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Highlighted Diffusion Model as Plug-In Priors
for Polyp Segmentation

Yuhao Du , Yuncheng Jiang , Shuangyi Tan , Student Member, IEEE, Si-Qi Liu , Zhen Li ,
Guanbin Li , and Xiang Wan

Abstract—Automated polyp segmentation from colonos-
copy images is crucial for colorectal cancer diagnosis. The
accuracy of such segmentation, however, is challenged by
two main factors. First, the variability in polyps’ size, shape,
and color, coupled with the scarcity of well-annotated data
due to the need for specialized manual annotation, ham-
pers the efficacy of existing deep learning methods. Sec-
ond, concealed polyps often blend with adjacent intestinal
tissues, leading to poor contrast that challenges segmen-
tation models. Recently, diffusion models have been ex-
plored and adapted for polyp segmentation tasks. However,
the significant domain gap between RGB-colonoscopy im-
ages and grayscale segmentation masks, along with the
low efficiency of the diffusion generation process, hinders
the practical implementation of these models. To mitigate
these challenges, we introduce the Highlighted Diffusion
Model Plus (HDM+), a two-stage polyp segmentation frame-
work. This framework incorporates the Highlighted Diffu-
sion Model (HDM) to provide explicit semantic guidance,
thereby enhancing segmentation accuracy. In the initial
stage, the HDM is trained using highlighted ground-truth
data, which emphasizes polyp regions while suppress-
ing the background in the images. This approach reduces
the domain gap by focusing on the image itself rather
than on the segmentation mask. In the subsequent second
stage, we employ the highlighted features from the trained
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HDM’s U-Net model as plug-in priors for polyp segmen-
tation, rather than generating highlighted images, thereby
increasing efficiency. Extensive experiments conducted on
six polyp segmentation benchmarks demonstrate the effec-
tiveness of our approach.

Index Terms—Colonoscopy, diffusion models, polyp
segmentation.

I. INTRODUCTION

COLORECTAL cancer (CRC) ranks as the third most fre-
quently diagnosed cancer and the second leading cause

of cancer-related deaths worldwide [1], [2]. The primary cause
of CRC is associated with high-grade adenomatous polyps.
Colonoscopy stands as the current gold standard for CRC
screening and prevention due to its ability to reveal the loca-
tion and characteristics of colorectal polyps. Research indicates
that early colonoscopy has resulted in a 30% reduction in
CRC incidence [3]. Therefore, timely detection and removal of
these polyps by early screening is crucial for preventing CRC
and reducing mortality rates. However, The bowel’s intricate
environment leads to a manual detection error rate exceed-
ing 27% [4]. This emphasizes the urgent need for developing
advanced computer-aided tools to support colonoscopists in
colonoscopy procedures.

The rapid progress in artificial intelligence and computer vi-
sion has accelerated the development of such systems. In recent
years, remarkable advancements have been made in designing
efficient medical image segmentation algorithms to benefit clini-
cians in accurately detecting polyps. In particular, deep learning-
based methods have shown promising performance in various
scenarios, including assisting colonoscopy polyp detection and
segmentation [5], [6], [7], [8], [9], [10], [11], [12]. Most seg-
mentation models typically employ a UNet-based architecture,
which consists of an encoder and a decoder constructed from
multiple convolutional layers. More recently, there has been
growing interest in utilizing Transformers [13] as fundamental
building blocks to build attention-based segmentation models,
which enables stronger capability for capturing global interac-
tions [9].

Despite significant advancements in the field of automatic
polyp segmentation research, there is still an observable gap
between existing research and the development of clinically ap-
plicable computer-aided diagnosis systems. The main obstacles
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are caused by two long-standing challenges. 1) Variety: polyps
often exhibit variations in shape, size, color, and texture, even
when they belong to the same type. 2) Similarity: the boundary
between polyps and their surrounding tissues is usually unclear
and blurred in colonoscopy imaging, lacking the necessary
contrast for segmentation, especially in low-light conditions or
unclean bowel preparation. These challenges introduce substan-
tial uncertainty into the deep learning process, hampering the
recognition capabilities of general segmentation models.

