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Abstract

Driven by the great success of Large Language Models
(LLMs) in the 2D image domain, their application in 3D
scene understanding has emerged as a new trend. A key dif-
ference between 3D and 2D is that the situation of an ego-
centric observer in 3D scenes can change, resulting in dif-
ferent descriptions (e.g., “left” or “right”). However, cur-
rent LLM-based methods overlook the egocentric perspec-
tive and use datasets from a global viewpoint. To address
this issue, we propose a novel approach to automatically
generate a situation-aware dataset by leveraging the scan-
ning trajectory during data collection and utilizing Vision-
Language Models (VLMs) to produce high-quality captions
and question-answer pairs. Furthermore, we introduce a
situation grounding module to explicitly predict the posi-
tion and orientation of the observer’s viewpoint, thereby en-
abling LLMs to ground situation descriptions in 3D scenes.
We evaluate our approach on several benchmarks, demon-
strating that our method effectively enhances the 3D situ-
ational awareness of LLMs while significantly expanding
existing datasets and reducing manual effort.

1. Introduction

Recently, Large Language Models (LLMs) [28, 34, 35]
have revolutionized natural language processing, show-
casing remarkable capabilities in image understanding
tasks [22, 25, 29], such as image captioning, visual ques-
tion answering (VQA), and engaging in dialogs about vi-
sual content. Building on this success, researchers have be-
gun to explore the use of LLMs in the three-dimensional
(3D) domain [8, 15, 39], aiming to bridge the gap between
language and 3D visual data. In 3D vision and language
tasks—including 3D visual grounding, 3D captioning, and
3D VQA—the objective is to unify these tasks under the
framework of next-token prediction. To achieve this, re-
searchers focus on learning a 3D representation that aligns
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I am in a cozy corner near a 
window. In the front there is a 
small ottoman with a colorful 
pattern. To my right, there is a 
gray trash bin.

Situation 1

Question: What is the color of
the armchair?

Answer: Green

Question: Describe what
can you see from your
current view?

Answer: I can see a table is
on my left, and a green
chair is on my right.

Situation grounding:
I am at position [0.5, 1.2, 0.3],
Looking at rotation 𝑠𝑟𝑜𝑡

Situation 2

Figure 1. Illustration of 3D Situation Awareness. The LLMs can
accurately ground situation descriptions to the observer’s position
and orientation, enabling context-aware question answering based
on the observer’s viewpoint.

with pre-trained text embedding spaces, enabling seamless
integration with language models.

However, a significant challenge in applying LLMs to
3D tasks is the scarcity of annotated 3D-text data, which is
crucial for training such models effectively. Unlike 2D im-
ages, which have abundant paired data in the form of cap-
tions and annotations, 3D data lacks extensive textual de-
scriptions. To overcome this limitation, researchers have
explored methods to generate additional 3D-text data to
augment the training process. For example, 3D-LLM [15]
utilizes multi-view images of 3D scans to generate captions,
leveraging rich visual information from different perspec-
tives. Similarly, LEO [18] and SceneVerse [20] employ
scene graphs and harness the capabilities of ChatGPT to
generate captions and question-answer (QA) pairs, enrich-
ing the textual annotations associated with 3D content.

Despite these efforts, inherent limitations exist in the
current data generation processes. Firstly, most ap-
proaches to 3D scene understanding emphasize global per-
spectives, providing comprehensive overviews of environ-
ments while overlooking the importance of situational con-
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texts—specific viewpoints or scenarios within a scene cru-
cial for accurate interpretation. Unlike static images with
fixed viewpoints, 3D scenes are dynamic, and the per-
ceived situation can change when an embodied agent moves
through the environment. As illustrated in Fig. 1, an object
like a sofa may appear on the left side from one viewpoint
(Situation 1) but on the right side from another viewpoint
(Situation 2). Without specifying the situational context,
such variations can lead to ambiguity during model training
and degrade performance in tasks that require spatial under-
standing.

Moreover, current scene graph-based methods [15, 18,
20, 40] for data generation rely heavily on ground-truth 3D
instance labels to construct accurate scene graphs. Acquir-
ing these 3D labels is labor-intensive and costly and limits
the scalability of the data generation process. Existing la-
beled datasets are often insufficient, lacking coverage of all
objects within a scene, especially small objects and those
belonging to rare categories. Additionally, the relationships
between objects are typically predefined using fixed tem-
plates, which restricts the ability of models to handle open
vocabulary scenarios and capture the richness of the real-
world.

