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Abstract—Facial landmark localization plays a critical role
in face recognition and analysis. In this paper, we propose
a novel cascaded backbone-branches fully convolutional neural
network (BB-FCN) for rapidly and accurately localizing facial
landmarks in unconstrained and cluttered settings. Our proposed
BB-FCN generates facial landmark response maps directly from
raw images without any preprocessing. BB-FCN follows a coarse-
to-fine cascaded pipeline, which consists of a backbone network
to roughly detect the locations of all facial landmarks and one
branch network for each type of detected landmark to further
refine its location. Furthermore, to facilitate the facial landmark
localization under unconstrained settings, we propose a large-scale
benchmark named SYSU16K, which contains 16 000 faces with
large variations in pose, expression, illumination, and resolution.
Extensive experimental evaluations demonstrate that our proposed
BB-FCN can significantly outperform the state of the art under
both constrained (i.e., within detected facial regions only) and
unconstrained settings. We further confirm that high-quality facial
landmarks localized with our proposed network can also improve
the precision and recall of face detection.

Index Terms—Facial landmark localization, cascaded backbone-
branches, fully convolutional neural networks, unconstrained
settings.

I. INTRODUCTION

FACIAL landmark localization1 aims to automatically pre-
dict key point positions in facial image regions. This task

is an essential component in many face-related applications,
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Fig. 1. Facial landmark localization in an unconstrained setting. (a) Two
cluttered images with an unknown number of faces. (b) Dense response maps
generated by our method.

such as facial attribute analysis [1], face verification [2], [3] and
face recognition [4]–[6]. Although tremendous effort has been
devoted to this topic, its performance is still far from perfect,
particularly on facial regions with severe occlusions or extreme
head poses.

Most of the existing approaches for facial landmark localiza-
tion have been developed for a controlled setting, e.g., the facial
regions are detected in a preprocessing step. This setting has
drawbacks when we work with images taken in the wild (e.g.,
cluttered surveillance scenes), where automated face detection
is not always reliable. The objective of this work is to propose
an effective and efficient facial landmark localization method
that is capable of handling images taken in unconstrained set-
tings and that contain multiple faces, extreme head poses and
occlusions (see Figure 1). Specifically, we keep the following
issues in mind when developing our algorithm.

� Faces may have large appearance and structure variations
in unconstrained settings due to diverse viewing condi-
tions, rich facial expressions, large pose changes, facial
accessories (e.g., glasses and hats) and aging. Therefore,
traditional global models may not work well because the
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usual assumptions (e.g., certain spatial layouts) may not
hold in such environments.

� Boosted-cascade-based fast face detectors, which evolved
from the seminal work of Viola and Jones [7], can only
work well for near-frontal faces under normal conditions.
Although accurate deformable-part-based models [8] can
perform much better on challenging datasets, these models
are slow due to their high complexity. Detection in an
image takes a few seconds, which makes such detectors
impractical for our task.

In this paper, we formulate facial landmark localization as a
pixel-labeling problem and develop a fully convolutional neural
network (FCN) to overcome the aforementioned issues. The
proposed approach produces facial landmark response maps
directly from raw images without relying on any preprocessing
or feature engineering. Two typical landmark response maps
generated with our method are shown in Figure 1.

With the recent advances in deep learning techniques and
large-scale annotated image datasets, such as ImageNet, deep
convolutional neural network models have achieved signifi-
cant progress in generic object detection [9], crowd analy-
sis [10], [11] and facial landmark localization [12]. Facial land-
mark localization is typically formulated as a regression prob-
lem. Among the existing methods that take this approach, the
cascaded deep convolutional neural networks [13], [14] have
emerged as one of the leading methods because of their su-
perior accuracy. Nevertheless, this three-level cascaded CNN
framework is complicated and unwieldy. It is arduous to jointly
handle the classification (i.e., whether a landmark exists) and lo-
calization problems for unconstrained settings. Long et al. [15]
recently proposed an FCN for pixel labeling, which takes an
input image with an arbitrary size and produces a dense label
map in the same resolution. This approach shows convincing
results for semantic image segmentation and is also very effi-
cient since convolutions are shared among overlapping image
patches. Notably, classification and localization can be simul-
taneously achieved with a dense label map. The success of this
work inspires us to adopt an FCN in our task, i.e., pixelwise facial
landmark prediction. Nevertheless, a specialized architecture is
required because our task requires more accurate prediction than
generic image labeling.

Considering both computational efficiency and localization
accuracy, we pose facial landmark localization as a cascaded
filtering process. In particular, the locations of facial landmarks
are first roughly detected in a global context, and then they are
refined by observing local regions. To this end, we introduce a
novel FCN architecture that naturally follows this coarse-to-fine
pipeline. Specifically, our architecture contains one backbone
network and several branches, with each branch corresponding
to one landmark type. For computational efficiency, the back-
bone network is designed to be an FCN with lightweight filters,
which takes a low-resolution image as its input and rapidly
generates an initial multichannel heat map with each channel
predicting the location of a specific landmark. We can obtain
landmark proposals from each channel of the initial heat map.
We then crop a region centered at every landmark proposal from
both the original input image and the corresponding channel of

the response map. These cropped regions are stacked together
and fed to a branch network for a fine and accurate localization.
Because fully connected layers are not used in either network,
we call our architecture the cascaded backbone-branches fully
convolutional network (BB-FCN). Thanks to the tailor-designed
architecture of the backbone network, which can reject most
background regions and retain high-quality landmark propos-
als, our BB-FCN is also capable of accurately localizing the
landmarks of various scale faces by rapidly scanning every level
of the constructed image pyramid. Furthermore, we have also
discovered that our landmark localization results can help gen-
erate fewer and higher-quality face proposals, thus enhancing
the accuracy and efficiency of face detection.

In summary, our contributions in this paper can be summa-
rized as follows:

� We propose a new BB-FCN architecture for facial land-
mark localization, which consists of a backbone network
for rough landmark prediction and a set of branch net-
works, where each network is for refining the predictions
of one specific type of landmark.

