranging potential applications in e-commerce, digital avatar
live streaming, and short-form video editing.

Research on virtual try-on primarily falls into two
categories: GAN-based [!]-[24] and diffusion-based ap-
proaches [25]-[29]. GAN-based methods typically employ a
two-stage process consisting of warping and blending. These
methods entail a complicated and protracted workflow, and
exhibit high sensitivity to occlusions. On the other hand,
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Fig. 1. Achieving precise human parsing in in-the-wild videos is challenging,
often leading to inconsistent and erroneous inpainting region sequences. Pre-
vious methods, such as AnimateAnyone, which rely on such strict conditional
sequences, are inherently prone to failure (shown in the red boxes). We instead
employ a full-body inpainting strategy, incorporating a novel region-guidance
multi-garment alignment module, to ensure consistent and accurate video
virtual try-on results.

the recent diffusion-based methods leverage the foundational
capabilities of pretrained diffusion models to facilitate a single-
stage, end-to-end virtual try-on process. These methods in-
tegrate garment features directly into the denoising process
through cross-modal attention mechanisms, implicitly learning
the warping process.

Despite significant advancements in virtual try-on, extend-
ing these techniques to in-the-wild videos remains challenging
due to two key issues: 1) The inconsistent conditions of
compact inpainting regions for generation. Previous methods,
including both GAN-based and diffusion-based methods [1]-
[29], consider virtual try-on as an inpainting task and hope
to construct this region strictly to avoid changes to the
remaining parts. However, in in-the-wild scenes (such as
short-video editing), due to unusual clothing pairings and
dynamic blurring, human parsing is prone to failure. Strictly
constructing this inpainting region will result in discontinuous
input conditions. As illustrated in Fig. 1, the inconsistent
inpainting region (highlighted in red boxes) ultimately gives
rise to incorrect editing results. 2) The suboptimal trade-
off between performance and inference speed. GAN-based
methods [1], [2], [8], [12], [22] are time efficient but suf-
fer from limited generalization capability, preventing them
from effectively handling complex, real-world scenarios char-
acterized by dynamic actions. Conversely, while diffusion-
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based methods [25]-[31] achieve much more impressive try-
on effects, their iterative reverse sampling process results in
slow generation speeds, limiting their applicability in real-time
scenarios. Some researchers have introduced consistency mod-
els [32], [33], distilled from pretrained diffusion models for
faster generation. However, these methods have not adequately
preserved image texture details.

To tackle the aforementioned challenges in complex natural
scenes, we introduce VidClothEditor, an efficient and robust
virtual video try-on framework. VidClothEditor extends the
inpainting region to encompass the entire body and treats non-
edited regions as a reconstruction task. At the same time,
both non-edited and target try-on garments are regarded as
weak video conditions, requiring the model to extract their
features to produce a comprehensive try-on result across the
whole body region. This approach relaxes the strict condition
associated with precise inpainting regions, offering two main
advantages: 1) Consistent inpainting regions can be more
easily obtained even in in-the-wild scenarios, ensuring the
correct condition for video virtual try-on. 2) The generative
model no longer processes edited and non-edited garments
separately, enabling it to learn the integration of multiple
garment features, thereby enhancing the naturalness of the try-
on effect. As shown in Fig. 1, our method can not only edit the
upper garment but also reconstruct the bottoms successfully.
Inspired by Animate Anyone [34], VidClothEditor employs
spatial attention to implement implicit warping. We observed
that attentions on upper and lower regions may interfere
with each other (as seen in Fig. 3), leading to unsatisfactory
results. To address this, we propose a region-guidance mul-
tiple garment fusion strategy, where coarse human parsing is
introduced for guidance to assist in the learning of appropriate
attention regions. This “soft” guidance from human parsing
enables the model to learn the structural priors of the human
body during training while avoiding the strict definition of
inpainting regions during inference. Additionally, recognizing
the substantial time consumption of diffusion-based frame-
works, we develop a garment-augmented video consistency
learning approach for fast inference. During the consistency
distillation process [32], [33], we enhance the control over
garment features to mitigate the loss of clothing details through
distillation. The video consistency model significantly reduces
the required sampling steps, thereby enhancing its potential
for real-time video editing applications. Our contributions can
be summarized as follows:

o We present VidClothEditor, an efficient and robust
diffusion-based video virtual try-on framework.

o VidClothEditor employs weak conditions and full-body
inpainting to increase flexibility, mitigate the impact of
inaccurate human parsing, and enhance the naturalness
of try-on results. Additionally, region guidance for mul-
tiple garment alignment addresses potential interference
between garments by using coarse parsing results to guide
the learning of appropriate attention regions.