To overcome these challenges, we propose a novel
approach to automatically generate a situational dataset,
termed View2Cap. Our key insight is that 3D scans are
commonly reconstructed from RGB-D videos, where the
camera trajectory inherently represents an egocentric explo-
ration of the environment by a human observer. By leverag-
ing this naturalistic data, we can capture the situational con-
text not included in existing datasets. Specifically, we uti-
lize 2D Vision-Language Models (VLMs) to generate cap-
tions and QA pairs from individual frames of the RGB-D
videos. This approach effectively distills knowledge from
well-established 2D models into the 3D domain, capitaliz-
ing on the strengths of 2D VLMs. Concurrently, we record
the camera pose of each frame, which, in combination with
the depth information, allows us to extract the correspond-
ing point cloud for that particular region. This method-
ology enables us to create a point cloud-text dataset with
situational context, capturing the dynamic perspectives en-
countered by an embodied agent moving through a 3D envi-
ronment. Importantly, this strategy reduces data generation
costs and supports the scalable creation of datasets capable
of handling open vocabulary scenarios without the need for
extensive manual annotations or 3D labels.

In addition to the dataset creation, enhancing the situa-
tional understanding of LLMs requires models that can ex-
plicitly ground descriptions in the 3D space. To this end, we
propose a Situation Grounding (SG) module that builds
upon existing 3D LLM architectures. This module allows
the model to predict situational positions and view rota-
tions based on textual descriptions and the scene-level point

cloud. By treating each object within the scene as an anchor
point, the model can predict the distance and angle class off-
sets relative to the observer’s viewpoint. This formulation
transforms the complex problem of pose estimation into a
more tractable classification task, simplifying the learning
process and improving the model’s ability to comprehend
and reason about spatial relationships in 3D environments.

Our contributions can be summarized as follows:
• We introduce View2Cap, a scalable 3D dataset that pro-

vides paired data of situational positions, rotations, region
point clouds, textual descriptions, and QA pairs. This
dataset is generated automatically without the need for
3D labels or extensive manual annotations, enabling the
study of situational context in 3D scene understanding.

• We propose the Situation Grounding SG module, that can
be integrated into existing LLMs, allowing for explicit
grounding of situational descriptions in 3D scenes. This
module transforms pose estimation into a classification
problem, facilitating easier training and improved spatial
reasoning.

• Through extensive experiments, we demonstrate that
combining our situational dataset and grounding module
significantly enhances the situational awareness and per-
formance of existing 3D LLMs in various tasks.

2. Related Work
Indoor 3D Scene Understanding. 3D scene understanding
involves perceiving and interacting with 3D environments,
encompassing tasks such as 3D segmentation [33], 3D vi-
sual grounding [5, 41, 42], 3D captioning [10, 43], and 3D
visual question answering (VQA) [26, 40]. The develop-
ment of large-scale RGB-D scan datasets has significantly
advanced this field. Notably, ScanNet [11] provides exten-
sive annotations for indoor scenes, facilitating research in
3D scene understanding. Matterport3D [4] offers a large-
scale collection of richly annotated house-level environ-
ments, providing high-resolution RGB-D scans and detailed
semantic labels, which have been instrumental in advanc-
ing tasks such as 3D reconstruction, navigation, and seman-
tic understanding. EmbodiedScan [38] enriches these an-
notations by providing more fine-grained object bounding
boxes, particularly focusing on small objects and diverse
class labels, with assistance from models like SAM [21].
Large Language Models in 3D. Inspired by the success of
LLMs in image understanding, researchers have begun ex-
ploring the integration of 3D inputs with LLMs to leverage
their impressive reasoning and generalization capabilities
for 3D understanding [44]. Models such as PointLLM [39]
and GPT4Point [31] attempt to map point clouds into the to-
ken space of LLMs to generate captions for objects. How-
ever, they struggle to handle scene-level point clouds due
to the complexity of indoor environments. 3D-LLM [15]
pioneers the use of LLMs for scene understanding but still

