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Abstract

In this paper, we propose FakeRadar, a novel deepfake video
detection framework designed to address the challenges of
cross-domain generalization in real-world scenarios. Ex-
isting detection methods typically rely on manipulation-
specific cues, performing well on known forgery types but
exhibiting severe limitations against emerging manipula-
tion techniques. This poor generalization stems from their
inability to adapt effectively to unseen forgery patterns. To
overcome this, we leverage large-scale pretrained models
(e.g. CLIP) to proactively probe the feature space, explic-
itly highlighting distributional gaps between real videos,
known forgeries, and unseen manipulations. Specifically,
FakeRadar introduces Forgery Outlier Probing, which em-
ploys dynamic subcluster modeling and cluster-conditional
outlier generation to synthesize outlier samples near bound-
aries of estimated subclusters, simulating novel forgery ar-
tifacts beyond known manipulation types. Additionally, we
design Outlier-Guided Tri-Training, which optimizes the
detector to distinguish real, fake, and outlier samples using
proposed outlier-driven contrastive learning and outlier-
conditioned cross-entropy losses. Experiments show that
FakeRadar outperforms existing methods across various
benchmark datasets for deepfake video detection, particu-
larly in cross-domain evaluations, by handling the variety
of emerging manipulation techniques.

1. Introduction
Recently, generative techniques [28, 58, 62] for creating

deepfake videos have advanced rapidly, producing highly

realistic facial forgeries that challenge human perceptual

limits [8, 23]. However, the malicious use of such tech-

nology, such as fabricated news and identity fraud, poses

a significant threat to digital media credibility [7, 9]. Ear-
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Figure 1. Conceptual pipeline of FakeRadar. (a)-(b) Forgery

Outlier Probing first performs dynamic subcluster modeling on

these features to partition finer-grained subclusters, then generates

cluster-conditional outliers for each estimated subcluster to simu-

late unseen forgeries, emulating unknown manipulations. (c)-(d)

The model is optimized using outlier-driven tri-training, allowing

the detector to establish optimal boundaries for the real, fake, and

outlier classes, with the latter two merged into a new “Fake” class

during testing.

lier deepfake detection methods primarily rely on the pas-

sive learning of specific forgery artifacts, such as bound-

ary inconsistencies [27, 54], blinking anomalies [32], and

texture irregularities [17, 35]. While these approaches per-

form well against conventional deepfake manipulations, in-

cluding Face2Face [46] and NeuralTextures [47], they ex-

hibit critical vulnerabilities when confronted with emerg-

ing generative paradigms, such as diffusion models [55].

For instance, boundary-based detection methods [30, 44]

fail to identify faces generated by advanced GANs (e.g.,

StyleGAN [25]). Similarly, blink analysis-based tech-

niques [32] are rendered ineffective when processing tem-

porally smoothed fake videos [57]. These limitations stem

from a fundamental shortcoming: existing methods learn a

constrained decision boundary in the feature space, where
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known forgery traces occupy only a localized region, while

novel manipulation techniques introduce artifacts in arbi-

trary locations. As a result, they struggle to generalize

to new manipulation techniques that introduce artifacts in

previously unseen ways, leading to significant performance

degradation in cross-domain scenarios [11, 12].

To better understand its underlying cause, [2, 36] have

analyzed the feature distributions of real and synthetic

data. These studies reveal a fundamental embedding-space

disparity: real data exhibit compact, dense distributions,

whereas deepfake forgeries form scattered, sparse clusters

due to their generation with diverse manipulation types, as

demonstrated in Figure 1. This difference in distribution

poses a significant challenge for existing detection meth-

ods, which are typically optimized to classify previously

observed forgeries. Since deepfake forgeries do not adhere

to a fixed pattern but rather introduce an infinite variety of

modifications, classifiers trained on known forgery patterns

struggle to recognize novel deepfakes that deviate from past

observations. Therefore, a robust detection approach must

move beyond merely learning pre-defined forgery patterns

and instead develop the capability to identify anomalies that

fall outside of previously known distributions. Given the

limitations of existing methods in handling unseen forgery

types, we propose a paradigm shift in deepfake detection.

Instead of passively fitting to known forgery patterns, our

approach proactively explores potential anomaly regions in

the feature space. Inspired by radar systems that scan for

unknown targets through frequency-spectrum probing, our

method enhances detection robustness against novel deep-

fake manipulations.

In this work, we propose a new deepfake video de-

tection framework, called FakeRadar, which leverages the

deep feature priors of large-scale pre-trained models (i.e.

