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Abstract

Video Multimodal Large Language Models (Video-MLLM)
have achieved remarkable advancements in video under-
standing tasks. However, constrained by the context length
limitation in the underlying LLMs, existing Video-MLLMs
typically exhibit suboptimal performance on long video sce-
narios. To understand extended input frames, common solu-
tions span token compression and streaming inference tech-
niques, which sacrifice feature granularity or inference ef-
ficiency. Differently, to efficiently achieve comprehensive
understanding of longer frame inputs, we draw ideas from
MoE and propose a training-free approach Free-MoRef,
which instantly multiplexes the context perception capabil-
ities of Video-MLLMs within one inference pass. Specifi-
cally, Free-MoRef reconstructs the vision tokens into sev-
eral short sequences as multi-references. Subsequently,
we introduce MoRef-attention, which gathers clues from
the multi-reference chunks in parallel to summarize unified
query activations. After the shadow layers in LLMs, a refer-
ence fusion step is derived to compose a final mixed reason-
ing sequence with key tokens from parallel chunks, which
compensates the cross-reference vision interactions that are
neglected in MoRef-attention. By splitting and fusing the
long vision token sequences, Free-MoRef achieves improved
performance under much lower computing costs in rea-
soning multiplexed context length, demonstrating strong
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Corresponding author.

efficiency and effectiveness. Experiments on VideoMME,
MLVU, LongVideoBench show that Free-MoRef achieves
full perception of 2Xx to 8x longer input frames with-
out compression on a single A100 GPU while keeping in-
stant responses, thereby bringing significant performance
gains, even surpassing dedicatedly trained long-video-
MLILMs. Codes are available at https://github.
com/wkfdb/Free—MoRef

1. Introduction

Large Language Models (LLMs) [2, 31, 40]have emerged
as a revolutionary force towards general intelligence,
marked by their universal capabilities in various language
tasks. Through instruction tuning [20], Multimodal Large
Language Models (MLLMs) further extend their excep-
tional reasoning ability to other modalities such as vi-
sion [14, 30, 32] and audio [24]. In recent studies, MLLMs
have been extensively applied to the comprehension of
video content [5, 16, 23, 34]. Notwithstanding the remark-
able advances in video understanding, the context length
restriction inherent in LLMs has emerged as a critical bot-
tleneck, especially for long video understanding, where the
abundant visual tokens readily surpass the threshold that en-
sures stability and consequently resulting in a decline in the
effectiveness of these models.

To prevent over-length sequences that violate the context
constraints of the reasoning LLM, existing MLLMs [30, 32,
43] typically impose a maximum limit on the length of vi-
sion tokens to maintain stable performance. (e.g. 64 frames
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(b) Comparison of FLOPs, first token latency and overall QA accuracy in
reasoning original and doubled input frames by LLaVA-Video [44].

Figure 1. Different inference designs and the advantages of Free-
MoRef. In summary, Free-MoRef brings superior performance
under much lower computing costs on longer vision contexts.

with 2 x 2 spatial pooling for LLaVA-Video [44] and 784
small rescaled frames for Qwen2-VL [32].) The tradeoff
between resolution and number of input frames have to be
made in video understanding models, which greatly restricts
their effectiveness in fully exploiting the rich information
contained within extended video sequences.

To expand the context perception capability under
the context restriction of the foundation LLM in Video-
MLLMs, common solutions primarily encompass token
compression [18, 26, 28] and streaming inference tech-
nique [25, 33, 38]. However, both of these methods suffer
from notable deficiencies. The Streaming Inference tech-
nique [38] achieves ultra-long context dependency by re-
taining and reusing the historical KV-CACHE, but the ex-
tra time cost is proportional to the context length benefit.
For example, reasoning doubled contexts results in dou-
bled latency. As an alternative, the token compression strat-
egy can represent more information within a limited token
length, thereby increasing the context within a single infer-
ence without exceeding the preset token length limit. How-
ever, longer context benefits lead to more severe informa-

tion loss. In light of these drawbacks, a crucial question
emerges: Is it possible to achieve longer context perception
within a single inference while ensuring comprehensive un-
derstanding of the context?