« We propose a garment-augmented video consistency
learning approach that enables VidClothEditor to perform
efficient and high-quality video-level editing.

« Extensive experiments and evaluations conducted on the
VITON-HD and real-life TikTok datasets demonstrate
that our method achieves the state-of-the-art video try-
on results.

II. RELATED WORK
A. Image Virtual Try On

Given a pair of images (reference person, target garment),
image virtual try-on methods aim to generate the appearance of
the reference person wearing the target garment. A majority
of virtual try-on methods [1]-[24] decompose the task into
two stages, (1) deforming the clothing to fit garment region
on the human body and (2) blending the warped clothing into
the target human via try-on generator. Prior approaches [1],
[71, [8], [13], [35] utilize trainable networks to estimate dense
flow maps for precise clothing deformation. Furthermore, re-
searchers make attempts to mitigate the misalignment between
the warped clothing and the human body, including parser-
free strategies and the integration of additional information
such as local flow [I], semantic maps [21], [22] or 3D
geometric priors [36]. Despite significant advancements, these
methods still face challenges in handling complex poses and
occlusions caused by pixel misalignment. [23], [24] address
self-occlusion using semantic parsing or human keypoints;
however, their performance is limited in in-the-wild images.

In recent years, diffusion models [37]-[39] have emerged as
prominent contenders of generative models. LaDI-VTON [25]
and DCI-VTON [26] use the latent diffusion model as the gen-
erator in the blending stage, replacing generative adversarial
networks (GANs). To overcome the limitations of the two-
stage approach, researchers have explored implicit warping
and single-step generation. TryOnDiffusion [28] introduced a
diffusion-based architecture with two parallel UNets, preserv-
ing intricate garment details and enabling implicit garment
warping to adapt to significant pose and body variations within
a single network. StableVITON [27] learns the semantic corre-
spondence between garment and person within the latent space
via zero cross-attention blocks. OOTDiffusion [29] proposes
outfitting fusion in the self-attention layers of the UNet to
align the garment feature with the target human body.

B. Video Virtual Try On

Researchers have extended image-based virtual try-on meth-
ods to video applications, using specially designed temporal
modules. FW-GAN [40] pioneered this field by adapting a
video generation framework to video virtual try-on, incorpo-
rating warped garments and human postures as conditions.
MVTON [41] introduced a try-on module for garment warping
via pose alignment and regional pixel displacement, along
with a memory refinement module that embeds prior frames
into latent space as external memory for subsequent frame
generation. ClothFormer [42] improved flow predictions using
inter-frame data and employed a Dual-Stream Transformer to
derive video try-on outcomes from multiple frame warpings.
Despite significant advancements, GAN-based methods rely
on parsing and warping pipelines, limiting their applicabil-
ity to simple scenarios. For instance, the VVT dataset [40]
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Fig. 2. Overview of the VidClothEditor framework: The reference video and target upper garment are initially preprocessed through segmentation and pose
detection, yielding a clothing-agnostic sequence and a pose sequence. Full-body masking is applied to derive the lower garment image from the first frame.
Next, the GarmentNet extracts hierarchical features from the target upper garment and the extracted lower garment. Finally, the UNet integrates aligned
garment features and the conditional sequence into the denoising process to generate vivid video try-on results.

primarily includes simple textures, tight-fitting T-shirts, and
repetitive human movements. To exploit the potentials of pre-
trained image-based diffusion models, Tunnel Try-On [43]
and ViViD [30] utilize a pre-trained inpainting U-Net as
the main branch and introduce a reference U-Net to capture
detailed clothing features. They augment temporal consistency
by inserting standard temporal attention into the main UNet.
However, existing methods are sensitive to complex human
movements and dynamic blurs in real-life videos due to their
intricate module designs. Our work leverages the foundational
generation ability of pre-trained diffusion models and relaxes
conditions to achieve robust and coherent video try-on results.