CLIP [40]) to proactively “probe” unknown forgeries and

enhance cross-domain generalization. Unlike conventional

detectors [2, 5, 51] that perform only binary classification,

FakeRadar explicitly introduces “forgery outliers” during

training to simulate potential unknown forgeries and thus

“pre-explore and cover” the latent space. As shown in Fig-

ure 1 (a) and (b), we first employ Forgery Outlier Probing,

which conducts dynamic subcluster modeling on the fea-

tures of real and known deepfake videos. By approximat-

ing the embedding space via fine-grained Gaussian mixture

distributions, this algorithm automatically partitions train-

ing samples into distinct subclusters. Next, through cluster-

conditional outlier generation, Forgery Outlier Probing syn-

thesizes outlier samples near the boundaries of these es-

timated subclusters with a certain “novel offset”, thereby

covering a broader range of potential forgery regions.

Additionally, FakeRadar adopts a model optimization

strategy called Outlier-Guided Tri-Training, enabling the

model to discriminate among “Real”, “Fake”, and “Out-

lier” samples, with its details as illustrated in Figure 1 (c)

and (d). Specifically, Outlier-Guided Tri-Training proposes

an outlier-driven contrastive loss and an outlier-conditioned

cross-entropy loss for end-to-end model optimization. The

former loss enhances the distance between real, fake, and

outlier features via contrastive learning, emphasizing their

differences, while the latter one ensures that the model has

clear decision boundaries for the three categories, especially

ensuring that outliers are not incorrectly classified as real.

In this triplet-class (Real/Fake/Outlier) setting, the model

can independently label unknown forgeries during training.

During inference, both “Fake” and “Outlier” are classified

as forgeries, empowering the detector to adapt effectively to

unknown deepfakes.

We summarize FakeRadar’s principal contributions as

follows, with its conceptual pipeline illustrated in Figure 1:

• We propose FakeRadar, a novel framework for deepfake

video detection, designed to address the critical challenge

of cross-domain generalization in real-world scenarios.

• We introduce Forgery Outlier Probing for synthesizing

outlier samples to cover a broader range of potential

forger patterns, expanding the detector’s understanding of

forgery distribution.

• We design Outlier-Guided Tri-Training for model opti-

mization, which enables end-to-end training for distin-

guishing real, fake, and outlier samples, improving de-

tection of unknown forgeries.

• Numerous experiments have revealed that FakeRadar out-

performs current leading algorithms across multiple deep-

fake benchmarks, particularly excelling in cross-domain

evaluations where existing methods struggle.

2. Related work
Deepfake Detection. In response to the malicious use of

deepfake techniques, numerous approaches have been ex-

plored to address this issue. Generally, deepfake detection is

formulated as a binary classification problem (real or fake),

leading researchers to develop a variety of end-to-end detec-

tors [45, 54] that directly distinguish reals from manipulated

content. Existing detection methods can be broadly catego-

rized into two groups: image-level and video-level detec-

tion. Specifically, image-level detectors primarily focus on

identifying spatial artifacts caused by forgeries. Examples

include frequency anomalies [3, 16, 29, 39], identity-based

discrepancies [13, 14, 24], blending artifacts [30, 44], and

localized distortions [35, 49]. In contrast, video-level de-

tectors employ a wider range of strategies. For example,

some algorithms, such as [20, 32], concentrate on temporal

consistency, typically reflected in correlations across con-

secutive frames. Other video detection studies [18, 38, 61]

incorporate both temporal and spatiotemporal features to

establish a more comprehensive detection framework. An-

other line of research [22, 56] examines audio-visual con-
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Figure 2. An overview of FakeRadar for deepfake video detection. FakeRadar consists of two key components: Forgery Outlier Probing and

Outlier-Guided Tri-Training. (i) Forgery Outlier Probing performs dynamic subcluster modeling to model the feature-space distributions of

real and fake samples using GMMs, followed by dynamic subcluster splitting and merging to produce finer-grained subcluster partitions.

Afterwards, FakeRadar conducts cluster-conditioned outlier generation to simulate unseen forgeries for novel manipulation techniques. (ii)

Outlier-Guided Tri-Training jointly optimizes the CLIP model’s ViT-B/16 backbone, inserted with ST-Adapter [37] for parameter-efficient

fine tuning, and a triplet-class classifier to distinguish between “Real”, “Fake”, and “Outlier” classes, with “Fake” and “Outlier” merged

into a single new “Fake” class during evaluation. The training set includes real videos, as well as deepfake videos generated using four

different manipulations, i.e. “DF” [41], “FS” [26], “NT” [47] and “F2F” [46].

sistency by analyzing the synchronization and correlation

between video and audio signals to detect forgeries. In

summary, these methods rely heavily on existing artifacts in

training set, limiting their generalization to unseen manip-

ulation types. In contrast, our approach explores feature-

space anomalies, enhancing the generalization capacity of

our proposed detector to diverse deepfake manipulations.