19436



relies on 2D features. Recent models like LL3DA [8], Chat-
3D [17], and LEO [18] have investigated the use of 3D en-
coders for scene-level tasks. To enhance grounding abili-
ties, Grounded 3D-LLM [9] introduces referent tokens and
employs contrastive learning to unify grounding with tex-
tual responses. Similarly, Chat-3D [17] proposes the use of
object identifiers (object IDs) to facilitate referring expres-
sions and grounding mechanisms. However, these models
still lack a comprehensive understanding of situation aware-
ness in 3D space.
Situation Awareness in 3D Space. A key difference be-
tween 2D and 3D scene understanding lies in situation
awareness. In 2D images, the viewpoint is fixed, making
spatial relationships like left and right straightforward to de-
termine. In contrast, in 3D spaces, these relationships can
change with the observer’s position. For example, left/right
relationships can reverse when moving from one side of a
room to another. Some works have addressed this problem
using data augmentation techniques, such as MVT [19] and
ViewRefer [14]. SQA3D [26] first proposes to describe the
situation in text and then conduct tasks like VQA. However,
it relies on human annotators to write these descriptions,
making it costly and challenging to scale for the large-scale
training required by 3D LLMs. Our method addresses this
limitation by using an automatic situation dataset genera-
tion pipeline that leverages the capabilities of 2D VLMs
and the trajectories inherent in RGB-D dataset collection
processes.

3. Method
To enable LLMs to comprehend situational contexts within
3D spaces, we propose a method that involves an automatic
data generation pipeline for building a situation dataset and
a novel module for situation grounding.

3.1. Situation Dataset
Automatic Data Generation. Our data generation process
leverages the natural exploratory behavior inherent in RGB-
D videos, which serves as first-person navigations through
3D environments. For each video frame, we extract the situ-
ational context directly from the camera extrinsic, capturing
precise positional and rotational information. Moreover, we
employ VLMs to generate captions from the correspond-
ing 2D images extracted from the video frames. It provides
elaborate information about the environment beyond 3D la-
bels. Additionally, we utilize VLMs to generate QA pairs
related to each situation, providing more specific and di-
rect supervision compared to captions alone. Specifically,
we use Llava-onevision [23] as VLM for its comprehensive
caption ability and open-sourced.

For situation descriptions, we generate two types of cap-
tions: simple and detailed. The simple captions focus on
the primary objects and their relationships within the scene,

Statistic SQA3D View2Cap

Total stxt 20,369 231,184
Total q 33,403 553,779
Unique q 26,091 92,877

Total scenes 650 2,841
Total objects 14,925 71,376

Average stxt length 17.49 54.73
Average q length 10.49 8.55
Average a length 1.10 5.74

Table 1. Dataset Statistics for SQA3D and View2Cap.

ensuring that the model grasps the essential components of
the environment. The detailed captions provide an elaborate
account of all visual information presented in the image, in-
cluding background elements like the floor and overall en-
vironment, as shown in Fig. 4.

For the situation QA pairs, we define four categories
of questions: (1) object identification, prompting recogni-
tion of objects presented in the image; (2) spatial relation-
ships, describing the positions of objects relative to each
other from the viewer’s perspective (e.g., left, right, front,
behind); (3) visual features, showing distinctive attributes
such as colors, shapes, sizes, and textures; (4) insights into
the overall layout of the room, enhancing the model’s un-
derstanding of the scene as a whole.
Dataset Verification and Refinement. To ensure the qual-
ity and reliability of the generated dataset, we implement
a verification and refinement process leveraging GPT-4.
Specifically, we utilize the 3D labels of point clouds and
employ GPT-4 to evaluate whether the generated captions
include all objects present in the scene. We use annotations
from EmbodiedScan [38], as it annotate more fine-grained
categories and small objects compared with the labels from
the original scan datasets. The scoring criteria are adopted
from PointLLM [39], including correctness, hallucination,
and general considerations, range from 0-5. The average
score for View2Cap is 3.09, indicating that captions derived
from 2D images can effectively serve as high-quality super-
vision for training 3D models. We also ask GPT-4 to refine
the validation set based on the labels, which increases the
average score to 3.31. This refinement step enhances the
reliability of our evaluations when assessing 3D models on
validation sets. Detailed information about our scoring pro-
cess is provided in the Supplementary Material.

For the ViewQA dataset, we aim to enrich the diversity
and informativeness of the QA pairs. For each image, the
VLM generates 10 questions for each predefined type. We
then utilize GPT4 to rank these QA pairs based on crite-
ria such as relevance, clarity, and informativeness. Items
that fall below a certain threshold are excluded from the
dataset. This ranking and filtering process ensures that only
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Region Caption
I am in a corner near a window with a
wooden frame. To the left, there's a
green armchair, and in front of it is a
small ottoman with a colorful pattern.
To the right, there is a gray trash bin.

