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Abstract—Face hallucination is a domain-specific super-resolution problem that aims to generate a high-resolution (HR) face image

from a low-resolution (LR) input. In contrast to the existing patch-wise super-resolution models that divide a face image into regular

patches and independently apply LR to HR mapping to each patch, we implement deep reinforcement learning and develop a novel

attention-aware face hallucination (Attention-FH) framework, which recurrently learns to attend a sequence of patches and performs

facial part enhancement by fully exploiting the global interdependency of the image. Specifically, our proposed framework incorporates

two components: a recurrent policy network for dynamically specifying a new attended region at each time step based on the status of

the super-resolved image and the past attended region sequence, and a local enhancement network for selected patch hallucination

and global state updating. The Attention-FH model jointly learns the recurrent policy network and local enhancement network through

maximizing a long-term reward that reflects the hallucination result with respect to the whole HR image. Extensive experiments

demonstrate that our Attention-FH significantly outperforms the state-of-the-art methods on in-the-wild face images with large pose and

illumination variations.

Index Terms—Face hallucination, reinforcement learning, recurrent neural network

Ç

1 INTRODUCTION

FACE hallucination, a.k.a. facial image super-resolution,
aims to generate a high-resolution (HR) face image from a

given low-resolution (LR) input. Face hallucination is a funda-
mental problem in the field of face analysis and has drawn
considerable research attention due to the need for solving
this problem in various face-related tasks, including face attri-
bute recognition [1], face alignment [2], [3] and face recogni-
tion [4], under complex low-quality real-world scenarios.

As a special form of general image super-resolution, obvi-
ous structural prior information exists in face images, which
is therefore widely used in existing face hallucination algo-
rithms [5], [6], [7]. Face prior information is usually embedded
into the existing face hallucination models in the form of
face component analysis [8], facial correspondence field [7]
and facial landmark localization [6]. However, the calculation
of this prior information requires additional calculations,
and accurate parsing of the landmarks is difficult in low-
resolution situations. Therefore, there is a series of work
attempts to replace the fine-grained face prior computation
with rough patch-wise super-resolving mapping, which can
improve the efficiency of the algorithm while achieving com-
parable performance. Due to differences in appearance of
facial organs and the natural symmetry of the facial region,

existing patch-wise face hallucination methods either extract
patches from detected facial landmarks or simply divide the
face image into even patches and then independently perform
LR to HR mapping on each detected patch [9], [10], [11],
[12]. Specifically, end-to-end deep convolutional networks
(CNNs) have recently achieved great success in learning
discriminative patch-to-patch mapping from LR images to
HR images [7], [13]. However, face structure priors and spa-
tial configurations [14], [15] are often treated as external infor-
mation, and the contextual dependencies among the super-
resolution reconstruction of each patch are usually ignored
during the hallucination processing.

The difficulty of super-resolution reconstruction also
varies due to the inconsistency in the degree of detail deterio-
ration of each facial part. On the other hand, the symmetry of
the human face and the similarity in the appearance of the
adjacent regions make previously hallucinated HR patches
worthy of reference to the latter. Therefore, during the pro-
cess of face hallucination, the reconstruction sequence of
patches and the selection of patch locations at each step are
crucial for global face hallucination, which is consistent
with the human visual perception mechanism. When people
observe a scene object, they usually start with perceiving the
whole image and successively explore a sequence of regions
via the attention shifting mechanism rather than separately
processing the local regions. This finding motivates us to
explore a new pipeline for face hallucination by sequentially
searching for the local attention regions and considering
their contextual dependency from a global perspective.

Inspired by the effectiveness of recurrent visual attention
modeling for visual analysis and understanding [16], [17],
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[18], [19], we propose an attention-aware face hallucination
(Attention-FH) framework that fully exploits the global con-
textual information of the face to recurrently discover and
enhance a series of local face regions. Specifically, account-
ing for the diverse characteristics of face images in terms of
blur, pose, illumination and facial appearance, we model
the face hallucination problem as a strategy optimization
problem for patch sequence selection and implement a
search for an optimal enhancement route. We resort to the
deep reinforcement learning (RL) model [20] to sequentially
determine local patches for enhancement, as the RL tech-
nique has shown promising results on decision-making
problems without the need for supervision information at
each step.

Specifically, our Attention-FH framework jointly opti-
mizes a recurrent policy network that learns to identify the
facial region to be hallucinated at each time step and a local
enhancement network for facial part super-resolution by
considering the whole face image with previously enhanced
parts. In our framework, rich correlation cues among differ-
ent facial parts are explicitly exploited to guide the current
region assignment, while past hallucination results are
incorporated as a global reference during local enhance-
ment in each step. In this way, the agent can make full use
of the symmetry of the human face and the adjacent regions
to assist in obtaining more accurate facial part hallucination
reconstruction. For example, the agent can improve the
enhancement of the right eye region by taking a clear ver-
sion of the left eye region as reference.

Instead of performing supervision in each step, we
employ a single global reward for RL, which measures the
overall performance of the entire hallucinated HR face. The
optimization of the recurrent policy network is updated fol-
lowing the RL algorithm [21], which can be treated as a Mar-
kov decision process (MDP) maximized with a long-term
global reward. At each time step, the policy network learns
to determine the location and the size of an optimal rectan-
gular facial region by conditioning on the whole face image
with all previously enhanced results and the encoded action
history. A gated recurrent unit (GRU) layer is employed to
encode the information from the previously attended facial
regions. All the previously determined regions are also
recorded to avoid duplicated selection of a region in a recur-
rent mode.

Given the attended facial region in each step, the local
enhancement network is trained for hallucination recon-
struction, and its loss is defined as the L2 distance between
the part hallucination result and the specific ground truth.
Compared with whole-face super-resolution, the structure
of facial components (attended parts) is stable and easy
to restored. Notably, the supervision information from the
enhancement of facial parts also effectively reduces unneces-
sary trial and error during the reinforcement optimization.

We compare the proposed Attention-FH approach
with state-of-the-art face hallucination methods under
both constrained and unconstrained settings. Extensive
experiments show that our method substantially outper-
forms all the alternative methods. Moreover, our frame-
work can explicitly generate a sequence of attentional
regions during the hallucination, which finely accords
with the human perception process and to some extent

provides an interpretable mechanism in the hallucination
recovery process.

