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Abstract

Glass Surface Detection (GSD) is a critical task in com-
puter vision, enabling precise interactions with transparent
surfaces and enhancing both safety and object recognition
accuracy. However, current research still faces challenges
in both recognition performance and generalization capa-
bility. Thanks to the recent advanced diffusion-based gen-
erative models, GSD task can benefit from rich prior knowl-
edge encapsulated in pre-trained Stable Diffusion (SD)
model. Thus, in this paper, we present GlassWizard, aiming
to harvest priors in diffusion-based model to achieve ac-
curate and generalized GSD. Firstly, we delve into the text
embedding space in SD to build an text-based context prior,
thereby enhancing the understanding of implicit attribute of
glass and achieving fine-grained predictions. Secondly, we
train an end-to-end diffusion model with a one-step formu-
lation pipeline, yielding effective optimization and fast in-
ference. In addition, to facilitate our adapted framework
scalable to other multi-modal GSD tasks (such as RGB-
D/RGB-T GSD), we present a modality-customized adapta-
tion, that can achieve rapid adaptation to multi-modal GSD
tasks. Our experimental results demonstrate that our pro-
posed framework achieves cutting-edge performance across
diverse datasets, and it also shows strong generalization
ability. Additionally, it excels in multi-modal GSD tasks,
confirming its scalability across different modalities.

1. Introduction

Glass Surface Detection (GSD) [20, 25, 50, 51] is crucial
for various applications, including robotics, autonomous
driving, and augmented reality, where precise identification
greatly enhances safety and interactivity in complex envi-
ronments. Recent efforts have proposed many ingenious
strategies for glass detection, such as exploring boundary
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Figure 1. Our proposed GlassWizard harvests priors from
diffusion-based model to achieve accurate and generalized Glass
Surface Detection (GSD). It is also scalable to multi-modal data
with Modality-Customized Adaptation.

information [8, 27], contextual features [54], and visual
blurriness cues [29]. However, constructing an effective,
unified model for glass detection remains an open chal-
lenge. Existing models often rely on small training datasets
and have limited feature capacity, which restricts their abil-
ity to generalize across diverse real-world conditions.

Fortunately, with the construction of massive high-
quality training datasets and well-designed large-scale
model architectures, many computer vision tasks, such as
image segmentation [17, 41] and image generation [32],
have taken a leap forward in generalization and zero-shot
capabilities in recent years. A prominent example of such
models is the Segment Anything Model (SAM) [17], which
demonstrates excellent zero-shot performance on many
downstream segmentation tasks. Nevertheless, studies have
shown that the standard SAM performs poorly on glass de-
tection [7]. A key reason for this is that unlike explicit se-
mantic classes (e.g., person or car) that can be distinguished
independently of context, accurately recognizing glass sur-
faces is highly context-dependent. To incorporate richer
contextual semantics, some approaches introduce additional
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modalities, such as paired depth [38] or thermal data [13]
to improve segmentation accuracy. However, these ap-
proaches typically focus on architectural modifications tai-
lored to individual modalities, integrating information from
a single sensor type. There is significant value in develop-
ing frameworks that can scale to multiple modalities, ac-
commodating a variety of sensor inputs. To our knowledge,
a unified foundational model with multi-modal glass recog-
nition capabilities has yet to be developed.

To address the aforementioned challenges, we turn our
attention to Stable Diffusion (SD) [32], a large-scale image
generation model that inherently supports flexible prompt
conditioning like text and semantic map. The vast knowl-
edge encapsulated in SD has been successfully transferred
to various downstream tasks such as image classification [3,
36] and depth estimation [16]. Motivated by this, we ex-
plore the potential of leveraging the rich priors embedded
in diffusion models to improve both the accuracy and gen-
eralization of glass surface detection.

Despite the impressive capabilities of SD, directly apply-
ing the SD framework to the GSD task presents several chal-
lenges. First, current GSD methods primarily rely on visual
cues and often overlook the integration of additional sources
of prior knowledge. In SD, the text embedding serves as a
pivotal intermediary between text and images but remains
relatively under-explored in the context of dense prediction
tasks. Second, the VAE decoder of diffusion models, typ-
ically designed for image generation, may not align well
with segmentation tasks that require a customized output
mask. Third, the computational cost of multi-step infer-
ence in diffusion models is significantly higher than that of
one-step segmentation models, which poses a challenge for
efficient processing, particularly in real-time applications.
Finally, while the stochastic multi-step generation process
in SD allows the model to explore its generative capabili-
ties and produce diverse outputs, it introduces noise that can
lead to unwanted artifacts in the GSD task. In this context,
the added noise in the latent space is unnecessary and may
hinder the precise segmentation required for accurate glass
surface detection, where fine-grained details are crucial.