Motivated by this question, we have designed and imple-
mented Free-MoRef, a training-free approach that instantly
multiplexes the context throughput within one single infer-
ence pass, achieving full long-context understanding with
flash efficiency. Inspired by the MoE paradigm [9], we ab-
stract long visual tokens into multiple short sequences as
multiple references, each of which encapsulates the overall
information of the original long contexts. Subsequently, we
further design the Mixture of Reference attention, which
allows for the parallel querying of multiple references and
the integration of the results into a unified activation within
each decoding layer. This process could be considered as
an expert solving problems according to different references
and figuring out a final solution. As observed in FastV [4],
after the shadow layers in LLM, the attention pattern would
be more concentrated on query tokens. Leveraging this in-
sight, we further extract key vision tokens in each chunk and
mix them into a global reference for the remaining decoding
layers, which compensates the neglected cross-reference vi-
sion interactions in the parallel reasoning. As illustrated in
Figure 1b, by splitting and fusing the vision-tokens, Free-
MoRef achieves instant comprehensive understanding of
longer contexts with improved performance, demonstrating
strong efficiency and effectiveness.

We apply Free-MoRef to LLaVA-Video-7B [44] and
conduct experiments on several long video bench-
marks, including VideoMME [12], MLVU [45], and
LongVideoBench [37]. On a single A100 GPU, Free-
MoRef can directly extend the context throughput from 2x
to 8x with less than 27.6% of the FLOPs and negligi-
ble latency, while bringing superior performance on all the
three above long video benchmarks. On the VideoMME
benchmark, our method leads 3% to 5% performance gains
on long and medium videos, reaching SOTA results, even
surpassing dedicatedly trained long-video-MLLMs [28, 39,
42]. Notably, Free-MoRef supports Flash-Attention [10]
and can also be integrated with streaming inference or to-
ken compression strategies. Despite training-free applica-
tion, the MoRef-attention mechanism may also inspire the
training design for long context scenarios.

2. Related Works
2.1. Video Large Language Models

Recent advancements in Video-MLLMs are mainly
achieved by empowering Image-MLLM to comprehend
video content. Here, large-scale video-text data is utilized
to learn the vision features and temporal relations between
the input frames. The structure of Video-MLLM typically
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consists of a vision-encoder to tokenize the vision inputs,
a foundation LLM for query-aware reasoning, and an in-
termediate connector to link the vision space and language
space. In terms of the connector, several works [8, 16, 17]
use the Q-Former [15] to merge visual and text features,
where learnable tokens summaries the encoded patch em-
beddings. However, high compression rate usually re-
sults in lower performance in such designs. In other ap-
proaches [3, 19, 22, 43], patch embeddings are directly con-
catenated, which is more effecitve since it preserves more
detailed features. However, the abundance of vision tokens
poses a vital challenge in understanding longer videos.

2.2. Long Video Understanding

Through uniform sampling, existing Video-MLLMs can be
directly applied to long video understanding tasks. How-
ever, it is evident that the limited input severely restricts the
model’s performance. To tackle the challenge of long video
understanding, existing research can be mainly categorized
into three types: LLM context expansion [11, 29, 35, 39],
token compression [18, 26, 28, 36], and streaming infer-
ence [25, 33]. Context extension methods aim to directly
increase the context length limit of Video-MLLMs by con-
ducting post-training with long-sequence data, thereby en-
hancing the model’s context perception ability. Although
these methods are effective, they impose a substantial com-
putational burden on long video understanding, which re-
stricts their application in practical scenarios. Regarding
vision token compression, training-free methods [4, 13, 27]
prune visual tokens based on spatiotemporal redundancy,
while training-based approaches [6, 28] introduce learnable
summary tokens to achieve token compression. However, a
low compression rate may not yield significant contextual
improvement, while a high compression rate could result in
substantial information loss. Recently, streaming inference
techniques [38] have been applied to long video understand-
ing [33]. This is achieved by invoking Video-MLLM multi-
ple times to gradually comprehend the long context through
identifying and reusing key historical KV-CACHE. Never-
theless, this process leads to exponential reasoning delays.

Our approach bears resemblance to the context extension
method. However, the key distinction lies in the fact that our
method is training-free, incurs low computational overhead,
and can instantly achieve comprehensive perception of the
exponentially increased context within less than 27.6% of
the computational cost.