A preliminary version of this work is published in [22].
In this work, we inherit the idea of exploring the interde-
pendency of facial components and redevelop the policy
network from the perspective of the attention mechanism
and reinforcement optimization. The improvement upon
the initial version includes size-free attention and a new
reward function designed to maximize the stability of the
RL. We have also added a comprehensive discussion of the
design of the local enhancement network and greatly
improved its efficiency while maintaining its performance.
Moreover, we present more comparisons with state-of-the-
art models and a more comprehensive ablation study on
our proposed framework.

The rest of this paper is organized as follows. Section 2
reviews related work on face hallucination and deep RL. In
Section 3, we introduce our proposed Attention-FH model.
Section 4 provides extensive performance evaluation and
comparisons with state-of-the-art models. Finally, we con-
clude this paper in Section 5.

2 RELATED WORK

Face Hallucination and Image Super-Resolution. Face hallucina-
tion is a domain-specific image super-resolution problem
proposed to map a LR facial image to its HR version. With
obvious prior knowledge, face hallucination methods are
required to handle extremely degraded faces and restore
complex structural information. Early approaches hypothe-
sized that corrupted faces are in a relatively controlled envi-
ronment with small variations. Yang et al. [9] enforced LR
and HR images to have similar sparse representations and
implemented image super-resolution by taking into account
the sparsity prior. Wang et al. [23] decomposed faces into
different frequency bands and hallucinated faces by eigen-
transformation. By contrast, structured face hallucination
(SFH) [10] pre-aligns faces and establishes the mapping
between facial components. SFH not only achieves impres-
sive results but also reveals that facial components are cru-
cial in face hallucination. However, SFH relies heavily on
pre-alignment, making it difficult to cope with situations
where illumination and pose changes are considerable.
More recently, deep neural networks have shown impres-
sive performance in face hallucination and image restora-
tion [13], [15], [24], [25], [26]. Dong et al. [15] employed a
fully convolutional network (FCN) for image SR. Kim
et al. [24] made a very deep CNN for image SR trainable by
adopting a highway connection. Reed et al. [27] proposed
an efficient sampling strategy to demonstrate high-quality
image reconstruction. Ulyanov et al. [28] further demon-
strated that deep neural networks can make full use of prior
knowledge of the image itself to rebuild a corrupted image.
Shocher et al. [26] employed a novel internal learning
approach to fully explore LR inputs. UR-DGN [29] is
claimed to be the first face SR method that uses a generative
adversarial network. Tuzel et al. [25] claimed that global
information is crucial to face hallucination and established a
local and global network to restore faces.

However, all these existing deep learning models
attempt to improve the performance of face hallucination
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by designing deeper and more complex neural network
structures. In this work, we start from the perspective of
human cognition and model the face hallucination process
as a patch-wise local reconstruction problem. We introduce
a deep RL-based optimization method to learn a series of
ordered patch hallucination sequences. For patch-wise hal-
lucination,which is not our main focus, we draw on an exist-
ing FCN-based framework and incorporate it into our
Attention-FH model for end-to-end training. We firmly
believe that the Attention-FH framework proposed in this
paper is compatible with any existing deep super-resolution
models and will benefit from the future improvement of
super-resolution algorithms.

Attention and Reinforcement Learning. Visual attention
modeling is inspired by the human visual perception system.
Visual attention modeling is widely embedded in existing
deep neural networks in the form of adaptive featureweight-
ing or salient region localization and has been proved to be
effective in improving the performance of a series of com-
puter vision tasks, including object proposal [30], object clas-
sification [31], relationship detection [32], image captioning
[33] and visual question answering [34]. Some works have
exploited RL to optimize the attention networks to address
the problem that the coordinates of attended regions are not
differentiable. For example [35] and [36], learned an agent
that actively locates the target regions (face or objects)
instead of exhaustively sliding subwindows on images.
Goodrich et al. [35] defined 32 actions to shift the focal point
and reward the agent when spotting the target. Caicedo
et al. [36] defined an action set that contains several transfor-
mations of the bounding box and rewarded the agent if the
bounding box became closer to the ground truth in each
step. Both of these methods learned an optimal policy to
locate the target throughQ-learning.

3 METHODOLOGY

3.1 Inference Overview

Wedevelop anAttention-FH to perform face hallucination in
a coarse-to-fine manner. Specifically, Attention-FH is com-
posed of two parts: a recurrent policy network that learns to
adaptively locate a particular facial region for local halluci-
nation, and a local enhancement network that directly learns
to map a located facial patch with LR to its HR version, con-
sidering both the local and global perspective.

Given a face image Ilr with LR, the target of our proposed
Attention-FH framework is to generate the corresponding
HR version Ihr through a series of iterative local patch
enhancements, which can be formulated as:

Ihr ¼ F ðIlrjuÞ; (1)

where u denotes the parameters of the Attention-FH model,
and F is the whole hallucinating procedure.

Given a state s, the recurrent policy network is learned to
predict the actions lt, including the center position of the
next attended rectangular region and the size of the bound-
ing box. The attended patch is further cropped and fed as
input to a local enhancement network for super-resolution.
This process can be formulated as:

lt ¼ fpðst�1; upÞ;
Îltt�1 ¼ gðlt; It�1Þ;

(2)

where up is the parameters of the recurrent policy network,
fp indicates the recurrent policy network and It�1 denotes
the restored face image at step t� 1. The state st�1 is a vec-
tor, encoded with the current state, and g refers to the crop-
ping operation, which is applied to crop the corresponding

patch Îltt�1 given action lt.

Fig. 1. Pipeline of Attention-FH. The proposed framework contains two modules: the policy network and the local enhancement network. In each
step, the attention agent glimpses the whole image and provides actions. Each action indicates the center position of the next attended rectangular
region and the size of the bounding box. The attended patch is further fed as input to a local enhancement network for super-resolution. We use the
red solid bounding boxes and the blue dashed bounding boxes to indicate the attended patch and enhanced patch, respectively. A global reward is
given at the end of the sequence to enforce the policy network to learn the optimal restoring route. With the two components, we can perform a
coarse-to-fine face hallucination paradigm.
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Given attention patch Î ltt�1, the local enhancement net-
work fe is adopted for hallucination.