� We extensively evaluate BB-FCN on several standard
benchmarks (e.g., AFW [8], AFLW [16] and 300W [17]),
and our experiments show that BB-FCN achieves superior
performance in comparison to other state-of-the-art meth-
ods under both constrained (i.e., with face detections) and
unconstrained settings. In particular, our BB-FCN signif-
icantly decreases the average mean error of the current
best-performing method from 8.2% to 6.18% on AFW and
from 6.58% to 6.28% on AFLW.

� We use our facial landmark localization results to guide
R-CNN-based face detection and demonstrate significant
increases in both accuracy and efficiency.

The remainder of this paper is organized as follows. Section II
discusses related work and differentiates our method from such
works. Section III introduces our proposed BB-FCN architec-
ture. The experimental results and comparisons are presented in
Section IV. Finally, Section V concludes this paper.

II. RELATED WORK

Facial landmark localization has long been attempted in com-
puter vision, and a large number of approaches have been pro-
posed for this purpose. The conventional approaches for this task
can be divided into two categories: template fitting methods and
regression-based methods.

Template fitting methods build face templates to fit input
face appearance [18]. A representative work is the active ap-
pearance model (AAM) [18], which attempts to estimate model
parameters by minimizing the residual between the holistic ap-
pearance and an appearance model. A vast collection of methods
based on AAM have been proposed [19]–[21]. Rather than using
holistic representations, a constrained local model (CLM) [22]
learns an independent local detector for each facial keypoint
and a shape model for capturing valid facial deformations. Im-
proved versions of CLM primarily differ from each other in
terms of local detectors. For instance, Belhumeur et al. [23] de-
tected facial landmarks by employing SIFT features and SVM
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classifiers, and Liang et al. [24] applied AdaBoost to the HAAR
wavelet features. These methods are generally superior to the
holistic methods due to the robustness of patch detectors against
illumination variations and occlusions.

Regression-based facial landmark localization methods can
be further divided into direct mapping techniques and cascaded
regression models. The former directly maps local or global fa-
cial appearances to landmark locations. For example, Dantone
et al. [25] estimated the absolute coordinates of facial land-
marks directly from an ensemble of conditional regression trees
trained on facial appearances. Valstar et al. [26] applied boosted
regression to map the appearances of local image patches to
the positions of corresponding facial landmarks. Cascaded re-
gression models [27]–[33] formulate shape estimation as a re-
gression problem and make predictions in a cascaded manner.
These models typically start from an initial face shape and iter-
atively refine the shape according to learned regressors, which
map local appearance features to incremental shape adjustments
until convergence. Cao et al. [27] trained a cascaded nonlin-
ear regression model to infer an entire facial shape from an
input image using pairwise pixel-difference features. Burgos-
Artizzu et al. [34] proposed a novel cascaded regression model
for estimating both landmark positions and their occlusions us-
ing robust shape-indexed features. Another seminal method is
the supervised descent method (SDM) [29], which uses SIFT
features extracted around the current shape and minimizes a
nonlinear least-squares objective using the learned descent di-
rections. All these methods assume that an initial shape is given
in some form, e.g., a mean shape [29], [30]. However, this as-
sumption is too strict and may lead to poor performance on faces
with large pose variations.

Despite acknowledged successes, all the aforementioned con-
ventional approaches rely on complicated feature engineering
and parameter tuning, which consequently limits their perfor-
mance in cluttered and diverse settings. Recently, convolutional
neural networks and other deep learning models have been suc-
cessfully applied to various visual computing tasks, including fa-
cial landmark estimation. Zhou et al. [35] proposed a four-level
cascaded regression model based on CNNs, which sequentially
predicted landmark coordinates. Zhang et al. [12] employed a
deep architecture to jointly optimize facial landmark positions
with other related tasks, such as pose estimation [36] and fa-
cial expression recognition [37]. Zhang et al. [38] proposed a
new coarse-to-fine DAE pipeline to progressively refine facial
landmark locations. In 2016, they further presented de-corrupt
autoencoders to automatically recover the genuine appearance
of the occluded facial parts, followed by predicting the occlu-
sive facial landmarks [39]. Lai et al. [40] proposed an end-to-end
CNN architecture to learn highly discriminative shape-indexed
features and then refined the shape using the learned deep fea-
tures via sequential regressions. Merget et al. [41] integrated the
global context in a fully convolutional network based on dilated
convolutions for generating robust features for landmark local-
ization. Bulat et al. [42] utilized a facial super-resolution tech-
nique to locate the facial landmarks from low-resolution images.
Tang et al. [43] proposed quantized densely connected U-Nets
to largely improve the information flow, which helps to en-

hance the accuracy of landmark localization. RNN-based mod-
els [44]–[46] formulate facial landmark detection as a sequential
refinement process in an end-to-end manner. Recently, 3D face
models [47]–[51] have also been utilized to accurately locate the
landmarks by modeling the structure of facial landmarks. More-
over, many researchers have attempted to adapt some unsuper-
vised [52]–[54] or semisupervised [55] approaches to improve
the precision of facial landmark detectors.

Although these methods have achieved remarkable perfor-
mance, most of them were developed for a controlled setting,
which requires a detected frontal face as the input. These meth-
ods basically pose landmark estimation as a parameterized re-
gression process, e.g., mapping landmark coordinates, which
actually restricts the flexibility in practice due to the fixed form
of the parameterization. Such trained models struggle in uncon-
strained settings (e.g., unknown number of faces in an image).
In contrast, our approach produces pixelwise response maps,
making it very flexible in localizing facial landmarks in the wild
and in integrating with other methods.