To mitigate the aforementioned challenges, we propose
GlassWizard, a framework that harnesses the potential of
pre-trained diffusion-based models to improve performance
and generalization ability for GSD, as demonstrated in Fig-
ure. 1. To effectively adapt Stable Diffusion (SD) for the
GSD task, we propose an end-to-end training approach with
an one-step formulation pipeline. On the one hand, the one-
step approach reduces the randomness in the diffusion pro-
cess, leading to more consistent and accurate outputs. On
the other hand, it improves the efficiency of both training
and inference, significantly reducing the computational cost
and time required for the task. Meanwhile, we delve into the
rich priors encapsulated in the textual embedding space of

pre-trained SD and build text-based content prior for GSD.
We refine the model’s understanding of glass within the tex-
tual space by introducing a learnable textual condition rep-
resenting the concept of glass surfaces. Additionally, we
introduce a modality-customized adaptation, which effec-
tively facilitates the scalability of the trained framework to
other multi-modal tasks, such as RGB-D and RGB-T GSD.
This enables the model to integrate features from different
sensor modalities, making it adaptable to a wider range of
real-world applications.

The main contributions are summarized as follows:
• We introduce GlassWizard, a general framework for glass

surface detection that utilizes pre-trained text-to-image
diffusion models. We employ an end-to-end training
manner combined with a one-step formulation to enhance
both efficiency and segmentation accuracy.

• We build the text-based content prior to explore and re-
fine the potential of textual embeddings for learning the
specific concepts of glass surfaces.

• We present a modality-customized adaptation for adapt-
ing the trained GSD framework to multi-modal GSD
tasks, ensuring the model’s scalability across different
sensor suites.

• Extensive experiments demonstrate that GlassWizard not
only outperforms state-of-the-art methods, but also shows
excellent generalization when tested on two unseen GSD
datasets.

2. Related Work

2.1. Transparent Image Segmentation

Transparent object segmentation has been a challenging
task in computer vision due to the inherent properties of
transparent materials, which often lack distinct texture and
color information. To address the challenge, various ap-
proaches have been proposed, leveraging advanced deep
learning techniques [8, 27, 29, 46, 47, 54, 55]. Some works
explore boundary information [8, 27, 46], different-level
feature fusion [54] Trans4Trans [55] presents a lightweight
model to perform real-time way-finding in wearable sys-
tem. VBNet [29] proposes to utilize visual blurriness infor-
mation to detect glass. GlassSemNet [21] learns the spatial
and semantic correlations between objects. VGSD-Net [23]
explores dynamic reflection information for video glass sur-
face detection. Moreover, several works utilize additional
modalities, such as depth [38], polarized light [26], and
thermal [13] to provide supplementary cues for segmenta-
tion. Existing GSD methods are limited by small training
datasets, hindering their real-world applicability. There’s a
need for robust models that deliver high-quality segmenta-
tion without extensive fine-tuning, enhancing their practical
use across various applications.
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Figure 2. The overview of our proposed GlassWizard, which consists of two stages. (a) In Stage I, we train a refined textual condition of
glass surface to build a text-based content prior for adapting SD. Most parameters of the pre-trained diffusion model are frozen, and only
the glass-specific embedding is learned. (b) In Stage II, we train the diffusion model under the guidance of refined textual condition. The
training is performed in an end-to-end manner with a one-step formulation pipeline. (c) Inference pipeline of our proposed method.

2.2. Diffusion Models
Diffusion models have recently gained prominence for their
ability to generate high-quality images or videos [2, 28, 30,
33]. Key advancements include prominent models such as
Denoising Diffusion Probabilistic Models (DDPMs) [10]
and Latent Diffusion Model (LDM) [31], which reduce
computational overhead by performing the diffusion pro-
cess within a lower-dimensional latent space, significantly
enhancing both training efficiency and inference speed.
Conditional diffusion models incorporate various forms of
conditional information, such as text prompt inputs [33], to
steer the generation process towards specific desired out-
comes. Stable Diffusion series [32] then extend LDM’s ap-
proach, being impactful in enabling fine-grained control in
image generation. The large-scale dataset, such as LAION-
5B [34] allows the diffusion model to learn the complex re-
lationships between image and text, and it enables diffusion
models to generate high-quality images based on textual
prompts, adjusting the generated content according to dif-
ferent descriptions. Therefore, text-to-image models pos-
sess rich prior knowledge that can be effectively harnessed.

2.3. Diffusion for Image Segmentation
Diffusion models can handle various downstream computer
vision tasks [3, 5, 9, 16, 16, 18, 24, 36, 53], demonstrat-
ing their versatility and adaptability across various domains.