3. Method

In this section, we present the Free-MoRef method, which
effectively extends the context perception capacity of
Video-MLLMs with a high degree of flexibility. Notably,
when dealing with extended input frames, Free-MoRef ini-
tially partitions the long vision tokens into parallel inference

chunks via multi-reference partitioning. Subsequently, it
substitutes the self-attention layers of the LLM with MoRef
attention. This allows for parallel reasoning over multiple
references using the same query and aggregation of unified
activations. At the mid-decoder layers, an optional Refer-
ence Fusion step is derived to combine the parallel chunks,
thereby further enhancing the efficiency of the reasoning
process. Without additional training, Free-MoRef over-
comes the context length constraint of Video-MLLM dur-
ing single inference and attains comprehensive perception
of exponentially expanding context with minimal compu-
tational cost and achieves better performance. The overall
architecture of Free-MoRef Inference is depicted in Figure
2, and the details of each component will be elucidated in
the following subsections.

3.1. Multi-Reference Partition

In Video-MLLM, the reasoning LLM typically has a con-
text length threshold to safeguard stable performance. For
instance, the LLaVA-Video [44] model employs Qwen?2 [1]
as its underlying LLM, and the corresponding sequence
length threshold is set at 32768 tokens. When the length
of the inference sequence surpasses this threshold, it fre-
quently results in performance deterioration or, more criti-
cally, Out-Of-Memory errors. Under these constraints, ex-
isting approaches commonly resort to vision token com-
pression or streaming inference techniques to handle longer
input frames. To minimize information loss while concur-
rently ensuring the efficiency of the reasoning process, we
propose to partitioning the long visual token sequence into
multiple parallel chunks, which serve as multi-references
for comprehensive understanding.

To enhance flexibility, we initially divide the vision-
token sequence into M units according to the temporal re-
lationship. Subsequently, within each unit, we further tem-
porally decompose it into N fragments. Here, both M and
N are manually configured hyperparameters. Eventually,
through the aggregation of fragments from diverse units, we
are able to obtain IV reference chunks. Each of these refer-
ences can be considered as an abstraction of the extended
video sequence. Notably, the larger the value of the hyper-
parameter M, the more pronounced the temporal intersec-
tion among the references. When setting M = 1, the NV
chunks will be temporally independent of each other. After
completing the multi-reference partition, we assign identi-
cal system prompt and question to each vision sequence,
thereby forming the final parallel inferecne chunks, which
is designed for more comprehensive and efficient reasoning
by leveraging the Mixture-of-Reference (MoRef) attention.

3.2. MoRef Attention

MoRef Attention is the key step in attaining comprehensive
perception and parallel reasoning across multi-references.
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Figure 2. The framework of Free-MoRef Inference. For extended input frames, the initial step involves partitioning the vision tokens into
multiple references and subsequently assigning identical system prompt and question to each of these references. To enable efficient com-
prehension of these multi-reference chunks, we design the MoRef attention mechanism, which concurrently extracts clues from multiple
references to formulate responses to the posed question. At the middle layer of the decoder, a reference-fusion step is derived. This step
serves to aggregate the parallel chunks into a unified global representation which not only further accelerates the reasoning process but also
facilitates cross-chunk interactions, thereby enhancing the overall performance and effectiveness of the long context reasoning.

It concurrently queries distinct references in parallel using
an identical question and combines multiple attention out-
comes to summarize a unified response for updating the
question tokens within each decoder layer.

Specifically, for the input parallel inference chunks,
MoRef first constructs Q, K,V € RNXIXD (N is the
chunk number, [ is the sequence length and D is the embed-
ding dimension), then executes flash-attention to obtain the
initial attention results O, where O = [0*Y*, 0""*, 01|,
Here, O%Y*, 0" and O7"“* respectively denote the atten-
tion results corresponding to the system prompt token, vi-
sion token, and question token. Owing to the unidirectional
nature of causal attention, O®Y® in different chunks would
be exactly the same. In contrast, O** and O9“* yield di-
vergent results due to the variance in vision-references. At
this point, we maintain the variation of O"** and aggregate
O across different chunks through the following func-
tion:

N N
ofusion — (Z w; - O1"*).repeat(N), Zwi =1 (1)

i=1 i=1

In Eq. 1, OJ"® represents the query result on each

reference and O7“*"" is the unified summarization. By
replacing O?“®® in the initial attention results, the out-
put of MoRef attention is constructed as OQMofef
[Osys7 Om's7 Ofusion].