III. THE CASCADED BB-FCN ARCHITECTURE

Given an unconstrained image I with an unknown number of
faces, our facial landmark localization method aims to locate all
facial landmarks in the image. We use Lk

i = (xk
i , yk

i ) to denote
the location of the ith landmark of type k in image I , where
xk

i and yk
i represent the coordinates of this landmark. Then, our

task is to obtain the complete set of landmarks in I ,

Det(I) = {(xk
i , yk

i )}i,k , (1)

where k = 1, 2, ...,K. When describing our method and ana-
lyzing the proposed network, we set K = 5 as an example, but
our method is also applicable to any other values of K. In the
experimental section, we will also present simultaneous local-
ization results for 29 landmark types and 68 landmark types.
Here, the five landmark types are the left eye (LE), right eye
(RE), nose (N), left mouth corner (LM) and right mouth corner
(RM).

In contrast to existing approaches that predict landmark loca-
tions through coordinate regression, we exploit FCNs to directly
produce response maps that indicate the probability of landmark
existence at every image location. FCNs have shown excellent
performance in various pixel-labeling problems, such as seman-
tic image segmentation [15], object contour detection [56] and
salient object detection [57]–[59]. Applying an FCN to an image
resembles a deep filtering process. An FCN naturally operates
on an input image of any size, and it produces an output with the
corresponding spatial dimensions. In our method, the predicted
value at each location of the response map can be viewed as a
series of filtering operations applied to a specific region of the
input image. This specific region is called the receptive field.
An ideal series of filters should have the following property: a
receptive field with a landmark of a specific type located at its
center should return a strong response value, whereas receptive
fields without that type of landmark in the center should yield
weak responses. Let FW k (P ) denote the result of applying a se-
ries of filtering functions with parameter setting Wk for type-k
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Fig. 2. The main architecture of the proposed backbone-branches fully convolutional neural network. This approach is capable of producing pixelwise facial
landmark response maps in a progressive manner. The backbone network first generates low-resolution response maps that identify approximate landmark locations
via a fully convolutional network. The branch networks then produce fine response maps over local regions for more accurate landmark localization. There are
K (e.g., K = 5) branches, each of which corresponds to one type of facial landmark and refines the related response map. Only downsampling, upsampling, and
prediction layers are shown, and intermediate convolutional layers are omitted in the network branches.

landmarks to receptive field P , and it is defined as follows:

FW k (P ) =

{
1 if P has a type-k landmark in the center;
0 otherwise.

(2)
Applying this function in a sliding window manner to w × h
overlapping receptive fields in an input image I generates a
response map FW k ∗ I of size w × h, whose value at location
(x, y) can be defined as

(FW k ∗ I)(x, y) = FW k (I(P (x, y))), (3)

where I(P (x, y)) stands for the image patch corresponding to
the receptive field of location (x, y) in the output response map.

If the response value is larger than a threshold θ, a landmark
of type k is detected at the center of the patch in image I . Thus,

Det(I)={(center of P (x, y))|(FW k ∗ I)(x, y) > θ}. (4)

According to Equation (3), there is a trade-off between lo-
calization accuracy and computational cost. To achieve high
accuracy, we need to compute response values for significantly
overlapping receptive fields. However, to accelerate the detec-
tion process, we should generate a coarse response map on less
overlapping receptive fields or from a lower-resolution image.
This motivates us to develop a cascaded coarse-to-fine pro-
cess to localize landmarks progressively, in a spirit similar to
the hierarchical deep networks in [60] for image classification.
Specifically, the architecture of our deep network consists of

two components. The first component generates a coarse re-
sponse map from a relatively low-resolution input, identifying
rough landmark locations. Then, the other component takes lo-
cal patches centered at every estimated landmark location and
applies another filtering process to the local patches to obtain a
fine response map for accurate landmark localization. This cas-
caded two-stage strategy enables us to accurately detect facial
landmarks at a high speed.

In this paper, this two-component architecture is implemented
as a BB-FCN, where the backbone network generates coarse
response maps for rough location inference and the branch net-
works produce fine response maps for accurate location refine-
ment. Figure 2 shows the architecture of our network.

Let a convolutional layer be denoted as C(n, h × w × ch)
and a deconvolutional layer be denoted as D(n, h × w × ch),
where n represents the number of kernels and h, w, and ch
respectively represent the height, width and number of channels
of a kernel. We also use MP to denote a max-pooling layer.
In our backbone-branch network, the stride of all convolutional
layers is 1, and the stride of all deconvolutional layers is 2. The
size of the max-pooling operator is set to 2 × 2, and the stride
for pooling is 2.

A. Backbone Network

The backbone network is an FCN. It can efficiently gen-
erate an initial low-resolution response map for input image
I . When localizing facial landmarks in an image taken in an
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Fig. 3. (a) An isolated point cannot accurately reflect discrepancies among
multiple annotations. The three points near the right mouth corner were anno-
tated by three different workers. (b) We label a landmark as a small circular
region rather than an as an isolated point in the ground-truth heat map.

unconstrained setting, it can effectively reject a majority of back-
ground regions with a threshold. Let Wc denote its parameters
and Hk (I;Wc) denote the predicted heat map of image I for
the kth type of landmarks. The value of Hk (I;Wc) at posi-
tion (x, y) can be computed with Equation (3). We train the
backbone FCN using the following loss function:

L1(I;Wc) =
K∑

k=1

||Hk (I;Wc) − Hk
c (I)||2 , (5)

where Hk
c (I) denotes the ground-truth heat map for type-k

landmarks.
The backbone network is trained with a patch-based opti-

mization scheme. During the training phase, the human faces
are cropped from the unconstrained crowded images and resized
to a low resolution of 32 × 32. Taking the cropped patches of
whole faces as input, the backbone network can implicitly learn
the geometric constraints among landmarks and generate the re-
sponse heat maps of all facial landmarks together. Specifically,
the backbone network consists of eight convolutional layers
with lightweight filters and two deconvolutional layers, which
are detailed as follows: C(20, 5 × 5 × 3) - C(20, 5 × 5 × 20)
- MP - C(30, 5 × 5 × 20) - C(30, 5 × 5 × 30) - MP -
C(40, 5 × 5 × 30) - C(40, 5 × 5 × 40) - D(30, 2 × 2 × 40) -
C(30, 5 × 5 × 30) - D(15, 2 × 2 × 30) - C(5, 1 × 1 × 15).