Towards Generalization in Deepfake Detection. Rapid

advance in deepfakes have significantly improved the qual-

ity and authenticity of generated content, posing substantial

challenges to the generalization capability of detection sys-

tems. Existing detectors [6, 43, 50] often suffer from severe

performance degradation when encountering novel forgery

techniques or previously unseen manipulations. To address

this issue, researchers have proposed various strategies to

enhance detector generalization. For instance, FTCN [61]

improves generalization by capturing temporal coherence

features in video sequences. Similarly, AltFreezing [51]

employs an alternating weight-freezing training strategy to

facilitate the joint detection of spatial and temporal forgery

artifacts. Another algorithm, StyleFlow [5], leverages the

temporal dynamics of style latent vectors to identify anoma-

lous patterns in generated videos.

More recently, data synthesis has emerged as an effective

strategy for improving detector generalization. For exam-

ple, FWA [31] enhances training data by introducing facial

warping artifacts, while Face X-ray [30] detects forgeries

by identifying blending boundaries, independent of specific

facial manipulation techniques. Building on this concept,

SBI [44] synthesizes training samples by blending different

views of the same pristine image to simulate generic forgery

artifacts. Additionally, a series of recent studies [1, 27, 34]

have further advanced this direction by employing various

data synthesis techniques. Unlike existing methods that pri-

marily focus on image- or video-level data synthesis for

deepfake detection, our approach proposes to explore un-

seen forgeries in feature space.

3. Methodology
3.1. Preliminaries
Overview. In this paper, we introduce FakeRadar, to

overcomes the challenges of cross-domain generalization in

deepfake video detection by exploring the feature space to

identify emerging manipulation patterns. Specifically, Fak-

eRadar is built upon two key components: (i) Forgery Out-
lier Probing, which models the feature-space distributions

of subclusters for training samples of both real and fake cat-

egories, and then generates cluster-conditioned outlier sam-

ples to simulate unseen forgeries, and (ii) Outlier-Guided
Tri-Training, which jointly optimizes an adapter-inserted

backbone and a triplet-class classifier to distinguish among

samples from the “Real”, “Fake”, and “Outlier” classes. An

overview of FakeRadar can be found in Figure 2.

Model Adaptation with a Frozen Backbone. The Fak-

eRadar framework employs a pre-trained Vision Trans-

former (ViT-B) from CLIP [40] as a frozen backbone to pre-

serve its learned semantic features. This model serves as the

video encoder for input clips. To adapt it for deepfake detec-

tion, we integrate lightweight ST-Adapter layers [37] after

each Transformer block, enabling parameter-efficient fine-

tuning. This significantly enhances the model’s ability to
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capture spatial manipulations and temporal inconsistencies,

which are crucial for detecting deepfake videos. Given a

feature vector x from the video encoder, each adapter trans-

forms it as:

ST-Adapter(x) = x+ReLU(Conv3D(xWdown))Wup. (1)

Here, Conv3D(·) denotes a 3D convolution operation em-

ployed for capturing spatio-temporal features from videos.

As well, Wdown and Wup are weight matrices that perform

dimensionality reduction and expansion, respectively, and

ReLU(·) is the activation function. By introducing only a

small number of additional parameters, these adapters al-

low efficient fine-tuning while retaining the original back-

bone’s representational strength. After feature extraction,

each video clip is represented as a d-dimensional vector for

subsequent analysis, with d = 768.

Inference. During inference, the model classifies input

samples as either real or deepfake, with deepfakes catego-

rized as “Fake” or “Outlier”. The “Fake” class includes fake

samples with known manipulation patterns, while the “Out-

lier” class detects testing samples with novel forgeries that

differ from established manipulations. By unifying these

categories, the model enhances its robustness against evolv-

ing manipulation techniques, enabling accurate detection of

both familiar and emerging deepfakes. This improves its

generalization performance in cross-domain evaluations.

3.2. Forgery Outlier Probing
In this section, we introduce Forgery Outlier Probing
(FOP) to generate outlier samples with unseen forgeries

beyond the existing real and fake videos, simulating pre-

viously unobserved manipulation patterns. Specifically,

FOP first presents dynamic subcluster modeling, which per-

forms category-specific clustering on the training samples

of real and fake categories. Then, it models the distribu-

tions of these categories using a strategy based on Gaus-

sian Mixture Models (GMMs), and follows by applying dy-

namic subcluster splitting and merging, thereby achieving

finer-grained subcluster partitioning. Finally, we generate

cluster-conditioned outliers based on the resulting subclus-

ters to stimulate unseen forgeries.