C. Controlled Diffusion Model for Visual Generation

In the field of visual generation, methods based on diffusion
models have recently become the mainstream. Latent Diffu-
sion [44] is a pioneer work that integrates text and images to
achieve controlled image generation. ControlNet [45] and T2I-
Adapter [46] explore the controllability of visual generation
by integrating additional encoding layers, enabling controlled
generation under multiple conditions such as pose, mask, edge,
and depth. Anydoor [47] transforms specific image objects
into identity features, merging these images into different sur-
roundings while preserving the texture details of the objects.
SGDM [48] proposes a style guidance module to equip the
diffusion model with adaptive style personalization capability.
DiffFashion [49] transfers a natural apperance image to a given
clothing image for designing a new fashion. AnimateDiff [50]
utilizes a vast amount of video data to train a motion module
independently, which can be integrated into personalized Text-
to-Image (T2I) models, bringing the generated images into
videos with motion. VideoBooth [51] and Microcinema [52],
in addition to text, introduce images to guide video generation,

employing a proposed attention injection module to feed image
embedding into the diffusion progress. In our work, we employ
spatial attention to integrate the features of garment into the
diffusion UNet model, effectively preserving the details of
multiple garments.

III. PRELIMINARIES
A. Diffusion Models

Using a predefined variance schedule (3;, we can establish
a forward diffusion process in the latent space as outlined by
denoising diffusion probabilistic models (DDPM) [39]:

N (z¢; vV auzo, (1 — a)l), (1)

where ¢t € {1,...,T}, T represents the total number of forward
diffusion steps, oy = 1 — (3, and &; := II!_ ;. As
N — o0, the discrete Markov chain converges to the following
stochastic differential equation (SDE),

q(2i|20) =

dz = f(z,t)dt + g(t)dw, (2)

where f(z,t) = —3z4(t) and g(t) = \/B(¢).

A notable property of this SDE is the existence of reverse-
time ordinary differential equation (ODE). Moreover, the Prob-
ability flow ODE (PF-ODE) [53] indicates the presence of a
correspoinding deterministic process whose solution trajecto-

ries at time ¢ still follow the same noisy distribution p;(x) as
ODE:

dz = [f(z,t) — g*(t)V, log p(2)] dt. 3)

The score function V,1ogp,(z) can be predicted using a
neural network €g(z;,t), which then enables the removal of
noise from the data point during the reverse process.
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B. Latent Consistency Model

Consistency model (CM) [32] is a new family of generative
models, designed to facilitate efficient generation through one-
step or few-step sampling. Building on this foundation, the
Latent Consistency Model (LCM) [33] extends CM into the
latent space, enabling both fast and conditional generation. At
its core, LCM expects to learn a function f : (z¢, ¢, t) — z
which maps any point along a PF-ODE trajectory back to the
origin; here c is the given conditions and € is a small fixed
number:

f(Zt7C,t) = f(Zt/,C,t/),Vt7t/ S [E,T] (4)
To ensure the boundary condition, LCM is parameterized as:
fg(Z,C,t) = cskip(t)z + coul(t)FG(Z7C7t)7 (5)

where cip(t) and cou(t) are differentiable functions with
coip(€) = 1 and cou(€) = 0, and Fp(z,c,t) is a deep neural
network. Then we can define the consistency loss as Eq. 6
to enforce the self-consistency property. Exponential moving
average (EMA) is used to enhances the stability during training
and the target model 6~ is updated by 86— = u0@— 4+ (1 —p)6.

L£(0,6;P)

=E.cq [d (fg(zw,c,tm), fg_(,%fil,c,tn)ﬂ . ®

where d(-,-) is a distance measuring function and i?; ~can be
estimated by a one discretization step of a numerical ODE
solver @ with a teacher diffusion model ¢,

20 =z 4 (bn = )21yttt €5 ). (7)

n

IV. METHOD

Problem Statement: Given a reference person video se-
quence, denoted as I := {I},...,In} € R3*HXW and a
target upper garment image G, € R3>*H#*W 'where H and W
represent height and width of the image respectively, and N
is the number of frames in the sequence, video try-on requires
to synthesis a realistic video sequence I := {fl, T N} €
R3*HXW This sequence should depict the person wearing
the target garment g,, while preserving the integrity of all
other visual elements including the lower garment g;.

A. Preprocessing of Inputs

Video try-on requires editing the region of the garment
while preserving other elements in the video. We expect to
mask the full body of the human and the training progress
can be regarded as self-reconstruction. Specifically, we ob-
tain the sequences of human segmentation maps S :=
{S1,...,Sn} and pose maps P := { P, ..., Py} using off-the-
shelf methods [54], [55]. Following the precedures described
in [12], [27], we then generate clothing-agnostic images A :=
{44, ..., Ax} where the full body is masked. Similarly, the
upper and lower masks can also be obtained through parse
maps. These masks cover the clothes and the corresponding
limb regions, which reduces the impact of the discrepancy
between the original and target garments.