B. Branch Network

The branch network is composed of K branches, with each
branch responsible for detecting one type of landmark. All the
K branches are designed to share the same network structure. In
branch networks, a cropped patch from the original input image
and a region from the backbone’s output heat map are stacked
together as its input. Therefore, the input data consist of four
channels, including 3 channels from the original RGB image
and 1 channel from the corresponding channel of the backbone’s
output heat map. To make the branch network better suited for
landmark position refinement, we resize the original input image
to 64 × 64, which is four times the size of the backbone’s input,
and simultaneously magnify the heat map from the backbone

network to 64 × 64. The resolution of all the cropped patches
is 24 × 24, and they are all centered at the landmark position
predicted by the backbone network. As shown in Fig. 2, each
branch is trained in the same way as the backbone network.
We denote the parameters of the branch component for type-k
landmarks as Wk

f , and we respectively use H(P ;Wk
f ),Hk

0 (P )
to denote the predicted fine heat map and the corresponding
ground-truth heat map of patch P . The loss function of this
branch component is again defined as follows:

L2(P ;Wk
f ) = ||H(P ;Wk

f ) − Hk
0 (P )||2 . (6)

Each branch component is composed of 5 convolutional layers
without any pooling operations. The dimensionality of its input
data is 24 × 24 × 4. The first 4 convolutional layers consist of
5 channels with the kernel size equal to 5 and stride equal to
1, while the last convolutional layer consists of 5 channels with
a kernel size of 1 and stride of 1. As shown in Figure 2, each
branch FCN component is detailed as follows: C(5, 5 × 5 × 4) -
C(5, 5 × 5 × 5) - C(5, 5 × 5 × 5) - C(5, 5 × 5 × 5) - C(1, 1 ×
1 × 5).

C. Ground-Truth Heat Map Generation

To our knowledge, the ground truth of a facial landmark
is traditionally given as a single pixel location (x, y) in all
public datasets. To adapt such landmark specifications for the
training stage of our proposed BB-FCN network, we generate
the ground-truth heat map of an input image according to the
annotated facial landmark locations. The most straightforward
method assigns “1” to a single pixel corresponding to each
landmark location and “0” to the remaining pixels. However, we
argue that this method is suboptimal because an isolated point
cannot reflect discrepancies among multiple annotations. As
shown in Figure 4(a), the right mouth corner has three slightly
different locations marked by three annotators. To take such
discrepancies into consideration, we label each landmark as a
small region rather than as an isolated point. We first initialize
the heat map with zeros everywhere, and then for each landmark
p, we mark a circular region with center p and radius R in the
ground-truth heat map with 1. Different radii are adopted for
the backbone network and branch networks, denoted as Rc and
Rf , respectively. Rf is set to be smaller than Rc because the
backbone network estimates coarse landmark positions while
the branch networks predict accurate landmark locations.

D. Selective Response Map Training

According to Equations (5) and (6), the loss is computed over
the full response map. However, this approach gives rise to a
severe imbalance between positive and negative training sam-
ples because landmarks are very sparse. This unbalanced setting
could mislead the response map to take all zero values when the
loss is minimized. Therefore, we adopt a selective scheme, i.e.,
randomly choosing the same number of non-landmark loca-
tions as landmark locations in the ground-truth response map to
propagate the errors while inhibiting all other non-landmark lo-
cations during error backpropagation. For some invisible land-
marks or background images, the ground-truth maps have no
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Fig. 4. Illustration of the facial landmark testing procedure under an unconstrained setting. Given an unconstrained image, we first construct an image pyramid.
Then, we feed the images at different levels of the pyramid to the backbone network for generating the landmark candidate regions. After adopting a nonmaximum
suppression (NMS) to reduce the highly overlapping regions, we refine the locations of the remaining candidate regions with the branch networks. Best viewed in
color with magnification.

positive region, and we only select a small ratio of the non-
landmark locations to propagate. This selective training scheme
is critical in ensuring the convergence of training sessions in our
experiments. In addition, for more effective training and more
precise results, hard negative mining is also employed. In the
selective phase, hard negative samples, which are non-landmark
locations with large output values, are selected to propagate the
errors when the loss on the validation set stops decreasing.

E. Implementation Details

We have implemented our proposed BB-FCN network in
Caffe. A GTX Titan X GPU is used for both training and test-
ing. During training, we randomly initialize our networks by
drawing weights from a zero-mean Gaussian distribution with
a standard deviation equal to 0.01. The size of a minibatch is
set to 40, and the ratio between the numbers of positive and
negative training images in each batch is 1 : 1 for the backbone
network and 4 : 1 for the branch networks. The positive train-
ing images are image regions cropped from face images in our
SYSU16K dataset, which will be described in Section IV-A.
The intersection-over-union (IoU) between any cropped region
and the original face image is above 0.5. The negative train-
ing samples are nonfacial regions randomly cropped from the
Pascal VOC 2012 dataset [61]. Both the backbone and branch
networks are trained using backpropagation and stochastic gra-
dient descent (SGD) with the momentum set to 0.9 and weight
decay set to 0.0005. When training the backbone network, we
set the learning rate to 0.001 and the total number of iterations
to 25K. The radius Rc of landmark circles is set to 5% of the
width of the input image. For the branch networks, the total
number of iterations is set to 50K. The learning rate is set to
10−4 for the first 30K iterations and 10−5 for the last 20K it-
erations. The radius Rf of landmark circles is set to 3% of the
width of the input image. During training, only a subset of the
non-landmark locations in the heat map are chosen to propagate
errors, as described in Section III-D.

During the testing phase, our BB-FCN network is able to
accurately locate facial landmarks under both constrained and

unconstrained settings. For convenience in the following part,
we denote the average position of the n locations with the highest
response values in a 2D heat map M as Ave{M,n}.