Dynamic Subcluster Modeling. To capture subtle intra-

class variations within real and deepfake videos, we apply

category-specific clustering on the FaceForensics++ (FF++)

dataset. Specifically, we treat the real class and each of the

four fake classes (i.e. four types of deepfake videos created

by different manipulation techniques [26, 41, 46, 47]) as

five separate categories. For each category c, let X (c) =
{x1,x2, . . . ,xN} denote the set of feature embeddings (i.e.

extracted from the video encoder). Inspired by [42], we then

define a main clustering network:

f
(c)
main(xi) �→ ri = (ri,1, ri,2, . . . , ri,K), (2)

which initially assumes K clusters, empirically with K =
5, providing a “soft” assignment of each embedding xi ∈
X (c) to these K clusters. Here, ri,k ∈ [0, 1] and∑K

k=1 ri,k = 1.

Each cluster can be modeled as a Gaussian distribution

using a GMM, allowing us to represent the feature distribu-

tion of each category in a probabilistic manner. Specifically,

for each cluster k in category c, we define a Gaussian com-

ponent characterized by {πk,μk,Σk}, where πk ∈ (0, 1) is

the mixture weight for cluster k, with
∑K

k=1 πk = 1, while

μk and Σk represent its corresponding mean and covari-

ance matrix. These parameters enable the clustering net-

work to estimate the likelihood of each data sample belong-

ing to different clusters, aligning our model with a GMM-

based formulation.

After that, the main clustering network needs to learn

these parameters by aligning its soft assignments with

GMM responsibilities:

rEi,k =
πk N

(
xi;μk,Σk

)
∑K

k′=1 πk′ N (
xi;μk′ ,Σk′

) , (3)

where N (·;μk,Σk) is the multivariate Gaussian density

function. The network is trained using the KL-divergence

loss:

Lmain =

N∑
i=1

KL
(
ri ‖ rEi

)
, (4)

which ensures that the learned cluster assignments match

the inferred GMM responsibilities.

To further refine cluster structures, we introduce a sub-

clustering network for each cluster k, which attempts to

split the cluster into two subclusters if multi-modal struc-

tures are detected. A compactness loss is applied to en-

courage subclusters to be well-separated. This loss function

penalizes subclusters that are too close to each other:

Lsub =

K∑
k=1

2∑
j=1

∑
xi∈Xk

r̃i,j
∥∥xi − μ̃k,j

∥∥2
2
, (5)

where r̃i,j represents the probability of xi belonging to sub-

cluster j, and μ̃k,j is its mean.

Since the predefined cluster number K may not be

optimal, we propose to dynamically adjust it through

split/merge proposals, inspired by [42]. Suppose a cluster k
contains Nk points, Xk. We split if subclustering indicates

that Xk is better viewed as two subgroups, {Xk,1, Xk,2}.

The Hastings ratio is given by

Hs =
αΓ

(
Nk,1

)
fx
(
Xk,1

)
Γ
(
Nk,2

)
fx
(
Xk,2

)
Γ
(
Nk

)
fx
(
Xk

) , (6)
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where fx(·) is the marginal likelihood under a weak NIW

prior, α is the Dirichlet-process concentration parameter,

and Γ(·) is the Gamma function.

If Hs exceeds a threshold, cluster k is split into two new

clusters. The parameters for these new clusters are initial-

ized from μ̃k,1, Σ̃k,1 and μ̃k,2, Σ̃k,2, respectively. Merging

is similarly proposed if two clusters significantly overlap,

with acceptance ratio Hm = 1/Hs. Repeating these steps

yields an effective number of clusters K(c), plus subclusters

for each category c.
After these dynamic adjustments, we obtain the final

subcluster set Ĉ = {Ĉ1, Ĉ2, ..., ĈK(c)}, where K(c) is the

refined number of clusters. Each adjusted subcluster Ĉk is

characterized by its updated mean and covariance:

μ̂k =
1

|Ĉk|
∑

xi∈Ĉk

xi, (7)

Σ̂ =
1

|Ĉk|
∑

xi∈Ĉk

(xi − μ̂k)(xi − μ̂k)
�. (8)

We use online estimation for efficient training by main-

taining a cluster-conditional queue with |Ĉk| sample in-

stances from each subcluster. In each iteration, we enqueue

the embeddings of objects to their corresponding cluster-

conditional queues and dequeue the same number of object

embeddings.