We construct the video-garment pairs by extracting the
reference garments from a clear frame in the source video.
We utilize resizing and translation techniques to ensure that
the garment is positioned at the center of a white background.
Since our architecture does not require a template image, it can
be trained using a large dataset of in-the-wild videos. During
the inference phase for upper garment editing, the first frame
is selected for extracting the lower garment image g;.

B. Architecture of VidClothEditor

In this work, we address the virtual try-on task as an
exemplar-based inpainting problem, aiming to fill the agnostic
map with given garments, as illustrated in Fig. 2. For tops,
we extend the inpainting region from the upper body to the
full body. This expansion alleviates constraints and prevents
segmentation errors between upper and lower garments. Our
framework, VidClothEditor, is adapted from the conditional
video diffusion model utilized in Animate Anyone [34], with
several modifications specifically tailored to the virtual try-on
task. 1) As the input of UNet, we concatenate two aligned
conditions with the Gaussian noise € € RNX4xhxw |atent
agnostic map E(A) € RN*4xhxw and latent pose map
E'(P) € RNx4xhxw g and £ represent the VAE encoder
and the PoseEncoder, respectively; both encoders convert their
respective images into the latent space. h and w denote the
height and width in the latent space, here h = H/8 and
w = W/8. The input channel of UNet is expanded from 4
to 12. 2) We introduce GarmentNet G, a specialized network
that processes latent clothing &(g) € RV *4XhXw and extract
garment features Gy (€(g)). The architecture of GarmentNet
is the same as the denoising UNet. To preserve the fine
details of multiple garments and alleviate feature interference,
spatial attention is used along with a specific designed region
guidance. 3) For exemplar conditioning, we input the garment
image into CLIP to obtain global embedding 1), and then
the embedding 1 is injected into UNet and GarmentNet via
cross-attention. Finally, we distill the UNet via the proposed
garment-augmented video consistency learning for boosting
the inference process as shown in Fig. 5.

Formally, along with the aforementioned conditions, our
proposed VidClothEditor can be trained by minimizing the
following loss function.

Liam =Bz .2 (e,).2 () et (€ = €0z tm 0, O]
®)
where ¢ = [Gor (£(gu)); Gor (E(g1))] represents the extracted gar-
ment features, n = [£(A); £(P)] denotes the aligned condition
sequences.

C. Region-guidance Multiple Garment Fusion

Drawing inspiration from the spatial-attention mecha-
nism [34], as shown in the left of Fig. 4, we introduce a
multiple garment fusion process to incorporate the learned
garment features into the denoising UNet with specially de-
signed region guidance. Specially, we reshape the feature map
z; from the ¢-th layer of the denoising UNet into vector v;.
Similarly, for the upper garment and lower garment, we obtain
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Fig. 3. Visualization of attention maps and generated results. (a) denotes the self-attention on upper region while (b) denotes the self-attention on lower
region. Our proposed region-guidance multiple garment fusion strategy enhances the learning of effective attention maps.
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Fig. 4. Overview of the region-guidance multiple garment fusion. We use
(a) spatial attention to integrate garment features into the denoising UNet. To
prevent feature interference, we employ (b) region guidance to properly align
the attention maps.

the corresponding features w,; and ;, respectively. We then use
these features to compute the output of the spatial-attention
layer by the following formulas:

T
Attention(Q, K, V') = softmax V,
(@ ) ( Nz ) ;
where v} = [v; & u; B 1], ©)
Q=Wv, K =W, v=w) v,

Here @ indicates matrix concatenation.

Fig. 3 visualizes the attention maps learned in the spatial-
attention mechanism. While inpainting the entire body reduces
the stringent precision requirements for segmentation and
yields more natural outcomes, the attention focused on upper
and lower garments may interfere with each other (see (a)
and (b) under the setting of without region guidance). This
interference potentially lead to overfitting specific clothing sets
during training.