Region-text Alignment

Multi view QA
Question: What can you see after the
action? Answer: The table appears on
the right of the chairs.

Situation 1
〈𝑠pos, 𝑠𝑟𝑜𝑡〉

Situation 2
⟨𝑠pos, 𝑠𝑟𝑜𝑡⟩

Situation-Aware Reasoning

Single View QA
Q: What is to the left of the ottoman?  A:  armchair.

Dense Captioning

Visual Grounding

This is a single seat. It is

brown and placed close

to the glass round table.

The wooden coffee

table. The table is

near the round seat

at the corner.

Action
Turn Left 90 degree. Move forward 0.1m.

Si
tu
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n
 

G
ro

u
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gLarge Language 
Model

Point Cloud Encoder

Crop

VLM +

VLM +

Figure 2. Overview of our method. The left part illustrates the process of region-text alignment. Paired point cloud and caption data are
generated using VLM and RGB-D videos. The LLM is fine-tuned to align features from the point cloud encoder and generated region
caption. For situation grounding, the region caption is fed into the LLM to predict the viewpoint of the observer spos and srot. The right
part shows the situation-aware instruction tuning process, where QA data is generated using multi-view images and corresponding actions.

the most pertinent and well-constructed QA pairs are re-
tained, thereby enhancing the overall quality of the dataset.

In total, we collect more than 200K situation descriptions
and 550K QA pairs using 2,841 scans from ScanNet [10],
3RScan [37], and Matterport3D [4] datasets, which is 10x
large than the SQA [26]. Our average situation text length
(54.73) is much longer than SQA3D (17.49). Our average
answer length of 5.74 is also longer. More detailed statistics
are provided in the Supplementary Material.

3.2. Model Architecture

Our model takes as input a point cloud P ∈ RN×6, rep-
resenting a 3D scan where each point includes spatial co-
ordinates and RGB color information. Additionally, it pro-
cesses a situation description s and a task instruction t. The
goal is to generate the task answer a. In addition, we ask the
model to predict the situation position spos = (x, y, z) ∈ R3

and the rotation of the front view direction represented as
a quaternion srot = (qx, qy, qz, w), where qx, qy, and qz
are the vector components representing the axis of rotation
scaled by w.
Point Cloud Encoder. The point cloud P is segmented
into K instances {Pk}, each representing an object in the
scene. For each instance, we group the points into local

patches {pk,l}Lk

l=1, where Lk is the number of patches in in-
stance k. Each patch contains neighboring points grouped
based on spatial proximity. The patch sequence along
with a special token [CLS] is processed by a Vision Trans-
former (ViT) [13] to obtain instance feature vk. The point
cloud encoder [45] is fine-tuned on a large-scale 3D object
dataset [12] in the classification task.
Connector. To enhance the spatial relationships between
objects [17, 18], we employ spatial attention layers [6] to
fuse the coordinates of objects with their semantic features.
This fusion effectively integrates spatial and semantic in-
formation, which is crucial for comprehensive scene under-
standing. Subsequently, to map the instance-level features
into the embedding space of the LLM, we utilize a simple
multilayer perceptron (MLP) fproj to obtain the processed
visual tokens corresponding to the object instances in the
scene:

ṽk = fproj(vk). (1)

This projection ensures that the visual features are compat-
ible with the LLM’s embedding space.
Large Language Model. Following multimodal LLM ap-
proaches, we tokenize the visual features and interleave
them with text tokens to serve as input to the LLM. Specif-
ically, the input sequence begins with system messages and
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the situation description ts, followed by the visual tokens,
and concludes with the task instruction t:

Input = [ts, ṽ1, ṽ2, . . . , ṽK , t]. (2)

This structure allows the LLM to process the visual context
within the flow of textual information. During the forward
pass, the LLM processes the entire input sequence and gen-
erates hidden states for each token. We introduce a special
grounding token [GRD] in the output sequence. Let {hk}
represent the hidden state corresponding to the visual to-
kens {ṽk} and hGRD as the hidden state corresponding to
this grounding token.
Situation Grounding Module. Directly predicting the situ-
ation’s absolute position spos and rotation spos in 3D space
is challenging due to the complexity of estimating precise
spatial coordinates and orientations. To simplify this task,
we propose using anchor points derived from objects within
the scene. Specifically, we treat each object as an anchor,
utilizing its center coordinates apos

k and rotation arot
k as ref-

erence points. Consequently, we only need to predict the
offset ∆pk ∈ R3 from the anchor position to the situation
position and the angular difference θk between the anchor
rotation and the situation rotation, as illustrated in Fig. 3.
The blue circles and arrows shows the anchor apos

k and arot
k .