The w; in Eq | indicates a gating function, which con-
trols the information aggregation across different refer-
ences. The gating function should be query-aware, as the
key information required to answer the question may not
be uniformly distributed among diverse references. In the
training-free implementation, our objective is to seek the
query-reference-correlation from the attention map. Since
the flash-attention doesn’t support output attention weight,
we manually calculate the multi-model attention map be-
tween query and vision-reference:

A = softmaz(Q1* x (KV*)T) 2

Compared with the full-attention on the whole sequence,
the cross-modal attention Eq. 2 introduces negligible com-
putation. With respect to A, we set the gating weights of
each reference chunk as:

wi = ———— 3)
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By combining the attention results of the same query
across diverse vision-references, all vision-tokens are effec-
tively engaged in the updating of the query-token in each
decoder layer. As shown in Figure 3, this integration strat-
egy enables the full-context perception equivalent to that
achieved by full attention. By partitioning the vision se-
quence into NV non-overlapping chunks, the computational
complexity is reduced by approximately a factor of % com-
pared with full attention. The number of temporal units M
serves as a crucial parameter that significantly influences
the formation of sparse attention patterns. For instance,
consider a vision sequence of length 8 divided into N = 2
chunks. Figure 3 depicted the impact of different settings of
M on the vision-attention-map.

3.3. Reference Fusion

MoRef attention efficiently enables the comprehensive per-
ception of multi-references. Nevertheless, the division of
multi-references disrupts the connectivity among vision-
tokens across different chunks. To address this limitation,
we design an additional Reference Fusion step. This step
aims to achieve the integration of multiple reference chunks
into a global one, thereby compensating for the lack of
cross-chunk interaction within the deep decoder layer.

The implementation of Reference Fusion is grounded in
an observation made by FastV [4]: vision-tokens contribute
uniformly in the shallow decoder layers. In contrast, within
the deep layers, the attention weights of the decoder layer
would more concentrate on the query-token. We visual-
ized the reasoning process of LLaVA-Video [44] and noted
a similar phenomenon (as detailed in supplementary mate-
rial). Leveraging this insight, we maintain parallel multi-

reference reasoning within the shallow layer. When the de-
coding process reaches a specific layer L, we perform the
merging of multi-references based on the attention map A
computed in Eq 2.

Specifically, A € RN *lquesxlvis - where N represents
the number of references, lgy¢s and [,,;5 denote the number
of question token and vision token in each inference chunk.
We compute the average of the attention map A along the
lques dimension to construct the importance estimation ma-
trix E € RV*lvis | where each element E;; in E quantifies
the average contribution of the j-th vision token in the i-th
chunk. Based on the estimation matrix E, we prune 1 — %
of the less important vision-tokens within each inference
chunk. Subsequently, we aggregate the remaining vision
tokens into a global reference in accordance with their tem-
poral relationships. System prompt tokens and question to-
kens are directly transferred from the local reference chunk
to the global reference. For the following decoding process,
only the global reference is used by the default decoder lay-
ers of the LLM.

Through the Reference fusion step, the pruning of non-
crucial tokens further reduces the computational load, while
the cross-chunk vision interaction that is lacking in shallow
layers can be effectively compensated for, which results in
optimized performance.

4. Experiments

4.1. Experimental Setup

Benchmarks VideoMME. [12] Video Multi-Modal
Evaluation benchmark (VideoMME) consists of 900 videos
with a total duration of 256 hours, covering a wide range
of video types. The videos are associated with 2,700
manually labeled complex multiple-choice QA pairs across
30 subfields. According to video durations, VidleoMME
is partitioned into three subsets : short (< 2 minutes),
medium (4 ~ 15 minutes), and long (30 ~ 60 minutes).
MLVU. [45] Multi-Task Long Video Understanding
Benchmark (MLVU) significantly expands the scope of
durations with diverse types of videos and 7 different types
of QA tasks. The video lengths range from 3 minutes
to over 2 hours, with an average duration of 12 minutes.
LongVideoBench. [37] LongVideoBench highlights
referred reasoning questions, which are dependent on
long frame inputs. It contains 17 finer-grained question
categories on 10 different types of videos. The video
duration covers 4 groups: 8-15 seconds, 15-60 seconds,
3-10 minutes, and 15-60 minutes.