These challenges can be potentially mitigated by increasing
the volume of well-annotated data and incorporating specific
challenging samples for model training. However, the realm of
medical data is often encumbered with privacy concerns, making
it difficult to collect large-scale datasets with sufficient variety
for network training. In addition, even when data is accessible,
accurate manual annotations necessitate the involvement of ex-
perienced endoscopists for accurate annotating, which can be
both costly and time-intensive. Recently, the Semantic Image
Synthesis models exhibit pixel-level control ability over the im-
age generation process and allow customization of the generated
content [14], [15]. The Denoising Diffusion Probabilistic Mod-
els (DDPM) [16], [17] based methods have achieved promising
performance in generating high-quality, realistic medical im-
ages [18], [19], [20]. Notably, Du et al. [21] have demonstrated
that using binary masks as conditions to guide the diffusion
models can generate realistic colonoscopy images with polyps
in specified regions, where the generated images can improve
the performance of downstream tasks like segmentation and
detection. However, the issue of concealed polyps with unclear
boundaries still remains and limits the effectiveness of existing
segmentation models. In addition, Wu et al. [60] employed diffu-
sion models to generate segmentation masks directly, aligning
with the objective of polyp segmentation tasks. However, the
significant domain gap between RGB-colonoscopy images and
grayscale segmentation masks poses a challenge for achieving
optimal performance as shown in the top part of Fig. 1. Fur-
thermore, the low efficiency of the diffusion generation process
hinders the practical application of the model in surgical settings.

In addressing the outlined limitations, we investigate the
application of diffusion models to accentuate regions of interest
and reduce the influence of non-essential background elements,
thereby facilitating enhanced attention context for subsequent
tasks. We introduce a novel diffusion-based segmentation frame-
work, termed Highlighted Diffusion Model Plus (HDM+), de-
signed for precise polyp segmentation. This framework inte-
grates an innovative highlighted diffusion model (HDM) with a
standard segmentation model. As illustrated in Fig. 1, the HDM+
framework adopts a two-stage training approach coupled with an
end-to-end inference methodology. In the initial training phase,
the highlighted diffusion model is refined to reduce the variance
between the reconstructed images from the diffusion U-Net’s
outputs and the newly constructed ground-truth highlighted im-
ages, where these ground-truth images are generated by merging
the original image with its binary mask. The second training
stage diverges from the first by focusing on the direct generation
of highlighted features, rather than constructing highlighted
images using the pre-trained HDM. This strategy is shown to

Fig. 1. Schematic overview of the proposed HDM+ pipeline for auto-
matic polyp segmentation. The top section compares HDM+ with other
diffusion-based polyp segmentation approaches. The middle section
illustrates the workflow of the first training stage. The bottom section
details the workflow of the second training stage and inference stage.
Further details are provided in section III.

improve both the efficiency and effectiveness of training. The
resulting highlighted features provide critical guidance for the
further training of polyp segmentation models through an inte-
grated prior fusion module. Specifically, we propose a weighting
mechanism that employs normalized highlighted feature maps
as weight matrices to enhance the original images, effectively
diminishing noise in the highlighted features. Additionally, to
address potential contextual misalignments caused by the direct
addition of highlighted features to the original image, we intro-
duce a cross-attention module. This module facilitates precise
dot-wise attention coordination between the highlighted feature
and the original images, ensuring alignment and thereby reduc-
ing irrelevant information, improving the model’s recognition
capabilities.

Our contributions are encapsulated as follows:
� Highlighted Diffusion Model (HDM): We propose a novel

diffusion model based on DDPMs, specifically tailored
for emphasizing potential polyp areas in colonoscopy
images. Additionally, the HDM+ framework is introduced
as an innovative segmentation guide. This represents the
inaugural application of pre-trained diffusion models for
explicit boundary guidance to augment segmentation per-
formance.

� Indirect Knowledge Transfer: We adopt an approach that
leverages highlighted features generated by the pre-trained
HDM, instead of reconstructed images, as plug-in priors
for directing the training of polyp segmentation models.
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This method not only elevates segmentation accuracy but
also streamlines the training process.

� Prior Fusion Module: A strategy is proposed for amalga-
mating original feature maps with the images within the
prior fusion module to balance noise reduction and main-
tain background integrity. Furthermore, a cross-attention
module is introduced to ensure effective alignment be-
tween highlighted features and original image features.

� Extensive Experiments: Extensive experiments are con-
ducted across six polyp segmentation benchmarks, namely
CVC-300, CVC-Clinicdb, Kvasir, CVC-Colondb, ETIS,
and SUN-SEG. The results, both quantitative and qualita-
tive, substantiate the enhanced segmentation performance
achieved through our model across various pipelines.