Cluster-Conditional Outlier Generation. After deriving

finer-grained cluster partitions for each category, we gener-

ate feature-space outliers to probe potential unknown forg-

eries. Motivated by [15], in order to ensure that the sam-

pled outliers lie near the cluster boundary, we maintain a

sufficiently small value ε for outlier sampling from the ε-
likelihood region of the estimated cluster-conditional distri-

bution. Therefore, for a subcluster from Ĉ indexed by k, the

outlier samples it generates can be formulated as follows:

Vk =

{
vk

∣∣∣∣
exp

(
− 1

2 (vk − μ̂k)
�Σ̂−1(vk − μ̂k)

)
(2π)d/2|Σ̂|1/2 < ε

}
,

(9)

where vk ∼ N (μ̂k, Σ̂k) represents the virtual outliers sam-

pled from the estimated Gaussian distribution of subcluster

k, with d denoting its embedding dimensionality. It is worth

noting that during model optimization, all outliers gener-
ated here, i.e. V = V1 ∪ · · · ∪ Vk ∪ · · · V|Ĉ|, are classified
into the “Outlier” class, separate from the real and fake
classes.

3.3. Outlier-Guided Tri-Training
To enable better performance of FakeRadar for tasks of

deepfake video detection, we design a strategy called

Outlier-Guided Tri-Training for model optimization jointly

combining proposed outlier-driven contrastive loss and

outlier-conditioned cross-entropy loss. With this approach,

a triplet-class classifier (integrated with the pre-trained

backbone and adapters) is trained to explicitly distinguish

among three categories: “Real”, “Fake”, and “Outlier”.

This design not only improves the model’s ability to detect

known forgeries but also sensitizes it to emerging manipu-

lation patterns.

Outlier-Driven Contrastive Loss. In this work, we pro-

pose an outlier-driven contrastive loss to enhance the

model’s ability to delineate class boundaries within the fea-

ture space, thereby improving feature discriminability. This

loss function is designed to maximize the similarity be-

tween samples and their respective subcluster centers while

minimizing their similarity to other subcluster centers. Ad-

ditionally, it treats generated outliers as negative examples,

enforcing low similarity between samples and outliers to

strengthen boundary discrimination.

To this end, the loss is formulated using an InfoNCE-like

contrastive loss given an input sample i:

Lcon = − log
exp

( s(hi,μk
+
i
)

τ

)
∑

k− exp
(

s(hi,μk− )

τ

)
+
∑

vj∈V exp
(

s(hi,vj)
τ

) ,
(10)

where hi denotes the feature representation of sample i,
while V represents the outlier cache, providing additional

hard negative samples to improve the model’s ability to dis-

tinguish boundary samples. Additionally, k− represents all

subclusters except the one to which sample i belongs, with

its corresponding uk− denoting the centers of these subclus-

ters, used as negative samples. The function s(·, ·) denotes

cosine similarity, which quantifies the similarity between

samples, and τ is a temperature hyperparameter that con-

trols the smoothness of similarity scaling.

Outlier-Conditioned Cross-Entropy Loss. While the

proposed outlier-driven contrastive loss enforces stronger

feature-space separation, we still require a concrete clas-

sification objective to handle a three-category task: real,

fake, and outlier. In particular, the model must not only

determine whether a video is fake or real but also assign

a separate label for those samples situated near decision

boundaries (i.e., outliers). This triplet-class cross-entropy

loss is crucial, as it enables the model to explicitly differen-

tiate uncertain boundary samples and label them as outliers,

thereby avoiding confusion.

Concretely, the triplet-class cross-entropy loss can be de-

fined as follows:

Lcls = −
∑

c∈{Real, Fake, Outlier}
yc log pc, (11)
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Method Backbone Input Type
Testing Set AUC (%)

FF++ CDFv2 DFDCP DFDC DFD

Xception [6] Xception Frame 99.3 73.7 - 70.9 -
Face X-Ray [30] HRNet Frame 97.8 79.5 - 65.5 95.4
PCL+I2G [60] Resnet Frame 99.8 90.0 74.4 67.5 -
SLADD [4] Xception Frame 98.4 79.7 76.0 - -
UIA-ViT [63] Vision Transformer Frame 99.3 82.4 75.8 - 94.7
UCF [53] Xception Frame - 82.4 - 80.5 94.5
SeeABLE [27] EfficientNet Frame - 87.3 86.3 75.9 -
LSDA [54] EfficientNet Frame - 91.1 81.2 77.0 95.6