The greens are ground truth. The dotted line shows the off-
set from apos

k to spos
k . The solid arrow shows the predicted

rotation is rotated by θ from arot
k . We set each arot

k point to
the center of the room. Beacuse estimating the front face of
each object is a difficult problem.

For rotation prediction, we convert the regression prob-
lem into a classification problem. Considering rotations
around the vertical axis (i.e., yaw rotation) as an example
(see Fig. 3), we discretize the rotation angle into B bins
ranging from −π to π. The target angular difference θk can
then be represented by the bin index b̂k for anchor k:

θ̂k = −π +
2π

B

(
b̂k +

1

2

)
. (3)

We employ another MLP fgrd to predict the confidence
score ck ∈ [0, 1], the position offset ∆pk, and the rotation
bin b̂k. Here, hGRD is the hidden state of the grounding
token from the LLM’s output, and hk is the hidden state
corresponding to the visual token ṽk of anchor k:

(ck, ∆pk, b̂k) = fgrd ([hGRD; hk]) , (4)

where [hGRD; hk] denotes the concatenation of the two hid-
den states. The predicted situation position for anchor k is
then computed as:

ŝpos
k = apos

k +∆pk. (5)

During inference, we select the most confident anchor
k∗ = argmaxk ck, and use its predictions for the situation

GT 𝑠pos GT 𝑠𝑟𝑜𝑡
Anchor
𝑠𝑝𝑜𝑠

Anchor 
𝑠𝑟𝑜𝑡

𝜃
offset

Figure 3. Situation prediciton. We treat each object as anchor
(blue), where the center is apos

k . We set each arot
k point to the cen-

ter of the room. Ground truth position and rotation are shown in
green. The dotted line shows the offset from apos

k to spos
k . The solid

arrow shown the predicted rotation is rotated by θ from arot
k .

position and rotation, i.e., ŝpos = ŝpos
k∗ , θ̂ = θ̂k∗ . Then, the

predicted angular difference θ̂ is mapped back to a quater-
nion representation for the situation rotation. Assuming the
anchor’s rotation arot

k∗ is known, the situation rotation ŝrot

is calculated by applying the rotation difference to the an-
chor’s rotation:

δŝrot =

(
0, 0, sin

(
θ̂

2

)
, cos

(
θ̂

2

))
, (6)

ŝrot = arot
k∗ ⊗ δŝrot, (7)

where ⊗ denotes quaternion multiplication. By transform-
ing the prediction task into estimating relative offsets and
rotations with respect to anchor points, we reduce the com-
plexity associated with directly predicting absolute posi-
tions and orientations in 3D space.

3.3. Training
Our training process comprises three stages. In the first
stage, we train the connector to align the point cloud fea-
tures with the text embedding space. In the second stage,
we train the situation grounding module using the situation
grounding task, enhancing the LLM’s situational awareness
within 3D environments. In the final stage, we fine-tune
the entire model using downstream instruction data to fur-
ther improve its performance. Throughout all stages, we
fine-tune the LLM using LoRA [16], and we utilize LLaMa
3.1 [35] as the base LLM.
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Region Text Alignment. To achieve point cloud-text align-
ment, we map the point cloud to images, ensuring that we
retain only the objects that are visible within the images. We
also incorporate depth information to filter out object point
clouds that are completely occluded in the corresponding
view. This results in region-text pairs, linking specific re-
gions of the point cloud to their corresponding textual de-
scriptions. Compared to prior methods [8, 18] that rely on
scene captions, our approach simplifies the training process
by reducing the number of objects, eliminating ambiguity
in spatial relationships due to explicit viewpoint informa-
tion, and increasing the number of training samples. A sin-
gle scene can be divided into multiple regions, providing
diverse contexts for training.
Situation Grounding. After establishing the point cloud-
text alignment, we proceed with the situation grounding.
During training, we supervise only the anchors whose posi-
tions are within a distance threshold D of the ground truth
situation position spos. Formally, the set of supervised an-
chors is given by:

K =
{
k
∣∣ ∥∥apos

k − spos
∥∥
2
≤ D

}
.