1) Constrained Setting: Given a cropped facial image I , we
first resize it to 32 × 32 and feed it to the backbone network to
generate the coarse response heat map Mc . Because the radius
Rc is set to 32 × 5% ≈ 2, there are 13 pixels in the ground-truth
landmark circle of the backbone network. For landmark type k,
we take Ave{Mk

c , 13} as its coarse landmark location, where
Mk

c is the kth channel of Mc .
We resize I and Mc to 64 × 64. For landmark type k, we crop

a 24 × 24 patch centered at the coarse landmark location from
the concatenation of I and Mk

c , and we feed the patch into the
kth subnet of the branch networks to generate the fine map Mk

f .
As the radius Rf is set to 64 × 3% ≈ 2, we take Ave{Mk

f , 13}
as the final location of landmark type k.

2) Unconstrained Setting: Given an unconstrained image,
we construct an image pyramid of L levels by first resizing the
image to make the length of the smaller side equal to 32 and
gradually upsampling it with a scale factor of 1.16. The level
number L can be dynamically adjusted based on the acceptable
minimum face size. For example, we set L as 20 to locate the
landmarks of the tiny faces in the AFW [8] dataset.

We further feed the images at different pyramid levels to the
backbone network for generating multiple coarse heat maps and
denote the kth channel of the coarse heat maps at the lth level
as Mk

c,l . When the response value at location (x, y) of Mk
c,l is

higher than a given threshold, we assert that there is a 12 × 12
candidate region of landmark type k centered at that position.
We denote this candidate region with a tuple {k, l, v, (x, y)},
where v is the response value at location (x,y).

A single landmark may be detected multiple times at a spe-
cific level or at different levels of the image pyramid. To reduce
redundancy, for each landmark type, we first map all landmark
candidate regions to the original image and then adopt non-
maximum suppression (NMS) with an IOU threshold of 0.5 on
these regions based on their response values. For a remaining
landmark candidate region {k, l, v, (x, y)}, we crop its corre-
sponding 12 × 12 heat map patch from Mk

c,l and the RGB patch
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from the image at the lth level of the pyramid and further resize
these two patches to 24 × 24 before feeding them into the kth

subnet of the branch networks to generate the fine heat map Mk
f .

The final landmark location is computed by Ave{Mk
f , 13}.

IV. EXPERIMENTAL RESULTS

A. Datasets

The existing public datasets of facial landmark localization
are either too small and contain only hundreds of images or have
very limited variation across different samples, e.g., most of
the samples are near-frontal faces. These two situations greatly
limit the performance of facial landmark localization under un-
constrained settings. Therefore, we build a large-scale dataset
called SYSU16K, which contains 7317 images (6317 for train-
ing and 1000 for validation) with 16K faces collected from the
Internet. Each face is accurately annotated with 72 landmarks.
With a large variation, the faces in our dataset exhibit vari-
ous poses, expressions, illuminations and resolutions, and they
may have severe occlusions. In addition, to train our proposed
BB-FCN, we also randomly select 7542 natural images (6542
for training and 1000 for validation) without any faces from
Pascal-VOC2012 as negative samples.

In our experiment, we evaluate our method on four public
challenging datasets: LFPW [23], AFW [8], AFLW [16] and
300W [17]. There is no overlap among the training, validation
and evaluation datasets.

AFLW: This dataset contains 21,080 faces in the wild. This
dataset is very suitable for evaluating the performance of face
alignment across a large range of poses. The selection of testing
images from AFLW is as in [12], which randomly chooses 3000
faces, and 39% of them are non-frontal.

AFW: This dataset contains 205 images (468 faces) collected
in the wild. Invisible landmarks are not annotated, and each face
is annotated with at most 6 landmarks.

LFPW: This dataset contains 1,132 training images and 300
testing images. The images in this dataset are given in the form
of URLs, and some image links are no longer valid. We can only
download 811 training images and 230 testing images.

300W: The training set (3148 images) of this dataset is col-
lected from the training sets of several exiting datasets, includ-
ing LFPW (811), HELEN [62] (2000) and AFW (337). The
full testing set is split into two subsets: (1) the common subset
consists of the testing sets of LFPW (224) and HELEN (330),
and (2) the challenging subset is composed of 135 images from
IBUG [17]. All the images in this dataset are annotated with 68
facial landmarks.

B. Evaluation Metric

To evaluate the accuracy of facial landmark localization, we
adopt the mean (position) error as the metric. For a specific type
of landmark, the mean error is calculated as the mean distance
between the detected landmarks of the given type in all testing
images and their corresponding ground-truth positions, normal-
ized with respect to the interocular distance. The (position) error

of a single landmark is defined as follows:

err =

√
(x − x′)2 + (y − y′)2

l
× 100%, (7)

where (x, y) and (x′, y′) are the ground-truth and detected land-
mark locations, respectively, and l is the interocular distance.
For the 300W dataset, the interocular distance is set to the Eu-
clidean distance between the outer corners of two eyes, while for
the other three landmark datasets, it is denoted as the Euclidean
distance between the center points of the two eyes. In our ex-
periments, we evaluate the mean error of every type of facial
landmark and the average mean error over all landmark types,
i.e., LE (left eye), RE (right eye), N (nose), LM (left mouth cor-
ner) and RM (right mouth corner), as well as A (average mean
error of the five facial landmarks).

C. Performance Evaluation for Unconstrained Settings

Our BB-FCN is capable of dealing with facial images taken in
unconstrained settings, e.g., the locations of facial regions and
the number of faces in the image are unknown. In this setting,
we use the recall-error curves to evaluate the performance of all
comparative methods. A predictive facial landmark is consid-
ered to be correct if there exists a ground-truth landmark of the
same type within the given position error. For a fixed number m
(such as 15 or 30) of predictive landmarks, the recall rate (the
fraction of ground-truth annotations covered by predictive land-
marks) varies as the acceptable position error increases; thus, a
recall-error curve can be obtained.