Îltt ¼ feðÎltt�1; It�1; ueÞ: (3)

where ue is the parameter of the local enhancement network

and Îltt indicates the enhanced patch. After local enhance-
ment, we replace Î ltt�1 with Î ltt . Specifically, the restored face
image It for the next step t is produced by replacing the
existing patch Îltt�1 with the enhanced patch Îltt . The overall
coarse-to-fine face hallucination can be defined as:

I0 ¼ Ilr
It ¼ fðIt�1; uÞ 1 � t � T;
Ihr ¼ IT

8<
: (4)

where I0 is the original corrupted face image, It indicates
the enhanced full-sized facial image at each step t, T is the
maximal recurrent step, u ¼ ½up; ue� and f ¼ ½fp; fe�. T is set
to 18 according to our empirical analyses, which are pre-
sented in Section 4.

3.2 Recurrent Policy Network

The recurrent policy network is designed to cooperate with
a recurrent neural network to optimize a time-sequence of
attended regions for local enhancement. As illustrated in
Fig. 2, the Attention-FH framework is composed of a recur-
rent policy network and a local enhancement network. The
recurrent policy network can be formulated as a decision-
making process for optimal patch selection on time inter-
vals. At each step, the policy network takes as input the con-
catenation feature vector (i.e., the state), which contains the
current enhanced image, the original corrupted image and
the encoded historical actions, and learns to determine the

optimal image patch to be enhanced at each time step. In
Table 1, we illustrate the architecture of feature extractor. At
the final time step T , a global delayed reward, which is mea-
sured in terms of the accumulated attended rate and the
mean squared error (MSE) between the hallucinated image
and the corresponding ground truth, is used to guide the
training of the policy network. The agent learns to predict
the most appropriate restoring route for different identities
by maximizing the global delayed reward.

State. To provide rich contextual information, the state of
the agent is designed to contain the three following types of
information. 1) The enhanced face It from previous steps,
which enables the agent to determine the patch that needs
to be repaired at the next time step by fully sensing the rich
contextual information (e.g., the region that is still LR and
needs to be enhanced). It is represented as a global feature
vector vt extracted from the output of a fully connected
layer. 2) The original corrupted face image I0, which is also
encoded with a global feature vector v0, as with the
enhanced facial image. 3) The encoded history action vector
vl obtained by forwarding all previous action vectors
fh0; h1; . . . ; ht�1g into the GRU network. The output hidden
variable of the GRU thus encodes all previous action infor-
mation and is denoted as vl. We formulate the state st with
size of 512 � 1 to encode multiple contextual information
fvt; v0; vlg. In this way, the target of the agent is to determine
the region cropping action (including the location and the
size) of the next attended local patch by considering the
state st.

Action. Given state st, the agent attempts to generate an
action indication, which represents the next attended local
region Î ltt�1 (cropping from the last hallucinated image Ît�1)
for enhancement. Due to the large differences in the orienta-
tion and size of faces in in-the-wild cases, the use of a fixed-
size attention bounding box to capture all facial components
is not optimal. To this end, we propose a content-adaptive
and size-free attention mechanism for better local region
extraction. Specifically, to fully capture one facial compo-
nent, the agent needs to predict the ðx; y; w; hÞ of a rectangu-
lar region at each time step, where x; y; w, and h,
respectively, refers to the center coordinates and the width
and height of the bounding box. Let W and H be the width
and height of the target hallucinated facial image, and let
x; y ¼ ðx; yj1 � x � W; 1 � y � HÞ. To reduce the search

Fig. 2. Network architecture of our Attention-FH. At each time step t, the recurrent policy network outputs the actions by observing the original cor-
rupted face image I0, the current enhanced face image It�1 and the historical actions vl. Meanwhile, vl is encoded by latent variables (e.g., 64 hidden
states) of GRU. I0 and It�1 are first represented as high-level features from an output feature vector of a fully connected layer and are then
concatenated to form a vector of 128 dimensions. The above three corresponding pieces of information constitute the state s. The GRU layer learns
to infer the action probabilities by considering s. The output probabilities are formulated by a fully connected linear layer (128 neurons) for all candi-

date actions. Given the actions, we can obtain the local patch Îltt�1. Then, Î
lt
t�1 is sent to the local enhancement network for hallucinating, which results

in the enhanced patch Îltt . Finally, a new hallucinated face is generated by replacing Îltt�1 with Îltt .

TABLE 1
Detailed Setting of Each Component in the Feature Extractor

1 2 3 4 5

layer conv conv conv conv fc
stride 2 2 2 2 -
size 64 32 16 8 64
kernel 5 3 3 3 -
channel 8 8 16 32 1
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space, we give up the free search of the width and height
and instead attempt to predict the ratio factor IDratio and
the scale factor IDscale. IDratio is used to control the length-
width ratio. Empirical candidates for IDratio include
f3 : 2; 1 : 1; 2 : 3g. As shown in Fig. 3, the bounding box is
adapted w.r.t the ratio factor and is thus sufficiently flexible
to handle various facial components. The scale factor IDscale

is adopted to represent the overall size of the attention box.
With the sample factors, the size of the attention box can be
obtained by:

Lh ¼Z � IDh
scale

Lw ¼Lh=IDratio � IDw
scale;

(5)

where Lh and Lw are the height and the width of the atten-
tion box, respectively. Z is a constant value that specifies the
initial size of the attended region. Here, we set Z to 60. The
action lt consists of fx; y; IDratio; IDscale; g. The GRU takes
the state st as input and generates a 128 � 1 hidden vector
vc, which is fed to a fully connected layer to infer the action
of the next step. We employ a tensor with the same size as
the full image to ensure that the attended region can be
accommodated.