II. RELATED WORK

A. Automatic Polyp Segmentation

Automatic polyp segmentation in colonoscopy videos has
been a widely studied topic in recent years. The primary tech-
niques have gone through two periods of development. As in
the early stage, polyp segmentation methods mainly rely on
low-level image processing methods to extract hand-crafted
features from color, shape, texture, and appearance to identify
polyp from its surroundings [22], [23], [24], [25], [26]. For
example, Tajbakhsh et al. [25] proposed an automated polyp
detection method from colonoscopy videos, which fully utilizes
context and shape to remove non-polyp structures and accurately
locate polyps. Ameling et al. [27] adopted texture features,
including grey-level-co-occurrence and local binary patterns,
to achieve polyp segmentation. Further, Karkanis et al. [28]
used the covariances of texture measurements to represent
different polyp regions. However, the texture and shape of
polyps highly differ in real-world applications, making the tra-
ditional methods suffer from unsatisfactory segmentation per-
formance due to the limited expression ability of hand-crafted
features.

Recently, the fully convolutional network (FCN) [29] has
been widely applied for polyp segmentation tasks and has
made significant progress. For instance, U-Net [30] is a famous
structure for medical image segmentation, which consists of a
downsampling path to capture context and an upsampling path
to restore detailed information. Akbari et al. [31] proposed a
polyp segmentation framework based on a fully connected CNN
and adopted Otsu thresholding to extract the largest connected
regions for segmenting polyp regions. Sun et al. [32] proposed
an FCN-based polyp segmentation framework in which a di-
lated convolution is introduced to learn high-level semantic
features without resolution reduction. Moreover, two variants
of the U-Net architecture, including U-Net++ [33] and Re-
sUNet++ [34], have been proposed and further improve original
U-Net by dense connection, achieving promising segmentation
performance. The methods mentioned above often focus on seg-
menting the entire polyp region, neglecting valuable boundary
information. To address this, PsiNet [35] was introduced with
three parallel decoders designed for contour extraction, mask
prediction, and distance map estimation. SFA [36] implemented

a boundary-sensitive loss to impose area boundary constraints,
resulting in more precise predictions. SFA also explicitly applies
an area-boundary constraint to supervise both polyp regions
and boundaries. PraNet [7] proposed using reverse attention
to locate polyp regions and implicitly refine object boundaries.
SANet [8] introduced a color exchange operation to reduce color
diversity in polyps and proposed a shallow attention module
to select more useful shallow features. Polyp-PVT [9] was the
first to apply transformer architecture for polyp segmentation,
extracting long-term global contextual information. LDNet [37]
incorporated a dynamic kernel generation and updating process
to enhance the contrast between the polyp and background.
Despite these advancements, the data-dependent nature of these
complex models necessitates data expansion. To achieve greater
efficiency in processing, EMTS-Net [38] presented an efficient
framework for multitasking polyp segmentation and classifica-
tion. However, it prioritizes efficiency at the expense of perfor-
mance.

B. Diffusion Models for Medical Image Segmentation

The diffusion models are a class of generative models that
can be generally presented as a parameterized Markov chain,
encompassing a forward diffusion process and a reverse denois-
ing process [17], [39], [40], [41]. Each Markov step is modeled
by a deep neural network that learns to inverse the diffusion
process with a known Gaussian kernel. Ho et al. [17] first
propose this idea by combining the diffusion probabilistic model
with a score-based model that successfully achieves magnificent
image generation. Afterward, a large number of researchers have
devoted themselves to this area and developed more powerful
methods [14], [42], [43], [44].