FTCN [61] 3D ResNet Video 99.8 86.9 - 74.0 -
RealForensics [21] 3D ResNet Video 99.8 86.9 - 75.9 -
LTTD [19] Vision Transformer Video 99.5 89.3 - 80.4 -
AltFreezing [51] 3D ResNet Video 99.7 89.5 - - 93.7
TALL [52] Swin Transformer Video 99.9 90.8 - 76.8 -
StyleFlow [5] 3D ResNet Video 99.1 89.0 - - 96.1
NACO [59] Vision Transformer Video 99.8 89.5 - 76.7 -
FakeRadar (Ours) Vision Transformer Video 99.1 91.7 88.5 84.1 96.2

Table 1. Generalization comparisons of FakeRadar and state-of-the-art algorithms on cross-dataset evaluation, using video-level AUC

(%) as the metric.

where yc is the ground-truth label for samples belonging to

class c, and pc is the model-predicted probability of sam-

ples from that class, with c = “Outlier” denoting the outlier

label. This loss compels the model to accurately partition

each category in the feature space, especially for samples

near class boundaries.

Total Loss. Finally, we combine both losses into the total

objective for model optimization:

Ltotal = Lcon + λLcls, (12)

where λ = 0.5 is a hyperparameter balancing the rela-

tive importance of classification and contrastive goals. In

practice, each mini-batch comprises 16 training samples

(FF++), and 16 outlier samples during model training.

4. Experiments
4.1. Experiment Setups
Datasets. Following established experimental prac-

tices [5, 51, 52, 54], this study primarily utilizes the

high-quality (HQ) version of the FaceForensics++

dataset [43], denoted as FF++(HQ), for FakeRadar’s

evaluation. This dataset consists of 1000 pristine videos

and 4000 deepfakes videos generated using four different

manipulation techniques: DFD [41], F2F [46], FS [26], and

NT [47]. The dataset is split into training, validation, and

testing sets according to the official protocol. This study

primarily focuses on evaluating the cross-domain perfor-

mance of our method. To this end, we incorporate four

additional datasets for evaluation, including CDFv2 [33],

DFDCP [11], DFDC [12], and DFD [41].

Implementation Details. To ensure fair comparisons, we

maintain most implementation details consistent with exist-

Training Set Method DF F2F FS NT avg.

DF

DCL [45] 99.98 77.13 61.01 75.01 78.28
UIA-ViT [63] 99.29 74.44 53.89 70.92 74.64
TALL [52] 99.35 69.33 54.38 74.74 74.45
AltFreezing [51] 98.80 69.33 72.07 77.41 79.40
FakeRadar (Ours) 99.95 86.47 88.12 66.36 82.23

F2F

DCL [45] 91.91 99.21 59.58 66.67 79.34
UIA-ViT [63] 83.39 98.32 68.37 67.17 79.31
TALL [52] 85.52 98.67 62.15 70.24 79.15
AltFreezing [51] 81.12 98.80 62.97 70.26 78.29
FakeRadar (Ours) 96.94 99.09 82.33 68.46 86.75

FS

DCL [45] 74.80 69.75 99.90 52.60 74.26
UIA-ViT [63] 81.02 66.30 99.04 49.26 73.91
TALL [52] 77.83 67.30 98.77 52.57 74.12
AltFreezing [51] 80.67 65.94 99.78 57.23 75.90
FakeRadar (Ours) 96.39 82.06 99.83 52.64 82.73

NT

DCL [45] 91.23 52.13 79.31 98.97 80.41
UIA-ViT [63] 79.37 67.89 45.94 94.59 71.95
TALL [52] 84.02 72.85 51.66 95.16 75.92
AltFreezing [51] 88.81 76.78 57.92 95.71 79.80
FakeRadar (Ours) 96.71 83.34 67.50 98.41 86.49

Table 2. Generalization comparisons of FakeRadar and state-

of-the-art algorithms on cross-manipulation evaluation, using

video-level AUC (%) as the metric.

ing methods [5, 51, 59]. However, our FakeRadar frame-

work employs ViT-B/16 from CLIP [40] as the backbone,

into which we insert an ST-Adapter [37] with a 384-

dimensional bottleneck for parameter-efficient fine-tuning.

Additionally, the classification head of our triplet-class clas-

sifier consists of a single linear layer with softmax activa-

tion. During model training, we sample four temporal clips

from each video, each containing 12 consecutive frames.

We use Adam as the optimizer and apply a cosine learn-

ing rate scheduler with an initial learning rate of 1×10−4.

The model is trained for 60 epochs with a batch size of

16 and a weight decay of 5×10−4. Prior to model opti-

mization, we perform data preprocessing by detecting faces

with RetinaFace [10] and then standardize all face images
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(a) (b) (c)
Figure 3. Evaluation of (a) Forgery Outlier Probing and (b)/(c) Outlier-Guided Tri-Training by FakeRadar. (a) “FakeRadar w/o Dyn.