Reward. The reward function is designed to guide the
training of the recurrent policy network for the optimization
of a time sequence of attended patches for local enhance-
ment. We consider two factors when designing our reward
function. 1) The MSE between the hallucinated image
after T steps of local enhancement and the corresponding
HR image. Specifically, let IT be the enhanced image at
the last step T , and let Is be the image restored by the super-
resolution generative adversarial network (SRGAN) [37].
We first compute their MSEs with respect to the correspond-
ing HR ground truth, denoted as ET and ESRGAN . The first
term of our reward function is defined as ET � ESRGAN . ET

measures the absolute peak signal-to-noise ratio (PSNR) of
the restored image while the introduction of the second
ESRGAN replaces the reward function with the relative
change in PSNR, which better reflects the evolution of each
iteration and greatly enhances the stability of the model
training. For instance, the PSNR of a restored image with
simple details is usually much higher than that of an image
with a relatively complex texture. By subtracting ESRGAN ,
the reward function can better reflect the incremental situa-
tion of model training and thus apply more accurate
rewards and punishments. 2) The attention rate, which is
introduced to indicate whether the attended region has cov-
ered the whole image. In detail, a tensor T0 of the same size
as the full image is employed. Initially, T0 is set with all
zeros, and once a region is visited, its corresponding value

is set to 1. We sum the tensor T0 to Ev at the last step to
reflect the attention ratio. The total reward function can be
written as:

rt ¼ 0 t < T
ET � ESRGAN þ EV t ¼ T:

�
(6)

During training, we set the reward in a global manner,
i.e., the reward is assigned after step T is completed. The
recurrent policy network is trained to maximize this reward
via the REINFORCE algorithm [21].

Algorithm 1. Learning Algorithm of Attention-FH

Require: Training LR face images Ilr; HR face images Ihr; Initial
actions h0

1: while t ¼ 1 do
2: Represent Ilr, Ilr, h0 as feature vectors v0, v0, v

0
l

3: Obtain state s0 :¼ fvt; v0; v0l g
4: Obtain actions l0 :¼ fpðs0; upÞ
5: Crop out patch with respect to actions Î

l0
0 :¼ gðl0; I0Þ

6: Enhance the patch Î
l0
1 :¼ feðÎl00 ; I0; It; IG; ueÞ

7: Replace I
l0
0 with Î

l0
1 to produce restored image I1

8: Update ue via Î
l0
0 and ground truth patch Î

l0
gt :

@Le

@feðue;Îl00 Þ
9: end while
10: while t � T do
11: Represent Ilr, Ilr as feature vectors vt, v0
12: Forward all previous action vectors fh0; h1; . . . ; ht�1g

and obtain history actions vl
13: Obtain state st :¼ fvt; v0; vlg
14: Obtain actions lt :¼ fpðst; upÞ
15: Crop out patch with respect to actions Îltt :¼ gðlt; ItÞ
16: Enhance the patch Îlttþ1 :¼ feðÎltt ; I0; It; IG; ueÞ
17: Replace Iltt with Îlttþ1 to produce restored image It
18: Update ue via Î

lt
t and ground truth patch Îltgt:

@Le

@feðue;Îltt Þ19: if t ¼ T then
20: Calculate reward rt :¼ ET � ESRGAN þ EV

21: Update up via REINFORCE algorithm: dr
dlt

:¼ a � ðr�
bÞ � d lnðfpðx;ltÞÞ

dlt
22: end if
23: end while

3.3 Local Enhancement Network

Given an attended patch from the recurrent policy network,
the local enhancement network fp is employed for halluci-
nation. To provide comprehensive contextual information,
fp takes the following three components as input: 1) The
attended patch Îltt , which is represented by masking the out-
side area of the input image (setting the value of the region
outside the selected patch to zero while keeping the pixels
inside intact). 2) The current enhanced facial image It (with
all previously hallucinated results pasted on), which pro-
vides global contextual information for the enhancement of
the current patch. 3) The original corrupted image I0, 4)
and the global context IG, which is calculated by expanding
st to the dimension equal to the size of the input image I0 by
a fully connected layer followed by a reshaping operation

(i.e., IG is of the same shape of I0). fÎ ltt ; It; I0; IGg are
concatenated and further fed into the local enhancement
network. To achieve a trade-off between performance and
efficiency, we adopt a reduced version of LapSRN as our
local enhancement network. The simplified settings of

Fig. 3. A demonstration of size-free attention. As the facial part has dif-
ferent sizes with particular identities, our method locates the region with
a flexible attention mechanism.
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LapSRN are listed in Table 2. We resize the three input com-
ponents to the same size as the LR corrupted image without
interpolation to improve the efficiency of our model. The
local enhancement network is fully convolutional and is
composed of 5 convolutional and 2 deconvolutional layers.
The convolutional layers all have a stride of 1, the kernels of
the head and tail layers are of size 5 � 5 and the kernels of
the other layers are of size 3 � 3. By incorporating two
deconvolutional layers with stride 2, the network is able to
learn to reconstruct the resolution of the corrupted patch in
a cascaded manner. At the end of the local enhancement
network, the LR input image is upscaled to the target reso-
lution. We crop out the attended region in the hallucinated
result w.r.t its size and location. The cropped HR patch Îlttþ1

is added to the accumulated enhanced result It. Finally, the
residual between the attention patch Îltt and the ground
truth face image Ihr can be estimated by the well-trained
local enhancement network.

3.4 Model Training

We illustrate the training strategy of our Attention-FH in
Fig. 4. The recurrent policy network, which learns to obtain
the attentional patch by maximizing the reinforced reward,
is shown in Fig. 2 (1). Fig. 2 (2) shows the local enhancement
network, which learns to enhance the attended patch in an
end-to-end mode by minimizing the MSE.

In the training phase, the recurrent policy network is
optimized by the REINFORCE algorithm [21], guided by
the reward calculated at the end of sequential enhancement
when the maximum time step T is reached. The local
enhancement network is optimized to minimize the L2 dis-
tance between the restored patch and its corresponding HR
ground truth. The supervised loss is calculated at each time
step and can be minimized based on backpropagation. After
calculating the last step of attending patches for local
enhancement, we obtain the global reward, which is lever-
aged to optimize the policy network.

The whole training algorithm of our Attention-FH is
illustrated in Algorithm 1, which accords with the pipeline
of our proposed framework shown in Fig. 1.

4 EXPERIMENTS

To demonstrate the advantages of our Attention-FH,
we have conducted extensive experiments on multiple
widely used benchmarks, i.e., CelebFaces Attributes Data-
set [1], Public Figures Face Dataset [38], Labeled Faces in the
Wild Dataset [39], Surveillance Cameras Face Dataset [40]
and BioID Face Dataset [41]. We first briefly introduce
the evaluation datasets, the corresponding evaluation

protocols and the implementation details. Then, we perform
comprehensive comparisons to verify the superiority of
our Attention-FH over all the compared state-of-the-art
approaches. Note that because the degradation types of face
hallucination are complex, we have employed several
down-sampling factors to evaluate our Attention-FH under
various challenging conditions. Finally, we have performed
detailed ablation studies to demonstrate the contribution of
each component within our Attention-FH.