To the best of our knowledge, very few facial landmark lo-
calization methods have been evaluated in the context of land-
mark detection under unconstrained settings. For fairness, we
have also implemented a regression-based method using an FCN
with nine convolutional layers, which can be expressed as fol-
lows: C(20, 5 × 5 × 3) - C(20, 5 × 5 × 20) - MP - C(30, 5 ×
5 × 20) - C(30, 5 × 5 × 30) - MP - C(40, 5 × 5 × 30) -
C(40, 5 × 5 × 40) - C(30, 2 × 2 × 40) - C(30, 4 × 4 × 30) -
C(15, 1 × 1 × 30). With a training strategy similar to that of
our backbone network, this regression-based network also takes
a 32 × 32 image patch as input and generates a 15 × 8 × 8 re-
sponse map, each pixel of which corresponds to a 4 × 4 region
of the input image. We formulate every three channels of the
output response map as a group. Additionally, each pixel on
a specific group indicates the probability of existence and the
regressed two-dimensional location of the corresponding land-
mark type in a 4 × 4 region. During the testing phase, the same
image pyramid is fed into the regression-based network for fa-
cial landmark inference.

We evaluate the performance of our BB-FCN and the
regression-based deep model on the AFW dataset using an un-
constrained setting. For those faces where one or both eyes
are invisible, the interocular distances are set as 41.9% of the
length of their annotated bounding boxes2. Figure 5 shows the
recall-error curves of different types of landmarks, where the
curves labeled “fine” and “coarse” illustrate the performance

2The average ratio between the interocular distances of the common faces
and the length of their annotated bounding boxes is 41.9% on AFW.
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Fig. 5. The recall of landmarks on AFW in unconstrained settings. The curves labeled “fine” and “coarse” show the performance of models with and without
branch networks, respectively. The curve labeled “regression” presents the performance of the regression network based on a single fully convolutional network.
The top five figures demonstrate the recall performance when only 15 landmarks of each landmark type are predicted for each image, while the bottom five figures
are the results with 30 predictive landmarks for each type of each image.

TABLE I
AVERAGE RECALLS OF THE COMPLETE BACKBONE-BRANCHES NETWORK AND

THE BACKBONE NETWORK ALONE ON AFW IN UNCONSTRAINED SETTINGS.
PE REFERS TO THE ACCEPTABLE POSITION ERROR

of our complete BB-FCN model and the single backbone net-
work, respectively. The curve labeled “regression” indicates the
performance of the above regression network based on a single
FCN.

Our methods significantly outperform the regression network.
With a prediction of 15 landmarks for each landmark type, the
full model recalls 45% more landmarks than the regression net-
work when the acceptable position error is set within 8% of
the interocular distance. Given more predicted landmarks, our
complete BB-FCN model can achieve higher landmark recalls.
As the number of landmark predictions of each type increases to
30, the recalls of five landmarks within a position error of 25%
of the interocular distance are 94.1%, 95.7%, 91.5%, 95.8% and
95.2%, respectively. Meanwhile, the full model performs much
better than the backbone network alone. The average recalls of
five landmarks are shown in Table I, which shows that the full
model improves the recall rate by approximately 10% and 6%
when the acceptable position error is set as 5% or 10%, respec-
tively. As shown in Figure 6, our BB-FCN can generate high-
quality heat maps and detect almost all the facial landmarks,
even though some false positives exist. These false positives are
some tiny and blurry regions (such as treetops and hands) that
have rich texture or have similar shapes and colors as faces.

D. Performance Evaluation for Constrained Settings

In this setting, because the face bounding boxes are given,
we can directly feed the face regions into our BB-FCN network

to locate the facial landmarks. We will compare our method
with state-of-the-art methods on the five landmark types and on
dense landmark types.

1) Evaluation on Five Landmark Types: We compare our
method with other state-of-the-art methods, i.e.,3 robust cas-
caded pose regression (RCPR) [34], tree structured part model
(TSPM) [8], Luxand face SDK,4, explicit shape regression
(ESR) [27], cascaded deformable shape model (CDM) [63], su-
pervised descent method (SDM) [29], tasks-constrained deep
convolutional network (TCDCN) [12], multitask cascaded
convolutional networks (MTCNN) [64], recurrent attentive-
refinement networks (RAR) [45], and unsupervised discovery
(UD) [53].

On the AFW dataset, our average mean error over the five
landmark types is 6.18%, which is an improvement over the
performance of the state-of-the-art TDCN by 24.6%. On the
AFLW dataset, our BB-FCN model achieves 6.28% average
mean error, a 21.5% improvement over TDCN. Figure 7 and
Table II demonstrate that our BB-FCN network outperforms all
competing methods on the three datasets. The qualitative results
presented in Figure 8 show that our method is robust under
occlusions, exaggerated expressions and extreme illumination.

2) Evaluation on Dense Landmark Types: We can use our
BB-FCN network for dense landmark prediction by simply ex-
tending the number of branches in the branch network. We
evaluate our extended method on LFPW with 29 landmarks
and on 300W with 68 landmarks. Because dense landmark pre-
diction requires more facial details to distinguish landmarks
with similar appearances, such as left-eyebrow-center-top and
left-eyebrow-center-bottom, we enlarge the input images of BB-
FCN to 64 × 64. Due to the differences between the landmark
types of our collected dataset and LFPW, we fine-tune the net-
work using the training set of LFPW. Moreover, for the 68

3Some results on AFW and AFLW are quoted from [12].
4Luxand face SDK: http://www.luxand.com/
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Fig. 6. Qualitative facial landmark detection results in unconstrained settings. Our BB-FCN is capable of dealing with unconstrained facial images, even though
the locations of facial regions and the number of faces in the image are unknown. Best viewed in color with zoom.

Fig. 7. Comparisons with state-of-the-art methods on two public datasets. The
top row shows the corresponding results on AFW, and the bottom row shows
the corresponding results on AFLW. The average mean errors of all considered
methods are summarized in Table II.

landmark types, we train our network from scratch with the
training set of the 300W dataset.