Implementation Details We implement the Free-MoRef
on the LLaVA-Video-7B [44] model. By default, LLaVA-
Video-7B loads videos at a FPS=1, with a maximum of 64
frames, where each frame is represented by 182 tokens. To
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Table 1. Performance of Free-MoRef@LLaVA-Video-7B under extended frame inputs. The red color indicates Out-Of-Memory error on
a single A100 GPU. We managed the inference under the help of accelerate toolkit.

Context Length VideoMME LongVideoBench
(Token Number) FLOPs = MLVU Medium Long Overall 600s 3600s Overall
64 frames (11648) 100% 70.3 62.1 53.4 64.3 60.4 512 58.8
128 frames (23296) 400% 70.2 63.2 54.1 64.9 60.6 50.8 58.7
128 frames @Free-MoRef 110.4% 70.8 65.8 55.8 66.3 62.1 51.0 59.3
256 frames (46592) 1600% 67.2 61.4 54.1 63.1 572 485 56.7
256 frames @Free-MoRef 163.2% 72.5 66.4 55.3 66.3 62.1 512 59.3
512 frames (93184) 6400% 61.1 55.7 48.8 60.6 53.1 459 54.3
512 frames @Free-MoRef  400% 72.8 67.3 56.0 66.9 62.8 519 59.9

Table 2. Performance comparison on Long-Video Benchmarks:
all models in this table are of the 7B ~ 8B scale.

Method MLVU LVideoBench - 9¢0MME
Long Overall
InternVL2 [30] 64.0 54.6 - 540
InternVL2.5[7] 684 575 53.0 645
Qwen2-VL[32]  64.8 55.6 557 633
LLaVA-
Oravision [14] 64.7 56.3 - 582
LLaVA-Video [44] 70.2 58.2 534 643
Kangaroo [21] 61.0 54.8 46.7 56.0
LongVILA [39] ; 57.1 470  60.1
LongVA [42] 56.3 - 46.2 52.6
Video-XL [28] 64.9 50.7 - 555
RETAKE [33] 69.8 - 562 639
[LILENAELED 72.8 59.9 560 66.9

@Free-MoRef a—

demonstrate the efficacy of Free-MoRef, we multiply the
maximum number of frames to 128 (2x), 256 (4x), and 512
(8x) respectively. In our experimental setup, the vision to-
ken sequence is consistently partitioned into M = 64 tem-
poral units. For the multiplexed inputs of 2x, 4x, and 8x,
the number of parallel chunks is set as N = 2,4,8 re-
spectively, and the reference fusion layer is configured as
L = 3,6,12. We conduct the evaluation upon Imms-eval
framework [41] and all experiments are executed on a sin-
gle A100 GPU. Further details will be made accessible in
our publicly-released code repository.

4.2. Main Results

Results on Multiplexed Context Understanding. We
implemented the Free-MoRef method on the llava-video-7B
model, which by default has a maximum input frame num-

ber of 64. In order to verify Free-MoRef’s ability to handle
multiplexed contexts, we expanded the maximum number
of input frames to 128, 256, and 512 for experiments. The
experimental results are presented in Table 1.

When the number of input frames is doubled, the num-
ber of tokens required to encode the input frames amounts
to 23,296, which is within the context length limit of Qwen2
(32,768). Under such circumstances, the performance of the
model remains nearly unchanged on both the MLVU and
LongVideoBench, while demonstrating a slight improve-
ment on the VideoMME benchmark. After the applica-
tion of Free-MoRef, the computational cost incurred during
the inference process is reduced by (1-110.4/400 = 72.4%).
Concurrently, both MLVU and LongVideoBench exhibit a
0.5% performance gain. The performance improvement on
VideoMME is more pronounced, with a 2.6% improvement
for medium-length videos and a 1.7% improvement for long
videos.

When the number of input frames is quadrupled, the
number of vision tokens surpasses 40,000. This length
clearly exceeds the context length limit of Qwen2, and at-
tempting to perform inference using a single A100 GPU
will directly result in an Out-Of-Memory error. Notably,
even without the assistance of the accelerate toolkit, our
proposed method is capable of effectively reasoning on up
to 512 frames using a single A100 GPU.