4.1 Datasets and Evaluation Protocols

We employ the following seven public datasets under vari-
ous domains for a comprehensive evaluation to validate the
robustness of our Attention-FH to in-the-wild faces.

� CelebA [1] is a large-scale dataset that contains
202,599 in-the-wild face images with 10,177 identi-
ties. Following the settings in [1], we adopt 188,311
images for training and use the remaining 14,288 for
testing.

� SCface [40] consists of 4,160 images with 130 identi-
ties collected under an uncontrolled environment
using five video surveillance cameras in various sit-
uations. As video surveillance is one of the main
application scenarios for face hallucination, this
dataset can be used to evaluate the compared meth-
ods from a practical perspective. We utilize 2,405
images for training and the rest for testing.

� BioID [41] is a public dataset with 1,521 gray face
images, all taken in a laboratory from a frontal view.
We use 1,028 images for training and the remaining
493 images for testing.

� PubFig [38] is a large dataset with 58,797 real-world
face images collected from the Web. In our

TABLE 2
Detailed Setting of Each Component in the Local

Enhancement Network

1 2 3 4 5 6 7

layer conv conv deconv conv deconv conv conv
stride 1 1 2 1 2 1 1
size 8 16 32 16 8 8 8
kernel 5 3 3 3 3 3 5
channel 64 32 32 32 8 8 1

Fig. 4. Detailed training procedure of our Attention-FH. The local
enhancement network is optimized via the L2 loss between the restored
patch and the corresponding HR ground truth. After performing the last
step, we calculate the global reward and pass the policy gradient to
optimize the recurrent policy network.
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experiment, 11,041 images are utilized for training,
and the remaining 6,425 images are used for testing.

� LFW [39] contains 13,233 in-the-wild face images
with 5,749 identities. We split the dataset w.r.t the
partitions mentioned in [39].

� Multi-PIE [42] contains images of 337 subjects cap-
tured from complicated perspectives and under
complex illumination conditions in four different
sessions. We use 126,093 images for training and
31,524 images for testing.

� Extended Yale-B [43] is a large face dataset that con-
tains 16,128 images of 28 identities under 9 poses
and 64 illumination conditions. We randomly choose

12,908 images for training and 3,220 images for
evaluation.

In terms of the evaluation metrics, we exploit PSNR and
structural similarity (SSIM) to measure the performance of
the compared methods. For a comprehensive evaluation, the
feature similarity is also compared by adopting FSIM [44].

4.2 Implementation Details

All the datasets are first aligned with two points of the
eye regions by CFSS [45]. Then, we simply crop the
images to a size of 160 � 120 by prefetching the centric
region, except for the LFW dataset, the images of which
are cropped to 128 � 128. To ensure a fair comparison,

TABLE 3
Quantitative Comparison of Our Model and the Competing Methods in Terms of the PSNR Index

Dataset Scale Bicubic General SR Face Hallucination GAN Based Our

SRCNN VDSR BiCNN GLN SRGAN

PubFig �4 24.76 25.21 28.05 24.35 26.12 27.44 28.87
�8 20.75 21.31 21.94 20.69 21.33 23.45 23.59
�16 17.89 18.48 19.28 18.13 18.73 20.25 20.31

CelebA �4 25.76 26.01 28.38 24.93 29.92 28.17 30.58
�8 21.84 22.64 24.46 21.32 25.48 24.37 26.14
�16 18.78 19.80 20.07 19.01 21.20 21.99 22.63

SCface �4 26.15 26.54 31.59 26.04 29.84 30.10 34.01
�8 20.83 21.68 24.12 20.67 24.10 24.72 26.04
�16 17.15 18.45 20.32 17.21 18.28 20.63 22.19

BioID �4 24.59 25.71 29.38 23.16 26.71 28.16 33.38
�8 20.24 21.85 23.95 20.14 22.03 23.23 27.81
�16 17.15 18.45 19.41 17.11 19.85 21.59 23.48

LFW �4 26.79 28.94 32.11 26.60 30.34 31.41 32.93
�8 21.92 23.92 24.12 22.62 24.51 25.49 27.81
�16 19.95 21.34 22.40 20.82 22.44 23.01 23.13

We use bold face and underline to indicate the first and second place in each dataset.

TABLE 4
Quantitative Comparison of Our Model and the Competing Methods in Terms of the SSIM Index

Dataset Scale Bicubic General SR Face Hallucination GAN Based Our

SRCNN VDSR BiCNN GLN SRGAN

PubFig �4 0.7600 0.7708 0.8262 0.7167 0.7793 0.8197 0.8587
�8 0.5782 0.5819 0.5822 0.5651 0.5375 0.6747 0.6805
�16 0.4581 0.4584 0.4761 0.4660 0.4203 0.5384 0.5394

CelebA �4 0.7672 0.7717 0.8115 0.7663 0.8587 0.8214 0.8711
�8 0.6107 0.6228 0.6747 0.6093 0.7141 0.6749 0.7441
�16 0.5016 0.4995 0.5042 0.5019 0.5307 0.5946 0.6316

SCface �4 0.8367 0.8435 0.9036 0.8396 0.8848 0.8907 0.9356
�8 0.6303 0.6493 0.7009 0.6291 0.7132 0.7567 0.7983
�16 0.4821 0.5018 0.5355 0.4823 0.4962 0.6175 0.6835

BioID �4 0.8056 0.8244 0.8618 0.6719 0.8333 0.8600 0.9418
�8 0.6189 0.6196 0.6676 0.5657 0.5996 0.6806 0.8568
�16 0.4821 0.5018 0.4908 0.4572 0.5305 0.6546 0.7376

LFW �4 0.8469 0.8686 0.8917 0.8329 0.8922 0.9247 0.9418
�8 0.6712 0.6927 0.7031 0.6801 0.7109 0.7314 0.8568
�16 0.5617 0.5742 0.5879 0.5838 0.6132 0.6449 0.6542

We use bold face and underline to indicate the first and second place in each dataset.
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all the methods are trained on only the corresponding
training set, without using the other datasets for pre-
training. We evaluate our method with scaling factors
of �4, �8 and �16 to model different types of situations.
In addition, we also normalize the input images into
½�1; 1�. The recurrent time step T of the policy network is
set to 18 to achieve a trade-off between efficiency and
accuracy. The setting of the recurrent time step T is also
investigated in Section 4.5. Our Attention-FH is trained
using ADAM gradient descent [46] with a base learning
rate of 3� 10�4, a weight decay of 1e�7, and a momentum
term of 0.5. The training batch size is 16. Considering the
absolute free attention region can lead to unstable per-
formance, we impose some empirical constraints on the
size-free attention mechanism, i.e., the length and width
of the attention region are customized with respect to the
ScaleID and RatioID, which are evaluated in Section 4.5.