For these anchors, the position loss is defined as:

Lpos =
∑
k∈K

∥∥ŝpos
k − spos

∥∥2
2
, (8)

where ŝpos
k is the predicted situation position for anchor k.

The rotation loss is given by:

Lrot = −
∑
k∈K

B∑
b=1

yb log p
rot
k,b, (9)

where prot
k,b is the predicted probability for rotation bin b

for anchor k, and yb is the one-hot encoding of the ground
truth rotation bin corresponding to the angular difference
between arot

k and srot. The confidence loss encourages the
confidence scores ck to reflect the anchors’ proximity to the
ground truth position:

Lconf =
∑
k

∣∣ck − exp
(
−α

∥∥apos
k − spos

∥∥
2

)∣∣ , (10)

with α being a scaling factor controlling the decay rate.
During inference, we select the most confident anchor k∗ =
argmaxk ck and use its predictions for the situation posi-
tion and rotation.
Instruction Tuning. After training with situation aware-
ness, we finetune the LLM on downstream 3D reasoning
tasks. The task answer loss is defined as the standard cross-
entropy loss for language modeling:

Lans = −
T∑

i=1

logP (ai | a<i, Input), (11)

where T is the length of the task answer a, and
P (ai | a<i, Input) is the probability of generating token
ai.

4. Experiments

4.1. 3D Scene Understanding
Overview. We evaluate our method on three well-
established 3D scene understanding tasks. Specifically,
Scan2Cap [10] requires the model to generate captions of
each object in the scene regarding their category, attributes,
and neighbor content. ScanQA [1] requires the model to
answer questions related to objects in 3D. SQA3D [26] re-
quires the model to answer questions under particular sit-
uations described by the text. We investigate how well
our method can perform 3D VL understanding and reason-
ing tasks, especially when compared against task-specific
models [3, 27] and existing generalist models [15, 18].
We evaluate our model using conventional text generation
metrics, including CIDEr [36], BLEU [30], METEOR [2],
and ROUGE-L [24], and open-ended generation metric
Sentence-Sim [32] and refined exact-match accuracy [18].
Following 3D-VisTA [46], we utilize object proposals from
Mask3D [33] instead of ground-truth object segments for
evaluation.
Results and Analysis. Existing methods for 3D scene un-
derstanding can be categorized into two streams: special-
ist models and generalist models. Specialist models are
designed specifically for individual tasks only. General-
ist models i.e. LEO [18] allow for joint training and infer-
ence across different datasets without changing the network
structure. Compared with LEO, our method surpasses 2.8
CIDEr scores on Scan2Cap and 4% on EM@1 on SQA3D.
This improvement underscores the effectiveness of integrat-
ing 3D situational awareness into LLMs for enhancing 3D
scene understanding and reasoning capabilities.

4.2. Situation Grounding
Overview. In this part, we evaluate our method’s ability
to predict the position and orientation of agents based on
textual descriptions using the SQA3D dataset. This dataset
provides 26,000 situational descriptions, making it a com-
prehensive benchmark for 3D scene understanding from an
egocentric perspective. To assess our model’s performance
on situation grounding, we use the four metrics: Acc@0.5m
and Acc@1.0m, which are the percentages of position pre-
dictions within 0.5 meters and 1.0 meters of the ground truth
on the x-y plane; Acc@15° and Acc@30°, which are the
percentages of rotation predictions within 15 degrees and 30
degrees of the ground truth around the z-axis (yaw rotation).
The experiments in Table 3 demonstrate that our model ef-
fectively grounds textual descriptions into accurate spatial
positions and orientations within 3D scenes. This highlights
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Model Scan2Cap (val) ScanQA (val) SQA3D (test)

C B-4 M R Sim C B-4 M R EM@1 EM@1

Task-specific models
Scan2Cap [10] 35.2 22.4 21.4 43.5 - - - - - - 41.0
3DJCG [3] 47.7 31.5 24.3 51.8 - - - - - - -
Vote2Cap-DETR [7] 61.8 34.5 26.2 54.4 - - - - - - -
ScanRefer+MCAN - - - - - 55.4 7.9 11.5 30.0 18.6 -
ClipBERT - - - - - - - - - - 43.3
ScanQA [1] - - - - - 64.9 10.1 13.1 33.3 21.1 47.2
SIG3D[27] - - - - - 68.8 12.4 13.4 35.9 - 52.6