SegDiff [1] is the first model that applies diffusion mod-
els to the image segmentation problem, which conditions
the diffusion step estimation function on an input tensor
that combines information derived from both the current
estimate step and the input image. MedSegDiff [43] pro-
poses a feature frequency parser, which allows for elimi-
nate the negative effect of the high-frequency noise com-
ponents in this process. Further, MedSegDiffV2 [44] pro-
poses a Transformer-based Diffusion framework and a Neu-
ral Band-pass Filter (NBP-Filter) to align the noise and
semantic features each time. DiffSeg [40] explores an
unsupervised manner that leverages an iterative merging
process to merge attention maps to generate segmentation
masks. DMP [18] leverages pre-trained text-to-image dif-
fusion models as a prior for dense prediction tasks. De-
spite the progress of existing diffusion model-based seg-
mentation methods, effectively adapting pre-trained diffu-
sion models for downstream tasks remains a challenge. Is-
sues such as artifacts introduced by stochastic processes and
high computational costs are prominent barriers.

3. Methodology

3.1. Preliminary: Latent Diffusion models

Diffusion models leverage diffusion process to synthesize
desired high-quality images, which gradually transforms a
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simple distribution (Gaussian noise) to a complex data dis-
tribution through a series denoising steps. In contrast to dif-
fusion models that operate directly on the data, latent dif-
fusion models (LDM) [31] execute diffusion steps within
a low-dimensional latent space, thereby enhancing compu-
tational efficiency. It includes two-step process: forward
nosing and reverse denoising. In the forward process, given
an initial data sample x0, Gaussian noise is progressively
added over T steps. At each step, the noisy data xt is gen-
erated by:

xt =
√
αtxt−1 +

√
1− αtϵ (1)

where αt is the variance schedule controlling the amount
of noise added at each time step t and ϵ is Gaussian noise,
ϵ ∼ N (0, I). The forward process can be represented as:

q(xt | xt−1) = N (xt;
√
1− βtxt−1, βtI). (2)

The goal is to learn the reverse process, which gradually
denoises xt back to x0. This reverse process is modeled as:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (3)

where µθ(xt, t) is the mean predicted by the model, and
Σθ(xt, t) represents the variance. The ultimate goal is to
learn the reverse process parameters θ so that the model can
generate new samples starting from random noise.

3.2. Overall Architecture
In this work, we aim to adapt a pre-trained diffusion model
for the GSD task, leveraging the rich prior knowledge em-
bedded in the model to achieve generalized performance.
As shown in Figure 2, our framework consists of two stages.
In Stage I, we train a refined textual condition for glass sur-
faces, building a text-based content prior to represent the
glass concept. Most parameters of the pre-trained diffusion
model are frozen, and only the glass-specific embedding is
learned. In Stage II, we adapt the Stable Diffusion model in
an end-to-end manner, guided by the refined textual condi-
tion.

3.3. Stage I: Building Text-based Content Prior
Current studies for GSD predominantly rely on visual cues,
often neglecting the integration of other domain knowledge,
such as text. By leveraging large-scale datasets to align se-
mantic features of text and visual elements, text-to-image
diffusion models utilize text conditions and pre-trained lan-
guage models to guide image synthesis, resulting in seman-
tically coherent images. This raises a question: Can we har-
ness the potential of textual conditional priors in diffusion
models for GSD task? SD faces challenges in depicting
glass surfaces due to their implicit semantics. The difficulty
arises from the fact that glass objects lack distinct visual
semantic features. To address this, we propose to learn a
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Figure 3. Modality-Customized Adaptation facilitates the trained
diffusion model to integrate features from different sensor modali-
ties, making it scalable to a wider range of real-world applications.

glass-specific text condition to represent the implicit fea-
tures of glass surfaces.

We use the prompt template as "A photo with
[CLASS]", where [CLASS] refers to the specific class.
In our work, [CLASS] represents the concept of glass sur-
faces. To alleviate the above challenge that glass surface
lacks clear semantic information, we define a learnable con-
tent in the prompt rather than [CLASS] to strengthen the
concept of glass surfaces in the textual embedding space.
The prompt can be formulated as

Ct = "A photo with [E∗]", (4)

where [E∗] is the placeholder of newly introduced word,
representing the glass surface. We initialize [E∗] with the
word glass, allowing it to inherit some information asso-
ciated with glass surface.

As shown in Figure 2 (a), we train the text-based content
prior over Stable Diffusion model. The input image is en-
coded into a spatial latent code using the pre-trained VAE
encoder as z = E(x). At a randomly selected timestep t, the
noised latent is denoted as zt. We freeze the other modules
in SD, including the VAE encoder, SD U-Net, and text en-
coder, allowing only the newly introduced embedding vec-
tor to be trainable.
Textual Prompt Parameterization. The textual encoder
Et tokenizes the input text prompt Ct into a set of tokens,
which is based on the index in its predefined dictionary,
as [ic1, · · · , ick] (k is the number of tokens). Note that we
extend the original dictionary to represent the newly intro-
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duced concept, which denotes the glass surface. Each token
is linked to a specific embedding through an index lookup,
represented as [vc1, · · · , vck]. However, the newly introduced
word does not have a corresponding embedding token. Our
objective is to optimize the embedding vc∗ for this new word.
Textual Condition Optimization. The noise estimation is
denoted as ϵ̂ = ϵθ(x, t, τ(Ct). We distill the semantic infor-
mation of glass surface and get textual condition τ(Ct) by
minimizing the training objective with MSE loss, as

Ltxt = Ex0,ϵ∼N (0,I),t∼U(T )||ϵ− ϵ̂||22. (5)

The optimized embedding of newly introduced token [E*]
is denoted as vc∗ = argminv Ex0,ϵ∼N (0,I),t∼U(T )||ϵ− ϵ̂||22.
This process could inject prior knowledge into the genera-
tive model, enhancing the model’s adaptability to glass sur-
face objects.