Leveraging the accelerate toolkit, we were enabled to
conduct further comparative experiments. When the num-
ber of input frames reached 256, the model’s performance
experienced a substantial decline across all benchmarks.
However, upon the application of Free-MoRef, the degra-
dation was effectively mitigated. In particular, on the
MLVU dataset, which consists of relatively longer videos,
the model’s performance was further enhanced to 72.5%.
In terms of efficiency, the computational requirement for the
model to infer a context of 4 x length was merely 163.2% of
the original. When the number of input frames is further in-
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Table 3. Performance comparison on various task categories in VideoMME. Tasks contain Temporal Perception(TP), Spatial Percep-
tion(SP), Attribute Perception(AP), Action Recognition(ARec), Object Recognition(ORec), OCR Problems(OCR), Counting Problem(CP),
Temporal Reasoning(TR), Spatial Reasoning(SR), Action Reasoning(AR), Object Reasoning(OR) and Information Synopsis(IS). The best

result is bolded, the second is underlined, and the worst is in red.

ContextLength TP SP AP ARec ORec OCR CP TR SR AR OR IS Avg
64 frames 745 648 793 645 715 669 485 480 804 561 590 765 643
128 frames 709 593 793 668 706 712 474 480 804 547 612 789 64.9
128 frames

OFroMoref 143 648 788 671 723 719 485 508 857 582 619 796 663
256 frames 80.0 630 779 671 723 705 478 503 821 60.0 619 808 66.3

@Free-MoRef

creased by 8 x, reaching 512 frames, the length of the vision
token approaches nearly 100,000. In comparison to the sce-
nario with 256-frame input, the performance of the baseline
model experiences a substantial and further decline. De-
spite posing challenges to the baseline model, the extended
context serves as a rich source of information and provides
more abundant references for the reasoning process of Free-
MoRef, as a result, Free-MoRef attains a further enhance-
ment in performance. In summary, Free-MoRef enables the
Video-MLLM to leverage the multiplexed frame inputs for
more comprehensive understanding of long videos, thereby
highlighting the robustness and efficiency of Free-MoRef in
handling ultra-long context scenarios.

Comparison with other Models. We validated the effi-
cacy of Free-MoRef by conducting comprehensive compar-
isons with other Video-MLLMs. These comparisons en-
compassed open-source MLLMs capable of video under-
standing, as well as specifically designed long-video un-
derstanding models. As depicted in Table 2, our proposed
Free-MoRef method outperformed all the others, attaining
the optimal results on the MLVU, LongVideoBench and
VideoMME benchmarks.

The underlying reason for the SOTA performance lies in
the fact that Free-MoRef enables an efficient and exhaus-
tive understanding of ultra-long contexts. By simply ex-
panding the input frames, Free-MoRef can achieve superior
long-video understanding performance within a single in-
ference. It is worth noting that our method is implemented
in a training-free manner, which further confirms the po-
tential of MoRef-attention. Its ability to fully understand-
ing ultra-long contexts while maintaining a low computa-
tional burden offers significant inspiration for the develop-
ment of future long-video understanding models, thereby
highlighting the practical value and far-reaching implica-
tions of Mixture-of-Reference design in the field of long
video understanding tasks.

5. Ablation & Analysis

In this section, we perform ablation experiments and in-
depth analysis on the Free-MoRef method. Free-MoRef
is principally associated with three hyperparameters: the
number of sequential units M, the number of reference par-
titions IV, and the specific decoder layer L for reference
fusion. We conduct detailed ablations based on 128-frame
inputs on the VideoMME benchmark to evaluate the impact
of the hyperparameters. Please refer to supplementary ma-
terials for additional analysis.

5.1. Perforamance on different types of question.

Table 3 records the performance of varying context inputs
across different types of questions. In general, compared
with 64-frame input, the expansion of the context predom-
inantly brings benefits in Information Synopsis, and di-
verse Recognition and Reasoning questions. By applying
Free-MoRef for long-context inference, the performance of
nearly all types of question on the VideoMME benchmark
are enhanced, except for Attribute Perception task. Here is
an example of an AP task. Question-id 009-1: Which color
of clothes is QuYuan wearing in the video? This type of
question only refers to a small clip in the video. Expanding
the context introduces redundant unnecessary information
in this case, thus impact the accuracy of answering such
questions.