To address this issue, we introduce region guidance to
enhance the learning of effective attention maps. As shown
in the right of Fig. 4, this guidance for the spatial-attention
mechanism comprises two components: regional self-attention
guidance and cross-attention guidance. For regional self-
attention, we introduce an upper region mask m; and a lower
region mask m!. This design aims to specifically direct self-
attention to concentrate within the designated upper or lower
regions. In the case of cross-attention guidance, we ensure
that the garment features u; and [; align precisely with the
corresponding locations on the attention maps. Formally, we
define the region-guidance loss as follows:

Lseip = (M ©v) @wv;) ©md + ((mh o v) @v) ©m!
Leross = (Ui @v;) ©mi + (I; ®v;) © mi
£rg = £self + )\lﬁcross
(10)
where ® means matrix multiplication, ® indicates element-
wise multiplication and A is a weight hyper parameter. Unlike
directly using segmentation results to constrain the inpainting
areas, our guidance approach is “soft”. It facilitates the gener-
ation of natural virtual video try-on results instead of imposing
a sequence of strict conditions. Finally, we train our network
by adding L, to Eq. 8:
L= Ligm —

>\2£rg (11)

D. Garment-augmented Video Consistency learning

The video diffusion model is notably time-consuming due
to its iterative sampling process. To address this, we propose a
garment-augmented consistency learning framework for few-
step sampling, which is illustated by Fig. 5. Considering the
problem statement of the video try-on task, given the trained
GarmentNet G and the teacher diffusion model ¢, we expect
to distill ¢ into the student model #. This process requires
that the function fg satisfy the consistency property and the
model 0 can also effective handles the features extracted by G.
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satisfy the self-consistency property.

TABLE I
QUANTITATIVE COMPARISON WITH BASELINES ON BOTH VITON-HD AND TIKTOK DATASETS.

Dataset VITON-HD TikTok

Method SSIM?T  LPIPS| FID] KID| User? SSIMT  LPIPS] FVDJ User?
LADI-VTON [25] 0.873 0.0941 12.190  0.563 6.24% 0.868 0.0956 5.603 10.26%
DCI-VTON [26] 0.892 0.0719 12.105 0.544 8.12% 0.873 0.0836 6.336 6.46%
StableVITON [27] 0.890 0.0761 10.013  0.255 22.86% 0.846 0.1462 7.008 1.02%
Animate Anyone* [34] 0.893 0.0705 9.965 0.179  28.22% 0.885 0.0678 5.294 31.28%
ViViD [30] - - - - - 0.843 0.1088 5.408 14.46%
VidClothEditor 0.879 0.0823 9.186 0.113 34.56% 0.873 0.0722 5.002 38.98%

We could reparametrize the consistency function fg in Eq. 5
as follows:

f@(zvnadjant)

12
= cskip(t>z + Cout(t) ( ( )

zZ — Ut69(27t7 777,(/)7 C))

Qg

where oy and o, are the function to specify the noise schedule
and €g(z,t,m,1,() is the noise prediction function via our
proposed VidClothEditor.

Classifier-free guidance (CFG) [56] is crucial for control-
lability enhancement of the given condition. To ensure the
detailed preservation of garment features during the distillation
process, we intend to adopt the principles of CFG to accentuate
these features. Employing a guidance scale wg > 1, we can
modify the noise prediction function as follows:
€0(Za t,n, T)Z}a C) = (1 +wg)(69(z’ t,mn, 1/1, g)) - ’ngQ(Z, t,m, @)

13)
where @ denotes we drop the garment features, specially, we
use a zero vector to replace the embedding ¢ extracted by
CLIP and use self-attention to replace the spatial-attention.
Based on this, we apply the garment-augmented ODE solver

to run a one discretization step (denotes the one-step ODE
solver applied to PF-ODE):

q)wg = (1 + wg)(ﬁ(ztnvna ’ll)v <7 tn7 tn+1; ¢)
—wg®(24,,1, D, tn, tny1; )

Eventually, the consistence loss can be modified as follows:

(14)

L£(0,07;0) =E; ;) y.¢.t [d (fe(ztnﬂ 1,0, G tnyn),
fo- (20, m. . 1) .

2t¢n = Ztn+1 +(tn - tn-‘rl)@wg (Ztn /B wa Ca tna tn+1; ¢) 15
(

E. Training Strategy

The training process is divided into three stages. The first
stage is image-level training, where training is conducted on
individual video frames. At this stage, we temporarily remove
the temporal layers from the network. Both GarmentNet G
and PoseEncoder £’ are trained concurrently. The purpose of
this stage is to develop effective feature extraction networks

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 16,2025 at 13:45:09 UTC from IEEE Xplore. Restrictions apply.