3.4. Stage II: Training End-to-End Diffusion Model
for GSD

In Stage II, we adapt the Stable Diffusion model for GSD
task, and the training pipeline is shown in Figure 2 (b).
Given the input image xin ∈ RC×H×W and its correspond-
ing ground truth mask m ∈ RH×W , with the number of
channels C, and spatial resolution H ×W , we first project
the input image into the latent space using the VAE encoder
E(·), as z∗in = E(xin). In diffusion models, the introduced
stochastic noise is designed for generative diversity. The
original learning protocol of SD that learns to predict noise,
is not suitable for deterministic task. Thus, in order to avoid
the negative impact of stochastic noise, we do not start from
noisy latent. Instead, we initialize a zero latent vector, as
z∗0 = 0 and we concatenate the RGB latent z and the zero
latent z∗0 as zc = concat(z∗in, z

∗
0), where zc is the input of

the SD U-Net. We utilize the learned textual condition in
conditional SD U-Net fθ(·) to as fθ(xin, T, τ(Ct)). Here,
to prevent the activation magnitudes of the first layer from
becoming too large and to retain the pre-trained structure,
we duplicate the input layer’s weights and halve its values.
Enabling One-step Sampling. Multi-step diffusion pro-
cess is computation consumption. We condense the diffu-
sion process into a single step, simplifying the optimiza-
tion process, and significantly improving inference speed.
Different with the stochastic multi-step generation, we fix
t = T to train the model for single-step prediction.
End-to-End Training. The primary training goal of the
original diffusion model is denoising. However, it does
not necessarily ensure strong performance for deterministic
task. Focusing solely on denoising might introduce larger
pixel variance, resulting in less stable predictions. To alle-
viate this issue, we introduce the end-to-end manner. Here,
we introduce a simple but effective Cascade Predictor for
adapting the GSD task, which is shown in Figure 3 (a). The
output of SD U-Net is denoted as z′ = fθ(xin, T, τ(Ct)),

then it was fed to Cascade Predictor to predict segmenta-
tion maps. In our framework, the model is trained to di-
rectly predict segmentation mask instead of noise. Follow-
ing the approaches in [42], we use the weighted IoU loss
and BCE loss as our training objectives. The output seg-
mentation mask m̂ is the optimization target as

L = Lw
IoU (m, m̂) + Lw

BCE(m, m̂). (6)

Such a framework takes advantage of the diffusion model’s
natural strengths, allowing us to leverage extensive knowl-
edge prior of high-quality natural images. This improves
the model’s generalization ability while also leading to a
substantial gain in efficiency.

3.5. Inference: One-Step Pipeline
The prediction pipeline is illustrated in Figure 2 (c). Un-
like the diffusion pipeline, which employs the VAE decoder
to decode latent code and generate images, our framework
aligns the training pipeline with the inference process. The
timestep is also fixed t = T . This single-step inference
significantly enhances inference efficiency compared with
multi-step formulation in diffusion models.

3.6. Modality-Customized Adaptation
In this section, we focus on adapting the previously trained
GSD model to accommodate additional modalities. The key
challenge in multi-modal GSD tasks is effectively integrat-
ing the RGB modality with other modalities to enhance per-
formance. The adaptation pipeline is shown in Figure 3.
Modality-Customized Adapter. We project the input RGB
image xrgb and modality-specific input xm into the la-
tent space using the VAE encoder, as z∗rgb = E(xrgb),
z∗m = E(xm). Then, we aggregate z∗rgb and z∗m using cross-
attention operation to obtain the modality-specific activated
feature z∗a We take z∗rgb as the query, and z∗m as both key and
value. The query, key and value are fed into projected layer,
achieved by an 1 × 1 convolution operation, which can be
written as: zQi = ϕq(z

∗
rgb), z

K
i = ϕk(z

∗
m), zVi = ϕv(z

∗
m),

where ϕq(·), ϕk(·), ϕv(·) denote the projected operation.
Then, we employ these projected features to conduct cross-
modality interaction, as:

z∗a = z∗rgb + softmax(
zQi · zKi

T

√
d

)zVi , (7)

where d is the dimension of the key vectors. We incorporate
LoRA layers [11] in SD U-Net to facilitate rapid adaptation
to various multi-modal GSD tasks without the risk of catas-
trophic forgetting.