Generalist models
3D-VisTA [46] 66.9 34.0 27.1 54.3 53.8 69.6 10.4 13.9 35.7 22.4 48.5
3D-LLM (FlanT5) 69.4 12.0 14.5 35.7 - - - - - - -
LL3DA [8] 65.2 36.8 26.0 55.1 - 76.8 13.5 15.9 37.3 - -
LEO [18] 72.4 38.2 27.9 58.1 55.3 101.4 13.2 20.4 49.2 24.5 (47.6) 50.0 (52.4)
Ours 75.2 38.9 29.0 58.7 56.3 89.8 14.6 17.5 42.9 22.9 (40.2) 54.0 (56.0)

Table 2. Quantitative comparison with state-of-the-art models on 3D VL understanding tasks. “C” stands for “CIDEr”, “B-4” for “BLEU-
4”, “M” for “METEOR”, “R” for “ROUGE”, “Sim” for sentence similarity, and “EM@1” for top-1 exact match. The n-gram metrics for
Scan2Cap are governed by IoU@0.5. Entries in gray indicate using ground truth question-relative object annotations.

Model Localization Orientation

Acc@0.5m Acc@1.0m Acc@15◦ Acc@30◦

Random 7.2 25.8 8.4 16.9
SQA3D [26] 9.5 29.6 8.7 16.5
SQA3D (separate) 10.3 31.4 17.1 22.8
3D-VisTA [46] 11.7 34.5 16.9 24.2
SIG3D∗ [27] 16.8 35.2 23.4 26.3
Ours 17.4 36.9 24.1 28.5

Table 3. Performance comparison of different models on localiza-
tion and orientation metrics. ∗ indicates our reproduction using
their open-sourced code.

its potential for real-world applications where precise local-
ization and orientation based on language inputs are crucial.

4.3. Situation Captioning
Describing the 3D environment from a first-person perspec-
tive is a critical task in embodied applications, such as nav-
igation. In this experiment, we evaluate 3D LLMs on the
task of generating region-level captions conditioned on a
given situation. We start by using the agent’s positional
and rotational data, along with the camera position, to fil-
ter the point cloud to only the region visible to the agent.
This filtered point cloud is then fed into the model to gener-
ate captions. The evaluation is conducted on 7,074 samples
from the ScanNet validation set. We consider two types of
captions: simple captions, which focus only on the main
objects, and detailed captions, which capture the full envi-
ronment in greater detail. The results, presented in Table 4,
show that LEO trained solely on object and scene-level cap-
tioning data perform poorly on situation captioning tasks. In
contrast, our View2Cap data significantly improves perfor-

Type Data C B-4 M R Sim

Simple

SceneCap 5.7 2.5 12.9 18.5 49.7
SceneVerse 5.7 2.5 12.9 18.5 49.7

View2Cap (S) 31.3 14.1 17.8 38.1 64.0
View2Cap 36.0 15.0 18.5 38.5 65.4

Detail

SceneCap 1.5 0.5 8.6 15.8 50.9
SceneVerse 4.3 1.5 8.6 15.8 50.9

View2Cap (D) 11.2 11.8 19.1 29.8 69.0
View2Cap 12.5 12.2 19.9 29.9 70.0

Table 4. Result on situation captioning training with different data.

mance. Additionally, training with both simple and detailed
captioning data yields better results compared to using only
one type of captioning data, suggesting that a diverse range
of captioning styles can enhance model training and perfor-
mance.

4.4. Situation Question Answering

We evaluate our model’s performance on the situational
VQA task using our generated ViewQA dataset. For the
single-view QA, we input the region point cloud into the
model, similar to the procedure in the situational captioning
task. For the multi-view QA, we provide the model with a
scene-level point cloud along with a situational description
that includes the starting point and actions as conditions.
The model is then tasked with answering questions about
the differences or new views resulting from this action. The
validation set comprises 8,287 questions derived from the
ScanNet dataset. As shown in Table 6, incorporating the
Situation Grounding (SG) Module for situational prediction
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In this Dining Room scene, there are 5 chairs, 2 carts, 1 cabinet, and 3 backpacks. The cabinet is positioned to the right of the 
cart, while the cart is to the left of the cabinet. The chair is also to the left of the cabinet, and to the right of the cart. The objects 
in this room suggest a functional and organized space, suitable for dining or social gatherings. The chairs provide seating, the
cabinet offers storage, and the carts can be used for serving or transportation.