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3613169

SUBMMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA

Garment

Person

Video try-on results

ty
I

Fig. 6. Examples of our virtual try-on results on real-life TikTok videos. Our method produces coherent and natural video try-on results.

for garments and poses, and to enable the model to generate
high-quality virtual try-on images under specified conditions.
The second stage is video-level training, where the data
sampling is changed to 18-frame video clips. We reintroduce
the temporal layers into the UNet and train only this module,
while keeping all other parameters fixed. The third stage
involves video consistency distillation. Similar to the second
stage, we treat the PoseEncoder £’ and GarmentNet G as fixed
feature extractors and focus solely on distilling the UNet.

V. EXPERIMENTS

In this section, we first introduce the datasets and imple-
mentation details. We then proceed to compare VidClothEditor
with state-of-the-art virtual try-on methods through qualitative
and quantitative evaluations. The comparison comprises two
parts, the video-level comparison on the in-the-wild TikTok
dataset [57] and the image-level comparison on the well-
collected VITON-HD and Dresscode datasets. The first part
is to demonstrate the effectiveness of our framework on the
video try-on task while the second part is to demonstrate that

the full-body inpainting strategy will not degrade the image
editing result with the proposed region guidance module on
high-quality image data. Thirdly, we provide an ablation study
on the proposed module. Finally, we analyze the limitation on
videos with dynamic blurs.

A. Datasets

Our experiments are conducted on the TikTok [57], VITON-
HD [7] and DressCode [58] datasets. TikTok comprises real-
life single-person dancing videos with intricate limb occlu-
sions and postures. From a total of 350 videos, we utilize
213 videos for training and 54 for testing, discarding 83 due
to unclear views. Additionally, we perform an image-level
comparison on the high-resolution virtual try-on benchmark
VITON-HD [7] and Dresscode [58] to prove the robustness
and versatility. All evaluations and visualizations are con-
ducted on the testing set.
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Fig. 7. Qualitative comparison with state-of-the-art try-on methods on the TikTok dataset. Our method effectively captures the details of clothing during

dance movements and exhibits outstanding full-body results.

Input Video try-on results

Fig. 8. Multi-garment video virtual try-on results on the TikTok dataset.

B. Implementation Details

1) Architecture: We initialize the GarmentNet and the
denoising UNet by inheriting the pretrained weights of Stable
Diffusion v1.5 [44]. The pose guider contains 4 convolution
layers followed by a linear projection to align the dimension

in the latent space. Each convolution layer contains a two
convolution operations (one 1x1 stride and the other 2x2
stride). All the kernel size is 3. The CLIP global embedding
b € RO9X768 ig the concatenation of a global token and 49
patch tokens of the CLIP output.

2) Training: Experiments are conducted on 4 NVIDIA
A100 GPUs. Images or video frames are resized to a resolution
of 512x384. We apply scale and translation augmentations to
the reference garment to enhance generalization. The hyper-
parameter weight A; and Ao and for region guidance are set
2 and Se-5 respectively. Our training includes 3 stages. In
the first stage, individual video frames are sampled and the
training step is 30,000 at a batch size of 24. In the second
stage, we train the denoising UNet for 10000 steps using 18-
frame video sequences. We use grad accumulation to increase
the batch size from 4 to 24 in this stage. The final distillation
stage is conducted with a batch size of 4 over 2,000 training
steps. All the stages use AdamW [59] as optimizer and the
learning rate is set Se-5.

3) Testing: At inference time, we use LCM [33] scheduler
as the sample method and the total sample steps is 10. The
lower garment image for the test video is extracted from
the first frame in the reference clips. We adopt the temporal
aggregation method [00], integrating results across batches to
produce long video sequences.

C. Results and Comparison with State-of-the-Art Methods

1) Baselines: We perform video-level comparison with
LaDI-VTON [25], DCI-VTON [26], StableVITON [27],
ViViD [30] and Animate Anyone [34] on TikTok [57] datasets.
Moreover, to demonstrate the robustness and versatility of
our method, we process image-level comparison with HR-
VTON [12], LaDI-VTON [25], DCI-VTON [26], StableVI-
TON [27] and Animate Anyone [34] on VITON-HD [7]
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TABLE I
QUANTITATIVE COMPARISON WITH BASELINES ON THE DRESSCODE DATASET.