4. Experiments
4.1. Datasets
Stage I: We combine the training sets of GDD [25],
Trans10K-Stuff [46], GSD [20] and HSO [54] for building
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Table 1. Model performance for GSD task on the GDD [25], Trans10K-Stuff [46], GSD [20] and HSO [54] datasets.

Model GDD [25] Trans10K-Stuff [25] GSD [20] HSO [54]

IoU↑ Fβ↑ MAE↓ BER↓ IoU↑ Fβ↑ MAE↓ BER↓ IoU↑ Fβ↑ MAE↓ BER↓ IoU↑ Fβ↑ MAE↓ BER↓
Trans2Seg [47] 0.854 0.929 0.076 7.14 0.869 0.935 0.057 5.69 0.781 0.880 0.072 9.47 0.764 0.875 0.102 10.57
GSDNet [20] 0.859 0.929 0.073 6.83 0.873 0.936 0.055 5.36 0.796 0.882 0.068 8.56 0.770 0.878 0.101 10.00
GDNet-B [27] 0.840 0.923 0.088 7.85 0.859 0.929 0.064 6.16 0.781 0.877 0.078 9.56 0.752 0.866 0.113 11.16
PGSNet [54] 0.880 0.932 0.074 6.95 0.889 0.944 0.049 5.65 0.850 0.906 0.062 5.98 0.823 0.921 0.068 7.09
VBNet [29] 0.893 0.948 0.063 5.43 0.878 0.935 0.059 5.00 0.853 0.916 0.059 5.89 0.815 0.905 0.090 8.15
DDP [14] 0.908 0.958 0.054 4.39 0.906 0.954 0.044 3.92 0.865 0.927 0.053 5.38 0.839 0.926 0.075 7.07
Marigold [16] 0.731 0.821 0.201 16.88 0.739 0.837 0.163 14.02 0.658 0.777 0.191 17.97 0.580 0.707 0.291 24.75

Ours 0.933 0.969 0.039 3.62 0.928 0.965 0.030 3.04 0.904 0.952 0.036 4.03 0.879 0.941 0.055 5.44

Table 2. Zero-shot performance of our proposed method for video
glass surface detection on the VGSD-D dataset [23]. The com-
pared methods are trained on the training set of VGSD-D dataset.

Model IoU↑ MAE↓ BER↓
GDNet [25] 0.735 0.172 13.18
EBLNet [8] 0.764 0.134 13.25
PGSNet [54] 0.703 0.156 15.11

SC-Cor [4] 0.765 0.125 12.15
UFO [37] 0.634 0.254 22.43
VMD [22] 0.763 0.123 12.44
VGSD-Net [23] 0.802 0.099 9.54

Ours 0.942 0.031 2.92

Table 3. Zero-shot performance of our proposed method on RGBP
dataset [26]. Here, we only adopt the RGB iamge as the input to
test zero-shot segmentation ability of the model. The compared
methods are trained on the training set of RGBP dataset.

Model IoU↑ MAE↓ BER↓
GDNet [25] 0.776 0.119 11.79
GSDNet [20] 0.781 0.122 12.61

EAFNet [45] 0.539 0.125 12.15
P Mask R-CNN [15] 0.660 0.178 18.92
PGSNet-Polar [26] 0.811 0.091 9.63

Ours 0.792 0.108 11.18

the textual content prior in Stage I.
Stage II: To train our framework, we utilize the com-
bination of the training sets of GDD [25], Trans10K-
Stuff [46] [54], GSD [20] and HSO [54]. WWe test
our model on the test sets of these datasets to assess
learning efficiency. To evaluate the generalization ability
of our method, we perform zero-shot segmentation using
the trained model on the test sets of VGSD-D [23] and
RGBP [26] datasets. Here, we only adopt the RGB images
in RGBP.
Modality-Customized Adaptation: We test the modality-
customized adaptation performance on RGB-D and RGB-

Table 4. Ablation studies for GSD task on the GDD [25] and
GSD [20] datasets.

Component GDD [25] GSD [20]

IoU↑ Fβ↑ MAE↓ BER↓ IoU↑ Fβ↑ MAE↓ BER↓
SD Adaptation 0.713 0.805 0.209 18.56 0.658 0.777 0.191 17.97
w/o CP 0.866 0.922 0.109 8.56 0.778 0.865 0.112 14.70
w/o RTC 0.923 0.956 0.057 3.67 0.890 0.939 0.040 4.26

TAE Encoder 0.929 0.969 0.038 3.60 0.896 0.948 0.035 4.38

Gaussian noise 0.919 0.958 0.045 3.89 0.889 0.938 0.042 4.30

Ours 0.933 0.969 0.039 3.62 0.904 0.952 0.036 4.03

Image GT Ours VBNet GDNet-B PGSNet

Figure 4. Qualitative comparison of different methods.