4.3 Competing Methods

We compare our method with several state-of-the-art
methods, including SRCNN [15], VDSR [24], SFH [10],
BiCNN [13], GLN [25], and SRGAN [37]. These methods
can be categorized into three groups: (i) general image
super-resolution: SRCNN and VDSR; (ii) face hallucination:
SFH, BiCNN and GLN; and (iii) generative adversarial
learning: SRGAN. The first and second types are commonly
applied to address regular image and face image restora-
tion, respectively, while the third one is widely used in
image generation and has achieved impressive results.

4.4 Quantitative and Qualitative Comparisons

As illustrated in Tables 3, 4, 5, and 6, our Attention-FH
consistently outperforms all the compared state-of-the-art
methods, with clear margins in terms of all evaluation met-
rics. Attention-FH outperforms the best of the competing
methods with 2.42 dB, 1.32 dB, and 1.56 dB on the SCface

dataset with respect to the PSNR index, respectively. More-
over, our Attention-FH surpasses all the competing meth-
ods by large margins on all datasets when the scaling
factor is small (e.g., 4). These results confirm the significant
superiority of our Attention-FH. Note that we do not pres-
ent the quantitative results of SFH [10], which relies
heavily on face alignment and thus may fail to handle
some testing images.

The visual comparison on the SCface dataset is presented in
Fig. 5. Since the SCface dataset is similar to a real-world sce-
nario, the dataset can be employed to explicitly validate theper-
formance of each hallucination approach in terms of
practicability. As shown in Fig. 5, regular super-resolution
methods produce hallucinated facial images with blurry pre-
dictions. By contrast, our Attention-FH can generate faces with
well-maintained facial structure. This result demonstrates that
our Attention-FH is capable of deblurring and anti-aliasing
facial images to preserve the structural information.

The qualitative results shown in Figs. 6, 7 and 8 demonstrate
that our Attention-FH achieves significant improvements in
restoration quality compared with all the competing methods.
In addition, the attention mechanism also benefits our Atten-
tion-FH when addressing variation in pose, illumination and
facial appearance. As depicted in Fig. 6, the facial expression of
thewoman in the third row is a ‘smile’ with hermouth opened,
and the latter woman has a ‘smile’ with her mouth closed. Our
Attention-FH outperforms all the competing methods in suc-
cessfully addressing these two casewith corrupted inputs. Fur-
thermore, our Attention-FH can even hallucinate the man in
the eighth row with ‘glasses’, which is extremely challenging
for all the compared state-of-the-art approaches. As demon-
strated in Fig. 8, our Attention-FH can recover naturally accept-
able facial images even after substantial information has been
lost by downsampling.

To further verify the effectiveness of our model, we
also compare our proposed Attention-FH with some meth-
ods [47], [48], [49] proposed after the conference version of

TABLE 5
Quantitative Comparison of Our Model and the Competing Methods in Terms of the FSIM Index

Dataset Scale Bicubic General SR Face Hallucination GAN Based Our

SRCNN VDSR BiCNN GLN SRGAN

PubFig �4 0.8454 0.8581 0.8942 0.8748 0.8748 0.8892 0.9099
�8 0.7337 0.7604 0.7587 0.7669 0.7669 0.8081 0.8121
�16 0.6360 0.7872 0.7207 0.7151 0.7151 0.7297 0.7346

CelebA �4 0.8565 0.8634 0.8890 0.9148 0.9148 0.8956 0.9211
�8 0.7514 0.7762 0.8077 0.8290 0.8290 0.8066 0.8410
�16 0.6511 0.7098 0.6980 0.7331 0.7331 0.7552 0.7628

SCface �4 0.8813 0.8906 0.9321 0.9185 0.9185 0.9205 0.9513
�8 0.7518 0.7893 0.8195 0.8318 0.8318 0.8437 0.8675
�16 0.6487 0.7055 0.7236 0.6955 0.6955 0.7586 0.7977

BioID �4 0.8538 0.8767 0.9066 0.8926 0.8926 0.9012 0.9571
�8 0.7405 0.7800 0.7977 0.7803 0.7803 0.8162 0.9072
�16 0.6487 0.7055 0.7104 0.7379 0.7379 0.7849 0.8336

LFW �4 0.8947 0.9069 0.9300 0.8982 0.9151 0.9384 0.9571
�8 0.7824 0.8314 0.8391 0.7903 0.8405 0.8278 0.9072
�16 0.6771 0.7454 0.7595 0.7243 0.7788 0.7722 0.7824

We use bold face and underline to indicate the first and second place in each dataset.
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this paper. Pixel-SR [48] and Image Transformer [49] exhibit
good performance in general object hallucination, and
enhanced deep super-resolution network (EDSR) is famous
for generating clear structures in general image SR. Since
Pixel-SR and Image Transformer aim to hallucinate small-
size objects (e.g., 32 � 32 pixels), the target resolution of
face hallucination (e.g., 128 � 128 pixels) may lead to GPU
memory explosion. Hence, following the official implemen-
tation, we conduct patch-based learning and combine the
restored patches into a full image for evaluation. As shown
in Table 7, our model produces better results than the other
methods, except for EDSR. Nevertheless, Attention-FH is
sufficiently flexible to incorporate EDSR as the local
enhancement network to improve performance. We reduce
the number of recurrent steps to 4 and implement EDSR
for local enhancement. “Our-EDSR” achieves superior per-
formance to EDSR as we expected, which well illustrates
the flexibility and effectiveness of the proposed model. Fur-
thermore, we average the results of three model snapshots
with different iterations (after convergence) of “Our-EDSR”
and “EDSR” for comparison. As illustrated in Table 7,
“Our-EDSR ensemble” achieves superior performance.