5.2. Impacts of various reference number N.

The Free-MoRef method partitions the video sequence into
N identically sized parallel references. In general, the more
parallel references there are, the more computational effort
is saved during inference. In the context of a 128-frame in-
put, we set M = 128/N to keep the vision-tokens are split
frame-by-frame into each reference chunk. The effects of
the model under different values of IV are presented in Ta-
ble 4. As the number of reference chunk increases, both
the computational load and the performance of Free-MoRef
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Table 4. Performance of different setting of parallel chunk number
N. N =1 indicates default inference.

Chunk Number FLOPs Medium Long Overall

N=1 100% 63.2 54.1 64.9
N =2 27.6% 65.8 55.8 663
N=14 25% 65.1 55.8  66.1
N =8 23.6% 64.9 55.6 659

Table 5. Performance of different setting of temporal units M.
TP indicates Temporal Perception task and SP represents Spatial
Perception.

Temporal Units Partition Units| TP SP | Overall

M=1 64 frames 70.9 68.5| 66.3
M=4 16 frames 727 66.7| 66.0
M = 32 4 frames 74.5 66.7| 66.0
M =64 1 frames 745 64.8| 66.3

exhibit a gradual decline. For best performance, we iden-
tically set N = input frame number /64 for all the experi-
ments.

5.3. Effects of different temporal units M.

The configuration of the temporal unit M determines the
temporal intersection among different reference chunks. Its
influence on the vision attention pattern is illustrated in Fig-
ure 3. Table 5 documents the effects of diverse values of
M on various tasks. Overall, the performance remains rel-
atively consistent. However, significant disparities are ob-
served in Temporal Perception and Spatial Perception tasks.
We provide examples of TP and SP questions for better ex-
planation. TP: In which part of the video does the red parrot
appear? SP: What is the location of the scene being de-
picted in the video? When M = 1 and N = 2, the middle
part of the entire video serves as the tail and head for the first
and second reference chunks, which leads to opposed inter-
pretations of the temporal perception task, thereby reducing
the performance for TP tasks. In the case of spatial per-
ception problems, a detailed comprehension of a continu-
ous video segment is essential. When M = 64, the specific
video segments are separated to each reference chunk frame
by frame, which reduces the feature density and thereby im-
pacting the reasoning for SP questions.

5.4. Analysis of reference fusion layer L.

By discarding unimportant vision tokens in the middle layer
and merging multi-reference chunks, further computational
savings can be realized while the missing visual feature de-

Table 6. Performance of different Reference Fusion Layers L.

Context | Fusion | Medium Long Overall

128 frames X 64.7 55.4 65.8
drop rate L=1 64.4 54.4 65.4
50% L=3 65.8 55.8 66.3
256 frames X 64.6 54.8 65.5
drop rate L=3 64.4 56.3 66.0
75% L=6 66.4 55.3 66.3

pendencies between parallel chunks can be made up. How-
ever, it is crucial to note that premature execution of refer-
ence fusion may lead to a certain degree of information loss,
which impairs the final performance. As depicted in Ta-
ble 6, when conducting inference on a context of 128-frame
length, performing fusion operations at the first layer yields
sub-optimal performance. In the case of reasoning about
a length of 256 frames, executing fusion operations at the
third layer results in superior long video understanding per-
formance compared to performing it at the sixth layer. This
phenomenon indicates that the timely establishment of vi-
sual feature associations across parallel chunks is more con-
ducive to longer video understanding. From a holistic per-
spective, performing reference fusion at the sixth layer can
achieve relatively higher performance at the overall evalua-
tion.

6. Conclusion

In this paper, we present Free-MoRef, a novel training-free
approach that instantly multiplexes the context perception
capacity of VideoLLM within a single inference pass. By
partitioning long video inputs into multi-reference chunks,
our proposed MoRef-attention concurrently extracts clues
from multi-references and synthesize unified query re-
sponses, thus facilitates the understanding of long videos
with extended input frames. Leveraging Free-MoRef, we
successfully achieved a comprehensive understanding of
1024 frames using a 7B-VideoLLM on a single A100 GPU
and brought substantial improvements across three long
video understanding benchmarks.
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