SceneVerse

Detail: I am standing in a well-lit room with a modern interior. In front of me is a sleek, black rectangular 
table with a glass vase containing vibrant green plants on the left side. To the right of the table, there are 
two gray pillows with black stripes neatly placed against the wall. On the table, an open book lies flat, and 
in front of it, a clear glass with a green rim and a white tag stands next to another glass. To the left, there's 
a glass container with a green lid and a white price tag attached to it. The overall setting appears to be a 
modern living room or a showroom with a minimalist aesthetic.

Simple: I am in a modern living room. In front of me, there is a long black table with a clear vase of 
green plants and a stack of book on it.

Simple: I am in a living room. There is a black table with papers and three chairs next it.

Detail: I am in a room with a desk in the foreground. On the desk, there's a black surface with various
items scattered on it, including papers, a red backpack hanging on a chair, and a plastic bag. To the left of
the desk is a wooden shelf with some objects on it. In the background, there's a television set and a yellow
bag on a stand. The room has a dark ambiance with some bright spots, possibly from a light source outside
the frame.

Figure 4. Examples of our View2Cap situation captions against SceneVerse. We mark facts in green and spatial relations in blue .

Localization Orientation

Acc@0.5m Acc@1.0m Acc@15◦ Acc@30◦

LEO w. SG 8.3 30.4 10.9 19.5
+ Anchor 13.7 32.2 16.9 21.8
+ Discrect bins 13.6 32.3 21.6 25.0
+ View2Cap 17.4 36.9 24.1 28.5

Table 5. Ablations of our designs on situation grounding.

and utilizing the View2Cap data for region-text alignment
significantly improves performance on our ViewQA task.

4.5. Qualitative Analysis
Fig. 4 presents the qualitative example of our View2Cap
dataset complete against scene graph based generation
method SceneVerse [20]. The first column shows the Scen-
eVerse caption, it just summarizes the objects in the scene
and describes the relation of objects in predefined rules.
While our method gives more detailed object descriptions
and accurate spatial relationships. For instance, the caption
from SceneVerse ignores the glass vase and opened books
on the table as our View2Cap describes.

4.6. Ablation Study
Design of Situation Grounding Module. We test different
designs of situation grounding modules as shown in Table 5.
Compared with the model without anchors, the localiza-
tion Acc@1.0m improves 5.4%, indicating that the anchor
mechanism can help the model narrow down the situation in
a smaller range. Additionally, using the discrete bins to pre-
dict the rotation provides more accurate angles. Pretraining
using View2Cap on the captioning task can improve both
the position and rotation performance.

ViewQA SQA3D ScanRefer

EM EM-R EM EM-R Acc@0.25 Acc@0.5

LEO 39.3 44.1 62.8 52.4 36.1 30.8
+ SG module 40.2 45.3 50.8 53.2 38.3 32.9
+ View2Cap 42.0 46.6 54.0 56.0 42.8 38.4

Table 6. Ablations of our designs on situation-aware reasoning.

Effectiveness of Situation Data. To evaluate the effective-
ness of situation data, we test the performance of the model
on SQA3D, as it requires both the situation grounding and
QA ability. We also test the influence of situation data on
3D visual grounding, as it also needs to infer the situation to
distinguish distractors. The result in Table 6 shows that pre-
training on our proposed View2Cap and situation grounding
can effectively improve the performance on those tasks that
need situation awareness.

5. Conclusion
In this paper, we presented a novel approach to enhance
3D LLMs with situational awareness. Recognizing the
limitations of existing methods that overlook the egocen-
tric perspective inherent in 3D environments, we proposed
the automatic generation of a situation-aware dataset called
View2Cap. By leveraging the scanning trajectories from
RGB-D video data and utilizing powerful VLMs, we pro-
duced high-quality captions and QA pairs that capture the
dynamic viewpoints of an observer moving through a 3D
scene. Furthermore, we introduced a situation grounding
module, enabling LLMs to ground textual descriptions to
situations in 3D space explicitly. We hope our work will ad-
vance the first-person 3D understanding of embodied tasks.
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