T GSD tasks. For RGB-D GSD task, we adopt TROSD
dataset [38]. For RGB-T GSD task, we use RGBT [13]
dataset.
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4.2. Experimental Setup
Implementation Details. We resize the images into
512×512 in both training and evaluation. We adopt the Sta-
ble Diffusion 2.0 as our base model. In Stage I, we train the
text embeddings for 10 epochs with AdamW optimizer. The
learning rate is set to 5e-04. The batch size is 10. In Stage
II, the learning rate is initialized to 3e-05 and is scheduled
by LambdaLR. The number of training epochs is set to 20,
and the batch size is set to 3. The model is trained with
Adam Optimizer. The timestep T is set to 999. We use
random horizontal/vertical flipping for data augmentation.
Our method is implemented using PyTorch and trained on a
single NVIDIA RTX 4090 GPU with 24GB of memory.
Evaluation Metrics. Following previous methods [54], we
adopt Intersection over Union (IoU), weighted F-measure
metric (Fβ), mean absolute error (MAE), and balance error
rate (BER) to evaluate the segmentation performance.

4.3. Comparison Studies
Quantitative Comparison. We choose state-of-the-art
GSD methods, including Trans2Seg [47], GSDNet [20],
GDNet-B [27], PGSNet [54], VBNet [29] for compari-
son. We also adopt diffusion-based methods, DDP [14],
DMP [18] and Marigold [16] for comparison. For fair com-
parison, we re-implement these methods with our training
pipeline. As shown in Table 1, our method outperforms
other compared methods across all datasets, indicating that
our method is superior for GSD task. Overall, the experi-
mental results demonstrate that the knowledge encapsulated
in Stable Diffusion are beneficial for GSD task. Moreover,
we train our framework on the dataset separately to prove
the effectiveness on the single dataset, and our method also
achieve state-of-the-art performance. (see Supplementary
Material).
Qualitative Comparison. In Figure 4, we present a qual-
itative comparison of different methods. Benefiting from
the powerful capabilities of Stable Diffusion and learned
text-based content prior, our model captures more semantic
information of glass surface structures, thereby achieving
improved localization of glass surface. Moreover, diffusion
model can also capture fine-grained details, providing fine-
grained texture information for GSD.
Generalization ability. We conducted tests on two previ-
ously unseen datasets, VGSD-D [23] and RGBP [26]. As
shown in Table 2 and Table 3. The results of our model
outperforms all methods trained on the VGSD-D training
set, demonstrating the generalization ability and practical
usability of our model. For RGBP dataset, we only adopt
RGB modality without extra modality information. Our
model achieved results comparable to the state-of-the-art
that utilizes the multi-modal training set. This shows that
our model achieves strong performance and can be a out-
of-box model without the need for fine-tuning.

Table 5. Ablation studies for model efficiency. T denotes the
timestep of the diffusion process, and Nums refers to the num-
ber of ensembled multi-step outputs. Tinf is the inference time
required to generate an image with a resolution of 512, and it is
measured using an NVIDIA RTX 4090 GPU.

Method T Nums Tinf
GDD [25]

IoU↑ Fβ↑ MAE↓ BER↓
Marigold 50 10 14.03s 0.731 0.821 0.201 16.88
Marigold 50 1 2.12s 0.713 0.805 0.209 18.56
Marigold 1 1 0.215s 0.284 0.530 0.496 49.99
Ours 1 1 0.177s 0.933 0.969 0.039 3.62
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Figure 5. Model performance under different text conditions on
different datasets. We use the prompt format "A photo with
[E∗]" where [E∗] represents the textual condition. In T1,
[E∗]="transparent objects"; in T2, [E∗]="glass";
and in T3, [E∗] is the refined textual condition explicitly learned
from glass surface images..
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Figure 6. Model performance under different input resolution.
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4.4. Ablation Studies

As shown in Table 4, we conduct ablation studies to eval-
uate the contribution of each component in our framework.
First, we adapt Stable Diffusion using a two-stage pipeline.
The model is optimized with the standard diffusion objec-
tive and inferred using multi-step DDIM (denoted as SD
Adaptation). Next, we replace the Cascade Predictor with
a VAE decoder (denoted as w/o CP) and conduct experi-
ments. Adapting SD without the Cascade Predictor leads
to a drop in performance, highlighting the importance of
using an appropriate head for the GSD task. We also in-
vestigate the impact of removing the refined textual con-
dition (RTC) and Stage I training separately. The results
demonstrate that the textual condition is critical for train-
ing, and incorporating the trained textual condition leads
to significant improvements in performance. Moreover, we
replaced the VAE encoder with a more lightweight TAE en-
coder. However, the performance of the TAE encoder was
inferior to that of the VAE encoder. To validate the effec-
tiveness of the added all-zero latent instead of random noise,
we replaced z∗0 with Gaussian noise. The results confirms
the effectiveness of our framework in deterministic model.

Table 6. Model performance for
RGB-D GSD task on the TROSD
dataset [38].