Dataset DressCode-upper DressCode-lower

Method SSIMT LPIPS] FID] KIDJ] User? SSIMT LPIPS| FID] KIDJ] User?
HR-VTON [12] 0.907 0.0892 1842 1.036 19.92% 0.910 0.0620 17.41 0.626  26.98%
LADI-VTON [25] 0.906 0.0983 16.71  0.610 17.24% 0.902 0.0834  16.58 0.608  14.68%
Animate Anyone* [34] 0.909 0.0634 16.03 0.524 24.48% 0.892 0.0976  16.12 0.568  23.82%
VidClothEditor 0.913 0.0602 13.62 0.258  38.36% 0.908 0.0656  13.88 0.304 34.52%

and DressCode Dataset [58]. We adapt the Animate Anyone
method for the try-on task, denoted as “Animate Anyone*”
in our experimental tables and figures to indicate this modifi-
cation. For other baseline methods, we use publicly available
checkpoints or the released code.

2) Metrics: Following previous studies [12], [27], we make
quantitative evaluation on both paired and unpaired setting.
In the paired setting, we employ SSIM [61] and LPIPS
[62] as evaluation metrices. In the unpaired setting, where
ground truth is unavailable, we evaluate realism using the
Fréchet Inception Distance (FID) [63] and Kernel Inception
Distance (KID) [64] scores for image comparison, and Fréchet
Video Distance (FVD) [65] scores for video comparison.
Additionally, we incorporate a human perception study for
subjective evaluation, including 100 image samples from the
VTION-HD dataset, 100 image samples from the DressCode
dataset, and 20 video samples from the TikTok dataset in the
survey.

3) Results on the TikTok Dataset: Fig. 7 illustrates the
comparison results. Since LaDI-VTON, DCI-VTON and Sta-
bleVITON are image-based methods, they lack coherence
in the video-based clothing change task. Although ViViD
enhances the temporal consisitency by introducing the tem-
poral attention, however, it still fails to reproduce clothing
patterns well. Animate Anyone* successfully maintain the
patterns, yet the rigid parsing preprocess adversely affects the
connection between the upper and lower garments, resulting in
unnatural outcomes. Furthermore, as demonstrated in Fig. I,
the inaccuracies in the inpainting region sequences result in
significant differences between frames, thereby compromising
temporal consistency. In contrast, our approach utilizes full-
body inpainting and region-guidance multiple garment fusion
to achieve more realistic video try-on effects. Quantitative
results are shown in Table I. VidClothEditor outperforms
than others on KID and FID metrics. Since VidClothEditor
reconstructs the unedited parts of a person, it performs slightly
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Fig. 10. Qualitative comparison on the DressCode dataset. The first three
rows and the last three rows represent the VTON of upper and lower garment
respectively. The red boxes highlight the artifacts.
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Fig. 11. Effects of the garment-augmented video consistency distillation. The
appearance features of garments are still well preserved after distillation.

worse than Animate Anyone* on the pixel-based metrics SSIM
and LPIPS.

Fig. 6 illustrates more results generated by our method,
demonstrating its ability to effectively adapt to various human
movements and garments. This results in high-detail preserva-
tion and temporal consistency in the generated try-on videos.
A byproduct of our method is full-body try-ons. Fig. 8 displays
the results of these transformations, further demonstrating the
generalization ability of our approach.

4) Results on the VITON-HD and DressCode Dataset:
Fig. 9 and Fig. 10 illustrate the qualitative comparison on
VITON-HD and DressCode dataset respectively. Warping-
based methods, HR-VTON, LaDI-VTON and DCI-VTON,
tend to fail in the presence of occlusions or complex textures
while StableVITON demonstrates some color deviations. In
the third row of Fig. 9, a part of the clothing text is obscured
by the jean. All baseline methods fail because they focus only
on the upper region that needs editing, which reduces the
degree of freedom in generation. Similar cases also appear
in the virtual try on of lower garments. For example, in the

fourth row of Fig. 10, the editing of the pants interferes
with the reconstruction of the upper clothes. On the contrary,
VidClothEditor can produce natural results with the proposed
region-guidance multi-garment fusion module.

Quantitative results are shown in Tab. I and II. Since our
method inpaints the whole body, the two metrics, SSIM and
LPIPS, are adversely affected to some extent. Nevertheless,
our method performs comparably to the baseline methods on
both the VITON-HD and DressCode datasets. Correspond-
ingly, due to its higher flexibility, our method outperforms
other baseline algorithms in terms of FID and KID, which
are metrics for evaluating the authenticity of images. This
demonstrates that the full-body inpainting strategy does not
degrade the image generation quality, although it is designed
for video VTON.