Additionally, we compare Attention-FH on general
image super-resolution with state-of-the-art image SR
approaches (i.e., VDSR, LapSRN, MemNet [50] and
IDN [51]). We follow the training scheme of IDN [51]
and conduct experiments on Set14 [52] to demonstrate
the performance of our method on arbitrary domain
images. With the overall parameter number fixed, we
adaptively decrease the recurrent step and build up the
local enhancement network for better image SR. As
shown in Table 8, our method consistently outperforms
all the compared methods on the �2, �3 and �4 settings.
Though Attention-FH is indeed capable of restoring the
general image well, our model is still a face hallucination
framework. By incorporating recurrent attention

mechanism, Attention-FH is specialized in low-resolution
faces and achieves much greater advantages in the task
of face hallucination.

4.5 Ablation Study on the Policy Network

To demonstrate the effectiveness of the policy network, we
compare several variants of our Attention-FH as baseline
methods, i.e., “CNN-16”, “Our w/o attention”, “Our w/
random”, “Our w/ sequences”, “Our w/o size-free” and
“Our w/ I0 agent”. “CNN-16” indicates a plain convolution
network with 16 layers. “Our w/o attention” refers to that
the whole face image is recursively enhanced via a recurrent
model from a holistic perspective instead of attending
patches. “Our w/ random” denotes that we randomly select
the attention region to perform random patch-based
enhancement. “Our w/ sequences” scans through the
whole image in sequence. “Our w/o size-free” uses a fixed
attention box inside the policy network. “Our w/ I0 agent”
replaces It with I0 as the input for the policy network. More-
over, we also consider the complicated transformation
mechanism that excludes RL, e.g., Attention-FH with spatial
transform net (STN) [53] (denoted as “STN”), which is capa-
ble of learning to select informative patches for face halluci-
nation by estimating the subgradients w.r.t the location of
the captured patch.

To demonstrate the superiority of the policy network,
we conduct a comparison with the STN [53]. Specifically,
our Attention-FH and the STN both employ a paramount
patch mining strategy. STN chooses the patch by learn-
ing auxiliary terms by minimizing the MSE, and our
Attention-FH employs RL to iteratively identify the cor-
rect attention region. Therefore, we conduct STN [53] for
comparison to illustrate the strengths of RL. For STN,
the outputs of the policy network are replaced with a
vector fx; yg, which indicates the corresponding coordi-
nates to extract the patch. We fix the transform scale to

Fig. 5. Qualitative comparisons on the SCface [40] dataset with a scaling factor of 8. The testing faces are captured by surveillance cameras, similarly
to practical scenarios. This figure is best viewed by zooming in on the electronic version.
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ensure an attended patch size of 60� 45. As shown in
Table 9, our full model outperforms STN by a clear mar-
gin. This result confirms that RL is beneficial in crucial
region mining for face hallucination.

4.5.1 Effectiveness of Patch-Wise Enhancement

As shown in Table 9, our full model surpasses “Our w/o
attention” by 0.73 dB and 0.28 dB on the LFW dataset with
the scaling factors of 4 and 8, respectively. This justifies that

Fig. 6. Qualitative comparison on the PubFig [38] dataset with a scaling factor of 8. The image is best viewed by zooming in on the
electronic version.
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Fig. 7. Qualitative comparison on the PubFig [38] dataset with a scaling factor of 4. The image is best viewed by zooming in on the
electronic version.

Fig. 8. Qualitative comparison on the PubFig [38] dataset with a scaling factor of 16. The image is best viewed by zooming in on the
electronic version.
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in-the-wild faces are too changeable to restore, however
individual facial parts are relatively stable and can be
exploited for partial enhancement. Besides, “Our w/ ran-
dom” obtains a significant improvement over “CNN-16”,
which indicates that the multiple recurrent enhancements
itself help to improve the image recovery. Furthermore, our
full model achieves consistently higher PSNR values than
“Our w/ random” due to the crucial patch sequence optimi-
zation implemented via RL.

4.5.2 Effectiveness of Sequentially Attending Patches

We demonstrate the contribution of sequentially attending
patches from the perspective of the attention agent. As illus-
trated in Table 9, we first input the face image without
enhancements into the policy network, e.g., “Our w/ I0
agent”, and observe that the performance (PSNR) degrades
on the LFW dataset with scaling factors of 4 and 8. By con-
trast, our full model produces better scores. This result
proves that the restored patch not only improves the final
face image but also leads the agent to select more accurate
region sequence for restoration.

4.5.3 Effectiveness of Increasing Recursion Depth

To demonstrate the sensitivity of our Attention-FH in terms
of the recursive step T , we explore the effect of different
recursive steps T for sequentially enhancing facial parts. Spe-
cifically, we conduct the experiment under five different set-
tings (T ¼ 5; 15; 18; 25; 35) of recursive step on the LFW
dataset with scaling factors of 4 and 8. Fig. 9 shows that the
face hallucination performance gradually increases with
increasing number of attention steps. The PSNR measure
improves dramatically when the number of recursion steps
is small, as the extracted patches are still not enough to cover
the whole image. When the number of recursion steps
reaches more than 15, the extracted patches are generally

enough to cover the whole image. Beyond 15 steps, the step-
wise performance improvement in PSNR becomes negligi-
ble. This phenomenon becomes more obvious as the number
of steps approaches 25. Owing to the size-free attention strat-
egy and stabilized reward function, we can obtain consider-
able restored quality under the PSNRmetric when T is set to
18. In our experiment, we empirically set T ¼ 18 considering
the acceptable computational costs under practical scenarios.