Sub. M.” and “FakeRadar w/o Out. Gen.” indicate that dynamic subcluster modeling and cluster-conditional outlier generation have been

removed. The model is trained on FF++(HQ) and evaluated on DFDC [12], CDFv2 [33], and DFD [41]. (b) and (c) show, respectively,

the count of real and fake test samples classified as “fake” across predicted probability intervals. The blue solid line denotes the binary

classifier’s distribution (distinguishing only real vs. fake), while the red dashed line denotes that of our proposed triplet classifier, which

treats both fake and outlier samples as the new “fake”. In this evaluation, the model is trained on FF++(HQ) and tested on CDFv2 [33].

to 224×224 pixels.

Evaluation Metrics. In this work, consistent with previ-

ous studies [5, 51, 52] employing video-level inputs, we use

the area under the ROC curve (AUC) as the performance

metric during evaluations. For methods that use images as

model inputs, e.g. [27, 54], their video-level results are de-

rived by averaging the predictions across all video frames.

4.2. Comparisons with the State-of-the-Arts
In this study, we focus on evaluating the capabilities of

cross-domain generalization for our detector to validate

its effectiveness in detecting deepfake videos manipulated

through various techniques. To achieve this, we employ

two strategies for evaluation: cross-dataset evaluation and

cross-manipulation evaluation, both of which demonstrate

that our results predominantly surpass existing state-of-the-

art (SoTA) algorithms for deepfake video detection, as il-

lustrated by Table 1 and Table 2.

Cross-Dataset Evaluation. In this situation, we train

our FakeRadar on the FF++(HQ) and test its performance

on multiple benchmark datasets, including CDFv2 [33],

DFD [41], DFDC [12], and DFDCP [11]. As reported

in Table 1, FakeRadar demonstrates its superior general-

ization capability in cross-dataset evaluation, achieving the

best performance across all cross-dataset cases while main-

taining comparable performance on the FF++ test dataset

against SoTA algorithms. Specifically, our algorithm sig-

nificantly improves over other methods with images and

videos as inputs, particularly outperforming the current best

methods, UCF [53] and LTTD [19], by 3.6% and 3.7% in

the AUC metric, respectively, on the dataset DFDC [12].

These results robustly showcase the proposed method’s en-

hanced ability of generalization to handle unseen manipula-

tion techniques in cross-dataset evaluation scenarios.

M-(#) FOP
OGTT

CDF DFDC DFDCP DFD avg.
ODCL OCCE

1 � � � 91.6 84.1 88.5 96.2 90.1
2 � � 89.9 81.2 85.6 94.9 87.9
3 � � 88.6 80.9 87.7 94.7 88.0
4 � 88.8 80.2 86.7 94.5 87.6
5 � 88.4 78.4 85.1 94.3 86.7
6 88.2 78.3 84.8 94.2 86.4

Table 3. Ablation study results of FakeRadar by removing its one

or more proposed components, using video-level AUC (%) as the

metric. For clarity, “FOP”, “OGTT”, “ODCL”, and “OCCE” refer

to Forgery Outlier Probing, Outlier-Guided Tri-Training, Outlier-

Driven Contrastive Loss, and Outlier-Conditioned Cross-Entropy

Loss, respectively.

Cross-Manipulation Evaluation. To further assess our

model’s generalization across different manipulation tech-

niques, we conduct cross-manipulation evaluation on the

dataset FF++(HQ). In this case, we train the model using

only real samples from FF++(HQ) and one manipulation

type of deepfake samples, then test its performance on the

remaining three manipulation types within FF++(HQ). As

shown in Table 2, the proposed FakeRadar achieves the

best average performance in all testing cases, particularly

excelling in scenarios trained with F2F as the manipula-

tion type, surpassing the second-best performing method,

DCL [45], by 7.41% in AUC. In evaluations focused on

a single manipulation type, our method also achieves the

best performance in most cases and the second-best in a

few. This indicates that our approach, in cross-manipulation

evaluation, demonstrates a performance advantage in cross-

domain generalization compared to current SoTA algo-

rithms of detecting deepfake videos.

4.3. Ablation Analysis
We conduct an ablation study to assess the contribution of

each component in FakeRadar, with results presented in Ta-

ble 3, Figure 3, and Figure 4. Experiments are performed

in a cross-dataset setting, where the model is trained on
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FF++(HQ) and tested on CDF, DFDC, DFDCP, and DFD,

with average performance reported. As shown in Table 3

(Rows M-(1) to M-(6)), removing individual or multiple

components leads to a progressive decline in AUC, from

90.1% to 86.4%, demonstrating the significance of each

component. Below, we analyze the impact of FakeRadar’s

key components in detail.