Model Input IoU↑
TransLab [46] RGB 0.507
Trans4Trans [55] RGB 0.392
Ours w/o MCA RGB 0.628

EBLNet [8] RGB-D 0.501
EMSANet [35] RGB-D 0.441
TROSNet [38] RGB-D 0.572

Ours RGB-D 0.667

Table 7. Model performance for
RGB-T GSD task on the RGBT
dataset [13].

Model Input MAE↓

Segformer [48] RGB 0.053
EBLNet [55] RGB 0.104
RGBT [38] (RGB) RGB 0.052
Ours w/o MCA RGB 0.034

Zhang et al. [56] RGB-T 0.163
RGBT [38] RGB-T 0.024

Ours RGB-T 0.022

Modality-Customized Adaptation. We compare the
multi-modal adaptation performance with state-of-the-art
RGB, RGB-D and RGB-T GSD methods as shown in Ta-
ble 6 and Table 7. The experimental results demonstrate
the effectiveness of our strategy of Modality-Customized
Adaptation (MCA), which fuse the extra modality. Mean-
while, even when the input consists solely of the RGB
modality, we still achieved better performance, further
proving the effectiveness of the framework.

4.5. Further Analysis

Model Efficiency. As shown in Table 5, Marigold in-
curs high costs due to its multi-step diffusion process. Our
proposed method demonstrates fast inference times without
sacrificing performance.
How Different Textual Conditions Affect Performance?

Table 8. Quantitative comparison for mirror detection task on
PMD [19] and MSD [52] datasets.

Method PMD [19] MSD [52]

IoU↑ Fβ↑ MAE↓ BER↓ IoU↑ Fβ↑ MAE↓ BER↓
SANet [6] 0.668 0.795 0.071 13.44 0.799 0.877 0.054 8.31
VCNet [39] 0.640 0.811 0.035 15.68 0.801 0.897 0.048 8.43
SATNet [12] 0.694 0.847 0.025 11.93 0.854 0.922 0.033 6.21
CSFwinformer [49] 0.701 0.838 0.024 11.41 82.08 0.896 0.045 7.14

Ours 0.778 0.857 0.022 6.88 0.911 0.950 0.023 3.27

We explore the performance with different input conditions,
and the results are shown in Figure 5. When the tex-
tual condition is empty, performance is at its lowest com-
pared to when it is utilized, highlighting the fact that the
textual condition is crucial for the GSD task. Compared
with the prompt word of "glass" or "transparent
objects", our proposed framework obtains better results
when using our learned textual condition.
Input Resolution. We analyze a set of input resolutions to
our approach, including 352×353, 512×512 and 768×768
with the results presented in Figure 6. Generally, a larger
resolution typically results in better performance.
Transferability on Mirror Detection Task. We perform
experiments on the mirror detection task and we employ
the PMD [19] and MSD [52] datasets. We train the model
for Stage I and Stage II on the PMD and MSD datasets sep-
arately. The evaluation was carried out using the standard
test splits of each dataset. The results are shown in Table 8.
Our method consistently outperforms other state-of-the-art
mirror detection methods [6, 12, 39, 49] by a large margin,
indicating that our proposed method is superior in transfer-
ability on other implicit object segmentation tasks.

5. Conclusion
In this paper, we propose GlassWizard, a framework that
aims at harvesting priors from the diffusion-based model
to achieve accurate and generalized Glass Surface Detec-
tion (GSD). First, we explore the textual embedding space
in Stable Diffusion (SD) to construct a text-based contex-
tual prior, which enhances the model’s understanding of
implicit glass attributes. Second, we introduce an efficient
end-to-end training pipeline that enables effective adapta-
tion to downstream GSD tasks in a single-step formulation.
Additionally, we introduce a modality-customized adapta-
tion strategy, which facilitates rapid adaptation across var-
ious multi-modal GSD tasks, such as RGB-D and RGB-T
GSD. Our experimental results demonstrate that our pro-
posed method delivers state-of-the-art performance across
multiple benchmarks, and it also exhibits strong generaliza-
tion capabilities. Moreover, after adapting for multi-modal
GSD datasets, our framework excels in multi-modal GSD
tasks, highlighting its scalability to different modalities.
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hai Tong, Gaofeng Meng, Véronique Prinet, and LuBin
Weng. Enhanced boundary learning for glass-like object seg-
mentation. In ICCV, pages 15859–15868, 2021. 1, 2, 6, 8

[9] Jing He, Haodong Li, Wei Yin, Yixun Liang, Leheng Li,
Kaiqiang Zhou, Hongbo Liu, Bingbing Liu, and Ying-
Cong Chen. Lotus: Diffusion-based visual foundation
model for high-quality dense prediction. arXiv preprint
arXiv:2409.18124, 2024. 3

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. NeurIPS, 33:6840–6851, 2020.
3

[11] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank
adaptation of large language models. In ICLR, 2022. 5