D. Ablation Study

We conduct an ablation study for VidClothEditor to inves-
tigate the effects of the proposed region-guidance multiple
garment fusion (Section IV-C) and garment-augmented video
consistency distillation (Section IV-D).

TABLE III
QUANTITIES ABLATIONS FOR THE CORE COMPONENTS. THE TIME COST IS
CALCULATED BASED ON THE GENERATION OF 18-FRAME VIDEOS.

Method | SSIMt LPIPS| FVDJ | Time cost(s))
AnimateAnyone* 0.885 0.0678 5.294 32.24
+ Full-body inpaint 0.864 0.0749  5.176 32.24
+ Region-guidance fusion | 0.879 0.0658  4.802 32.86
+ Consistency distillation 0.873 0.0722 5.002 7.42

1) Analysis of Region-guidance Multiple Garment Fusion:
In Table. III, we provide quantitative metrics related to the
ablation experiments. Building upon AnimateAnyone*, the
utilization of a full-body inpainting strategy has been proven to
enhance the FVD metric, signifying an uplift in video quality.
However, this approach inversely impacts the pixel-based
metrics, such as SSIM and LPIPS, due to the amplification
of the edited areas. Leveraging the region-guidance multiple
garment fusion module, we’ve not only improved the FVD
score further but also mitigated the adverse effects on SSIM
and LPIPS metrics. A representative visualization sample is
depicted in Fig. 3.

2) Analysis of Garment-augment Video Consistency Distil-
lation: As shown in Fig. 5, distillation results in a minor
quality degradation while preserving the appearance of the
clothing. In Table III, the time cost is calculated based on
the generation 18-frame videos. We employ the DDIM [66]
sampler with 50 sample steps when distillation is not used, and
switch to the LCM [33] sampler with 10 sample steps when
distillation is implemented. Quantitative comparisons show
that the SSIM, LPIPS, and FVD metrics decrease to some
extent after distillation. However, the significant reduction in
generation time greatly enhances the potential for practical
applications. Additionally, we conduct an analysis of the
sampling steps, as detailed in Table IV. We set the total sample
steps as 10 to achieve a balance between quality and speed.
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TABLE IV
ABLATION STUDY FOR SAMPLE STEPS ON THE CONSISTENCY MODEL.

Sample steps | SSIMT LPIPS| FVD||Time cost(s)|

6 0.864 0.0789 5.476 5.82
8 0.870 0.0758 5.032 6.58
10 0.873 0.0722 5.002 7.44
12 0.874 0.0702 4.098 8.40

Origin
video

Try-on
Results

Agnostic
sequence

Pose
sequence

Fig. 12. Limitations of the limbs and long hair reconstruction under dynamic
blur. The red boxes highlight the errors. Dynamic blur adversely affects
training and results in erroneous segmentation and pose sequences, inhibiting
the model’s ability to effectively reconstruct limbs and long hair during
inference.

E. Limitations

In real-world videos, high-speed motion of human subjects
often results in dynamic blur. Under the influence of such
dynamic blur, although our algorithm is robust for editing
clothing, there are discernible shortcomings in the reconstruc-
tion of human limbs. This is predominately due to the reliance
of the limb reconstruction on the conditions provided. As
shown in Fig. 12, the limbs overlap with the upper body and
we need to reconstruct the limbs. Due to dynamic blur, pose
detection algorithms tend to miss detections especially around
the hands and elbows. Under these conditions, the model fails
to perfectly restore the limbs of the human due to the lack
of reference. Additionally, the accurate segmentation of long
female hair poses a challenge, further increasing the difficulty
of human restoration. Furthermore, using these blurred limbs
as training targets can adversely affect the training of the
model. Gathering higher quality video data or providing close-
up shots of the hands as an additional condition could help to
mitigate this issue.

VI. CONCLUSIONS

To facilitate video virtual try-on in real-world scenarios,
we propose VidClothEditor, a robust and efficient framework.
VidClothEditor utilizes a full-body inpainting approach, relax-
ing strict inpainting boundaries and mitigating the impact of
segmentation errors on the human body. It achieves multiple

garments alignment and utilizes coarse parsing results to guide
attention training, thereby enhancing the naturalness of the
try-on results. Additionally, we integrate a video consistency
model to expedite the try-on process. Extensive evaluations
clearly demonstrate VidClothEditor’s significant superiority
over state-of-the-art methods.
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