4.5.4 Effectiveness of the Stabilized Reward Function

We conduct an experiment to validate the contribution of
the proposed reward function. Compared with former
reward function, our stabilized reward function incorpo-
rates PSNR gain value instead of absolute PSNR value as
the reward. Given the renewal reward, Attention-FH dem-
onstrates an accurate attention agent towards face halluci-

TABLE 6
Comparison on Multi-PIE [42] and Extended Yale-B [43]

Algorithm Multi-PIE �8 Yale-B �8

Bicubic 21.11 24.67
SRCNN 24.53 25.69
VDSR 26.12 26.57
GLN 28.17 25.98
SRGAN 28.26 27.32
Our 27.81 28.89

TABLE 7
Comparison of Our Proposed Model with Deeper Inferences

Algorithm LFW �8 LFW �16

Pixel-SR 21.11 20.47
Image Transformer 24.53 22.22
DRCN 26.43 22.39
EDSR 28.17 24.10
EDSR ensemble 28.26 24.21
Our 27.81 23.13
Our-EDSR 28.25 24.23
Our-EDSR ensemble 28.30 24.28

TABLE 8
Comparison on General Image Super-Resolution

Algorithm �2 �3 �4

Bicubic 30.24 27.55 26.00
VDSR 33.03 29.77 28.01
LapSRN 32.99 29.79 28.09
MemNet [50] 33.28 30.00 28.26
IDN [51] 33.30 29.99 28.31
Our 33.34 33.07 28.33

TABLE 9
Comparison of Our Proposed Model Under Different Settings

Algorithm LFW �4 LFW �8

CNN-16 29.11 24.02
Our w/o attention 32.29 25.69
Our w/ random 31.63 25.74
Our w/ sequences 31.78 25.98
Our w/o size-free 32.89 26.12
Our w/ I0 agent 32.12 25.97
STN [53] 28.13 25.75
Our 33.02 26.24

Fig. 9. PSNR comparison on the variants of our Attention-FH using dif-
ferent numbers of steps for sequentially enhancing facial parts on the
LFW dataset. T ¼ 18 achieves a balance between accuracy and
efficiency.
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nation. As shown in Fig. 10, our reward function achieves
more stable performance with lower variance. Furthermore,
compared with the reward function from our preliminary
conference version, this new reward function leads to
higher and more stable PSNR results for our Attention-FH.

4.5.5 Effectiveness of the Size-Free Attention

Mechanism

As depicted in Fig. 3, our facial component has a different size
for each identity. We improve our policy network by imple-
menting a flexible attention mechanism to attend the facial
part accurately. We conduct an ablation study by adopting a
fixed attention box in the policy network, named “Our w/o
size-free”, to validate the effectiveness. This model has the
same settings as our full model, except for using a 60 � 60
attention box. Table 9 shows that although “Our w/o size-
free” produces favorable results, our Attention-FH achieves
0.13 dB and 0.12 dB improvements with scaling factors of 4
and 8, respectively. These results confirm the contribution of
the proposed size-free attentionmechanism.

4.6 Ablation Study on the Local Enhancement
Network

Since the pipeline of our Attention-FH is flexible and
extensional, we investigate the use of different network

architectures as the local enhancement network. To make
the investigation comprehensive, we consider several
methods, namely, VDSR [24], Sub-pixel [54], GLN [25],
LapSRN [55], U-Net [56] and FSRCNN [57]. For U-
Net [56], we reduce the parameters to avoid the case that
the model is too large to train. As shown in Table 10,
LapSRN [55] achieves the best results while U-Net [56] is
the most efficient method for generating hallucinated faces.
However, neither method exhibits distinct differences in
terms of PSNR under the recurrent attention mechanism.
We choose FSRCNN [57] as the implementation of our
local enhancement network based on the trade-off between
efficiency and accuracy.

4.7 Efficiency Analysis

We have also conducted an experimental comparison to
verify the efficiency of Attention-FH. The results in Table 11
demonstrate that our Attention-FH requires very little
time cost to achieve the superior performance. Compared
with EDSR, our model achieves remarkable parameter

Fig. 10. We enhance the reward function by improving its stability. We
redefine the previous reward function from our preliminary conference
version by means of a more accurate baseline and achieve superior
performance.

TABLE 10
Experimental Study of the Trade-off between Efficiency and

Accuracy on Different Local Enhancement Network
Architectures

Algorithm PSNR Time (millisecond)

VDSR [24] 23.56 0.312
Sub-pixel [54] 23.59 0.066
GLN [25] 23.63 0.092
LapSRN [55] 23.64 0.081
U-Net [56] 23.60 0.057
FSRCNN [57] 23.64 0.075

This analysis is conducted on images of size 120�160.

TABLE 11
Efficiency Comparison on the PubFig Dataset with a Scaling

Factor of 8

Method Parameter PSNR Time

Number (frame/second)

VDSR [24] 664,704 21.94 0.025
EDSR [47] 2,463,217 24.21 0.045
Our 1,706,850 23.62 0.092

Fig. 11. Visual results on profile n occlusion samples. We conduct this comparison on LFW [39] with �8 factor. Best viewed by zooming in the elec-
tronic version.
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advantages. As Attention-FH is less efficient than VDSR, the
proposed model achieves significant improvement over res-
toration quality. With a single GPU, Attention-FH is able to
perform real-time efficiency. However, Attention-FH still
meets an efficiency bottleneck when it is deployed on the
mobile platform.

4.8 Limitations

In this section, we discuss the limitation of Attention-FH.
With the novel attention mechanism, our model is capable
of hallucinating profile n occlusion faces well. However,
Attention-FH may hallucinate the incorrect facial part if the
occluded content is close to facial component. As shown in
the last row of Fig. 11, Attention-FH hallucinate a mouth in
the occlusion area, which occurred by hand. This failure
case illustrates the limitation that Attention-FH meets an
upper bound on complex occlusion samples. We will fur-
ther improve Attention-FH by enhancing the generalization
ability towards complex occlusion cases.

5 CONCLUSION

In this paper, we have proposed a deep RL-based attention
mechanism to address the problem of face hallucination.
In contrast to traditional patch-wise face hallucination
models that usually neglect the interdependency between
facial components, our framework implements a deep RL
model and jointly optimizes a recurrent policy network,
which learns to determine an ordered patch hallucination
sequence, and a local enhancement network for facial part
super-resolution. Our Attention-FH fully reflects the human
visual perception mechanism and is capable of adaptively
inferring an optimal search path for each facial image
according to its unique appearance features. Extensive
experiments show that Attention-FH outperforms state-
of-the-art face hallucination methods and achieves leading
performance on both widely used evaluation protocols and
visual quality comparisons.
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