Effectiveness of Forgery Outlier Probing. To evaluate

the impact of FOP, we remove or modify its submodules:

dynamic subcluster modeling and cluster-conditional out-

lier generation. In “FakeRadar w/o Dyn. Sub. M.”, we dis-

able dynamic subcluster modeling, generating outliers only

from clusters of samples of real and fake categories in train-

ing set. In “FakeRadar w/o Out. Gen.”, we replace out-

lier samples with Gaussian noise. As shown in Figure 3(a),

removing dynamic subcluster modeling reduces AUC on

CDFv2, DFDC, and DFD to 90.2%, 82.3%, and 94.7%, re-

spectively. While removing outlier generation has a smaller

impact, performance remains below the complete FakeR-

adar framework. On CDFv2, FakeRadar (91.7%) outper-

forms “FakeRadar w/o Out. Gen.” by 2.0%, demonstrating

that FOP enhances generalization by generating effective

outlier samples that improve the detection of novel deep-

fake manipulations.

Effectiveness of Outlier-Guided Tri-Training. Compar-

ing Table 3 (Rows M-(1) to M-(3)), removing Outlier-

Driven Contrastive Loss or Outlier-Conditioned Cross-

Entropy Loss leads to an AUC drop from 90.1% to 87.9%

and 88.9%, respectively, highlighting their importance.

Since both losses refine the use of outlier samples, remov-

ing them would render FOP ineffective.

The core of our proposed optimization strategy is the

integration of a triplet classifier to handle the outlier sam-

ples generated by FOP. To assess its impact, we replace the

triplet classifier, which performs three-class classification

(real, fake, and outlier), with a binary classifier that only

distinguishes between real and fake. We then analyze the

prediction probability distributions for cross-dataset evalu-

ation, as shown in Figure 3 (b) and (c). As illustrated, for

real samples, both the binary and triplet classifiers exhibit

similar prediction patterns with high confidence in the low-

probability region. However, for fake samples, the triplet

classifier demonstrates a clear advantage. Compared to the

binary classifier, it assigns higher forgery probabilities to

a greater number of fake samples, indicating that the pro-

posed outlier-guided tri-training increases the model’s con-

fidence in detecting unseen fake samples. This result val-

idates the effectiveness of treating outlier samples as fake

samples during inference and highlights its contribution to

improving the model’s generalization capability.

(a) CLIP ViT-B (b) FakeRadar (Ours)

Real Deepfakes Face2Face FaceSwap NeuralTextures

Figure 4. Feature visualization using t-SNE. We visualize the fea-

tures of (a) the pre-trained CLIP ViT-B model and our (b) FakeR-

adar here. We train both models using the training set FF++(HQ),

while testing on the FF++ test set.

Feature Visualization. We use t-SNE [48] to visualize

the features of our FakeRadar and the pre-trained CLIP ViT-

B model. As shown in Figure 4, the feature distribution of

FakeRadar exhibits a more compact clustering structure and

clearer boundaries between real and fake videos, compared

to the pre-trained CLIP ViT-B model. Furthermore, Fak-

eRadar effectively distinguishes real samples from the four

types of forgery samples. This suggests that FakeRadar not

only enables the model to learn discriminative features be-

tween categories but also establishes more robust decision

boundaries with the aid of outlier samples. These feature

distribution patterns underscore the advantages of FakeR-

adar in improving the model’s generalization ability. The

boundaries between categories are sharper, and sufficient

tolerance space is provided, which is essential for address-

ing unseen forgery types in real-world scenarios.

5. Conclusions

In this work, we introduced FakeRadar, a novel deepfake

video detection framework designed to address the lim-

itations of existing methods in cross-domain generaliza-

tion. Unlike traditional detectors that passively learn spe-

cific forgery patterns, FakeRadar proactively probes un-

known forgeries by incorporating Forgery Outlier Probing

to simulate diverse unseen manipulation patterns. This

approach enables the model to explore a broader range

of potential forgeries in feature space, significantly en-

hancing its adaptability to novel manipulations. To fur-

ther improve detection robustness, we proposed Outlier-

Guided Tri-Training, allowing the model to distinguish

between real, fake, and outlier samples. This training

paradigm, introduced outlier-driven contrastive loss and

outlier-conditioned cross-entropy loss, sharpens the deci-

sion boundaries and enhances the detector’s capacity to

generalize across different manipulation types. Extensive

experiments on benchmark datasets confirm that FakeR-

adar consistently outperforms state-of-the-art detection al-

gorithms, particularly in cross-domain evaluations where

conventional detectors struggle.
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