We compare our method with other state-of-the-art methods
on the LFPW dataset. The other methods include consensus of
exemplars (CE) [23], explicit shape regression (ESR) [27] and
ensemble of regression trees (ERT) [28]. Table IV shows that
our BB-FCN achieves 3.35% average mean error, outperforming
the other three state-of-the-art methods.

We also compare the performance of our proposed method
with the results of other state-of-the-art methods on the 300W
testing set with 68 landmarks. The first class of compared meth-
ods are cascaded regression-based models, including TSPM,
RCPR, SDM, ESR, LBF [30] and CFSS [65]. The second
class are deep-learning-based methods, including TCDCN,
3DDFA [47], CFAN [38], RAR [45], Pose-Invariant [66],

TABLE II
AVERAGE MEAN ERRORS OF OUR METHOD AND OF ALL OTHER COMPETING

METHODS ON AFW AND AFLW

RDR [67], Two-StageOD [68], and RCN+ [55]. As shown in
Table III, our proposed method significantly outperforms all the
other state-of-the-art methods across all different testing sets;
specifically, our complete model lowers the average mean error
achieved by the best-performing existing algorithm (RCN+ ) by
8.3%, 3.6% and 6.9% on the common set, the challenging set
and the full set, respectively. Figure 9 presents some example re-
sults of our proposed pixel-labeling method for dense landmark
prediction.

E. Ablation Study

Our proposed BB-FCN is composed of two components: the
backbone network and the branch networks. To show the ef-
fectiveness and necessity of these two components, we compare
the landmark prediction results produced by the single backbone
network with those of the complete BB-FCN network. As shown
in Table V, the average mean error on AFLW is decreased from
8.31% to 6.28%, with an approximately 24.4% relative improve-
ment, after the branch networks are added to perform landmark
refinement. The quantitative comparison shown in Figure 10
further demonstrates that the prediction error of every type of
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Fig. 8. Qualitative facial landmark localization results of our method. The first row shows the result on AFW, while the second row shows the result on AFLW.
Our method is robust under occlusions, exaggerated expressions and extreme illumination.

TABLE III
AVERAGE MEAN ERRORS OF LANDMARK DETECTION ON THE 300W DATASET

TABLE IV
AVERAGE MEAN ERRORS OF OUR METHOD AND ALL OTHER COMPETING

METHODS ON LFPW

facial landmark enjoys a varying degree of reduction on LFPW.
Figure 11 shows the visual improvements achieved with the
branch networks over the single backbone network. As shown,
the output heat maps of the branch networks are more compact
and precise than those of the backbone network, which can well
explain the better performance of branch networks.

F. The Effectiveness of Face Proposal Generation

In this experiment, we demonstrate the effectiveness of our
landmark prediction network in face proposal generation. A pre-
dicted facial landmark typically indicates the existence of a face;
therefore, we can generate face proposals from the response heat
map of the BB-FCN. For a type-k predicted facial landmark at
level l, we generate a 32 × 32 face candidate window centered
at the landmark location from the RGB image at the lth level of
the pyramid. We then apply NMS to face proposals generated
using each type of landmark. After fine-tuning the location and

edge length of face proposals with Net-12 (the first network of
cascade CNN [69]), we apply NMS to all face proposals again.

We compare our method with three generic object proposal
generators [70]–[72] and a face-specific proposal generator,
Faceness [73], on FDDB. For a fair comparison, following [73],
we also transform the original ground-truth ellipses in FDDB
into minimal rectangular bounding boxes. Table VI5 shows that
our method achieves high recalls using a very small number
of face proposals due to the accuracy of landmark localization.
Our method can detect 72.8% of faces using only two proposals
per image and 81.2% of faces using three proposals per im-
age on FDDB. It detects 91.5% of faces when at most 20 face
proposals are generated from each image. With a similar pro-
posal generation strategy as our method, Faceness [73] utilizes
facial attributes to calculate the facial part response maps and
then generates the region proposal from these response maps.
Compared with [73], our method can generate more accurate
landmark (part) response maps by explicitly locating the facial
landmarks, and it is more robust to overcome partial occlusions
and head pose variations.

G. Evaluation on Face Detection Performance

Our BB-FCN network can locate various landmarks in un-
constrained settings and generate high-quality face proposals,
which can enhance the performance of existing face detectors,
such as cascade CNN [69], particularly under severe occlusions
and large pose variation. Cascade CNN is one of the up-to-date
fast face detectors. It relies on six cascaded convolutional neural
networks to locate faces in an image. We retrain this detector us-
ing our collected landmark dataset and Pascal VOC 2012, and we
achieve similar performance on FDDB. We replace the original
face proposals used by cascade CNN with our landmark-based
proposals. All other parts of the method remain the same. The
experimental results indicate that the modified cascade CNN
achieves state-of-the-art performance on two public face detec-
tion benchmarks: FDDB and AFW.

1) FDDB: As a large-scale face detection benchmark,
FDDB contains 5,171 annotated faces in 2,845 images. It uses

5The results from the compared methods are quoted from [73].
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Fig. 9. Qualitative facial landmark localization results of our method on the 300W dataset. The first row shows the result on the common set, while the second
row demonstrates the result on the challenging set.

TABLE V
AVERAGE MEAN ERRORS OF THE COMPLETE BACKBONE-BRANCHES NETWORK

AND THE BACKBONE NETWORK ON AFW AND AFLW

Fig. 10. Performance evaluation of the complete backbone-branches network
and the backbone network alone on LFPW. The mean error of every type of
landmark is decreased to a certain degree when the branch networks are used.
The 30th column is the average mean error.

elliptic face annotations and defines two types of evaluations: the
discontinuous score and continuous score. We use the discon-
tinuous score evaluation, which counts the number of detected
faces versus the number of false alarms. A detected bounding
box is taken as the true positive only if the IoU between this
bounding box and the bounding box of a ground-truth face is
above 0.5. We uniformly enlarge our square bounding boxes
vertically by 25% to better approximate elliptic annotations in
FDDB.