[12] Tianyu Huang, Bowen Dong, Jiaying Lin, Xiaohui Liu,
Rynson WH Lau, and Wangmeng Zuo. Symmetry-aware
transformer-based mirror detection. In AAAI, pages 935–
943, 2023. 8

[13] Dong Huo, Jian Wang, Yiming Qian, and Yee-Hong Yang.
Glass segmentation with rgb-thermal image pairs. IEEE
Transactions on Image Processing, 32:1911–1926, 2023. 2,
6, 8

[14] Yuanfeng Ji, Zhe Chen, Enze Xie, Lanqing Hong, Xihui Liu,
Zhaoqiang Liu, Tong Lu, Zhenguo Li, and Ping Luo. Ddp:
Diffusion model for dense visual prediction. In ICCV, pages
21741–21752, 2023. 6, 7

[15] Agastya Kalra, Vage Taamazyan, Supreeth Krishna
Rao, Kartik Venkataraman, Ramesh Raskar, and Achuta
Kadambi. Deep polarization cues for transparent object
segmentation. In CVPR, pages 8599–8608, 2020. 6

[16] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Met-
zger, Rodrigo Caye Daudt, and Konrad Schindler. Repurpos-
ing diffusion-based image generators for monocular depth
estimation. In CVPR, 2024. 2, 3, 6, 7

[17] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In ICCV, pages 4015–4026, 2023. 1

[18] Hsin-Ying Lee, Hung-Yu Tseng, and Ming-Hsuan Yang. Ex-
ploiting diffusion prior for generalizable dense prediction. In
CVPR, pages 7861–7871, 2024. 3, 7

[19] Jiaying Lin, Guodong Wang, and Rynson WH Lau. Progres-
sive mirror detection. In CVPR, pages 3697–3705, 2020. 8

[20] Jiaying Lin, Zebang He, and Rynson WH Lau. Rich context
aggregation with reflection prior for glass surface detection.
In CVPR, pages 13415–13424, 2021. 1, 5, 6, 7

[21] Jiaying Lin, Yuen-Hei Yeung, and Rynson W.H. Lau. Ex-
ploiting semantic relations for glass surface detection. In
NeurIPS, 2022. 2

[22] Jiaying Lin, Xin Tan, and Rynson WH Lau. Learning to de-
tect mirrors from videos via dual correspondences. In CVPR,
pages 9109–9118, 2023. 6

[23] Fang Liu, Yuhao Liu, Jiaying Lin, Ke Xu, and Rynson WH
Lau. Multi-view dynamic reflection prior for video glass sur-
face detection. In AAAI, pages 3594–3602, 2024. 2, 6, 7

[24] Zexiang Liu, Yangguang Li, Youtian Lin, Xin Yu, Sida Peng,
Yan-Pei Cao, Xiaojuan Qi, Xiaoshui Huang, Ding Liang,
and Wanli Ouyang. Unidream: Unifying diffusion priors for
relightable text-to-3d generation. In ECCV, pages 74–91.
Springer, 2025. 3

[25] Haiyang Mei, Xin Yang, Yang Wang, Yuanyuan Liu,
Shengfeng He, Qiang Zhang, Xiaopeng Wei, and Ryn-
son W.H. Lau. Don’t hit me! glass detection in real-world
scenes. In CVPR, 2020. 1, 5, 6, 7

[26] Haiyang Mei, Bo Dong, Wen Dong, Jiaxi Yang, Seung-
Hwan Baek, Felix Heide, Pieter Peers, Xiaopeng Wei, and
Xin Yang. Glass segmentation using intensity and spectral
polarization cues. In CVPR, pages 12622–12631, 2022. 2, 6,
7

[27] Haiyang Mei, Xin Yang, Letian Yu, Qiang Zhang, Xiaopeng
Wei, and Rynson WH Lau. Large-field contextual feature
learning for glass detection. IEEE TPAMI, 45(3):3329–3346,
2023. 1, 2, 6, 7

[28] Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and

17856

https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0
https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0
https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0


Robin Rombach. Sdxl: Improving latent diffusion models
for high-resolution image synthesis. In ICLR, 2024. 3

[29] Fulin Qi, Xin Tan, Zhizhong Zhang, Mingang Chen, Yuan
Xie, and Lizhuang Ma. Glass makes blurs: Learning the
visual blurriness for glass surface detection. IEEE Transac-
tions on Industrial Informatics, 2024. 1, 2, 6, 7

[30] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with clip latents. arXiv preprint arXiv:2204.06125, 1
(2):3, 2022. 3

[31] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 3, 4

[32] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 1, 2, 3

[33] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Sali-
mans, Jonathan Ho, David J Fleet, and Mohammad Norouzi.
Photorealistic text-to-image diffusion models with deep lan-
guage understanding. In NeurIPS, pages 36479–36494,
2022. 3

[34] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, et al. Laion-5b: An open large-scale dataset for train-
ing next generation image-text models. NeurIPS, 35:25278–
25294, 2022. 3
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