As shown in Figure 12, face proposals defined by different
landmark types exhibit different levels of effectiveness in face
detection. The nose landmark achieves the best performance

Fig. 11. Examples of improvements made by the branch networks. The re-
sponse heat maps of the branch networks are more compact and precise. Best
viewed in color.

TABLE VI
NUMBER OF PROPOSALS NEEDED FOR DIFFERENT RECALL

RATES ON FDDB

among all landmark types. Using face proposals defined by
all five landmark types significantly improves the performance
achieved with individual landmark types.
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Fig. 12. Left: Face proposals induced by different landmark types exhibit different levels of effectiveness in face detection. Using face proposals induced by
all five landmark types significantly improves the performance achieved with individual landmark types. Right: On the FDDB dataset, we compare our method
against other state-of-the-art methods. When the number of false positives is fixed at 350, the recall achieved with our method is 90.17%, which is higher than all
other methods.

We compare our method with nine recently published state-
of-the-art methods on the FDDB dataset. These methods include
cascade CNN [69], Faceness [73], CCF [74], Conv3d [75],
HeadHunter [76], joint cascade [77], boosted exemplar [78],
ACF [79] and NDP [78]. Figure 12 shows that our method
outperforms all nine state-of-the-art methods by a considerable
margin. When the number of false positives is fixed at 167, our
method achieves a significant margin of 3.51% in recall rate
over the baseline cascade-CNN [69]. When the number of false
positives is fixed at 350, our method achieves a 90.17% recall
rate, which is higher than the 88.92% recall rate achieved by
Faceness [73]. When the number of false positives increases to
500, our method obtains a recall rate of 90.6% with at most 20
face proposals per images. In contrast, when trained with ap-
proximately 83K face images, joint training cascade CNN [80]
generates nearly 1000 proposals on average before applying the
MNS and only obtains a recall of 88.2% with 1000 false posi-
tives. Recently, SAFD [81] trained their network with 350K pri-
vate face images and obtained a recall of 93.8% with 1000 false
positives. However, our method can achieve competitive perfor-
mance with only 16K face images in our SYSU16K dataset.

2) AFW: We adopt the precision-recall protocol when per-
forming evaluation on the AFW dataset. We compare our
method with Faceness [73], HeadHunter [76], structured mod-
els [82], SquareChnFtrs-5[76], Shen et al. [83], TSM [8],
Face.com, Face++ and Picasa. As shown in Figure 13, with an
average precision of 97.46%, the performance of our detector is
comparable to that of other state-of-the-art techniques.

H. Limitations

In this section, we present failure cases of our BB-FCN net-
work. In our experiments, we found that BB-FCN occasionally
generates results that do not conform to the normal spatial layout
of human facial landmarks, as shown in Figure 14(a). The main
reason for this phenomenon is the lack of constraints on relative
landmark positions in the loss function. Second, BB-FCN fails

Fig. 13. Precision-recall curves of 10 face detection methods on the AFW
dataset. The performance of our face detector is comparable to that of other
state-of-the-art techniques.

to highlight facial landmarks in blurry images, as shown in Fig-
ure 14(b). This negatively impacts the performance of our face
proposal method on FDDB, which contains many blurry faces.

I. Runtime Efficiency

One of the most important characteristics of our landmark
and face detectors is the efficiency. Our method achieves prac-
tical runtime efficiency via a coarse-to-fine pipeline. Table VII
shows the running times of several deep models for five facial
landmark detection under constrained settings. Among these
models, TCDCN requires 18 ms to process a facial image on an
Intel Core i5 CPU, which is 7 times faster than CDCN [13].
CFAN [38] costs 30 ms to run multiple autoencoders. Our
method only needs 9 ms on an Intel Core i5 2.80 GHz CPU
and 1.8 ms on an NVIDIA Titan X GPU. For the localization of
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Fig. 14. Failure cases of our BB-FCN network. (a) Incorrect landmark pre-
diction results that violate the normal spatial layout of human facial landmarks.
(b) Two blurry faces from FDDB and their response heat maps.

TABLE VII
COMPARISON OF RUNNING TIMES ON CPU AMONG DEEP MODELS FOR FIVE

FACIAL LANDMARK DETECTION

68 landmarks, our method costs 10 ms to process a face region
on the same GPU.

For the unconstrained setting, to locate the landmarks of the
tiny faces for a high recall rate, we build a 20-level image pyra-
mid on the AFW and FDDB datasets, and our landmark network
runs at approximately 6 PFS on the same GPU. However, the
level number of the image pyramid can be dynamically adjusted
based on the acceptable minimum face size. For example, to lo-
cate the landmarks of faces with sizes larger than 80 × 80 from
640 × 480 VGA images, we only need to build an image pyra-
mid with 7 levels. In this case, our landmark networks can run
at 30 FPS, while our face detection pipeline can run at approxi-
mately 20 FPS on the same GPU thanks to our efficient proposal
generator and the cascade CNN detector. For comparison, Shen
et al. [83] process a 1280-pixel wide image in less than 10 sec-
onds and DP2MFD [84] runs at 0.285 FPS on an Nvidia Tesla
K20, while the ResNet101-based detector proposed by HR [85]
runs at 3.1 FPS on 720p resolution. With a similar speed as our
network, Faceness [73] can process a VGA image within 50 ms
on a Titan Black GPU, but their performance is worse than ours.

V. CONCLUSION

In this paper, we have presented a novel cascaded backbone-
branches fully-convolutional network (BB-FCN) that progres-
sively produces response maps of facial landmarks in an end-to-
end manner. Our extensive experiments demonstrate that BB-
FCN achieves very promising results on both traditional bench-
marks with a controlled setting and on cluttered, real-world
scenes. When exploiting our facial landmark localization results
in R-CNN-based face detection, we have observed a significant
increase in both accuracy and efficiency. In the future, we will

integrate our BB-FCN model with object recognition and de-
tection systems where accurate part-based localization can be
helpful in improving object detection performance.
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