More recently, diffusion models have shown significant
progress in assisting segmentation tasks in medical image analy-
sis [18], [19], [45]. The denoising sampling process of the diffu-
sion model has been utilized to generate an implicit ensemble of
segmentation context that ultimately enhances the segmentation
performance. Wu et al. [19] proposed the first general medical
image segmentation framework based on DDPM by aggregating
the information of images and predicted segmentation masks.
Rahman et al. [18] leveraged the diffusion model to generate a
distribution of segmentation masks that can present the con-
clusions of experts. Recently, the Semantic Image Synthesis
models have emerged as a promising solution, which enables
pixel-level control over the image generation process and allows
customization of the generated content. For example, Wang
et al. [14] were the first attempt to feed the semantic mask into the
diffusion process as a condition to control the image generation.
Guo et al. [45] used the predicted mask from the segmentation
model as prior information to accelerate the diffusion process.
Du et al. [21] have demonstrated that diffusion models possess
the capability to synthesize high-quality data, which can be
employed as additional training samples to enhance the per-
formance of segmentation models. These common approaches
involve either adapting the diffusion U-Net for downstream tasks
directly or leveraging its generative power for large-scale image
synthesis. However, challenges arise due to the domain gap
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Fig. 2. Overview of the Highlighted Diffusion Model Plus (HDM+) framework, which adopts a two-stage training paradigm. In the first stage,
(a) a specialized dataset is constructed, where polyp regions within the images are highlighted to enhance their features for better model training.
(b) The diffusion U-Net model is trained to minimize the discrepancy between the reconstructed and original highlighted image. In stage two, (c) the
pre-trained diffusion U-Net is utilized to generate highlight features for each corresponding input image. The images and features are fused in the
prior fusion module, which further produces the prior context to train the downstream segmentation model.

between generative and discriminative tasks and the quality of
data generated. In this work, we adopt a different approach,
utilizing a specific diffusion model to assist in downstream tasks
that bridge the domain gap and reduce bias from directly using
generated images.

III. METHOD

In this work, we introduce the Highlighted Diffusion Model
(HDM) and a two-stage training framework, HDM+, specifically
engineered for efficient and automated polyp segmentation, as
depicted in Fig. 2. The HDM is adeptly designed to accentuate
foreground elements (polyps) while attenuating background ele-
ments (intestinal walls) in sample generation. Once a pre-trained
HDM is acquired, we freeze the weights and sample highlighted
features from the original image. Then, these sampled features
are integrated with the original images in the prior fusion mod-
ule. This process yields prior contexts that are pivotal for guiding
the polyp segmentation task. Subsequent sections will further
explore the core of our methodology. Section III-A provides a
concise introduction to Denoising Diffusion Probabilistic Mod-
els (DDPMs). The comprehensive training pipeline is detailed
in Section III-B, focusing on the initial stage of diffusion model
training, and in Section III-C, which addresses the second stage
of segmentation model training.

A. Preliminaries

The recent Denoising Diffusion Probabilistic Models
(DDPMs) [16], [17] are classes of deep generative models. It has
the forward and reverse process, where the forward process is a
parameterized Markov Chain that gradually adds Gaussian noise
to the original input. The forward process can be formulated as
the joint distribution q(x1:T | x0):

q (x1:T | x0) :=

T∏
t=1

q (xt | xt−1) ,

q (xt | xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
, (1)

where q(x0) is the original data distribution with x0 ∼ q(x0),
x1:T are latents with the same dimension of x0 and βt is a vari-
ance schedule, which can be learned by parameterization [46]
or held constant as hyper-parameters. A notable property of the
forward process is that it admits sampling xt at any timestep t:

q (xt | x0) := N (
xt;

√
ᾱtx0, (1− ᾱt))I

)
, (2)

whereαt := 1− βt, and ᾱt :=
∏t

s=1 αx is the cumulative prod-
uct of αt values from t = 1 to the current time step t. In other
words, xt can be expressed using the closed form:

xt =
√
ᾱtx0 +

√
1− ᾱtεt, (3)
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where εt ∼ N (0, I) are Gaussian noises at timestep t. While
the reverse process, i.e., the diffusion process, is aiming to learn
a model to reverse the forward process that reconstructs the
original input data, which is defined as:

pθ (x0:T ) := p (xT )

T∏
t=1

pθ (xt−1 | xt) ,

pθ (xt−1 | xt) := N (
xt−1;μθ (xt, t) , σ

2
t I
)
, (4)

where p(xT ) is the noised Gaussian transition from the forward
process at timestep T . In this case, we only need to use deep-
learning models to represent μθ with θ as the model parameters.
According to the original paper [17], the loss function can be
simplified as:

Lsimple := Et,xt,ε∼N (0,I)

[
‖ε− εθ (xt, t)‖2

]
. (5)

Thus, instead of training the modelμθ to predict μ̃t, we can train
the model εθ to predict ε̃, which is easier for parameterization
and learning.

B. Highlighted Diffusion Model

1) Overview: Conventional diffusion models typically uti-
lize a simplified training objective, which revolves around min-
imizing the differences between the reconstructed noisy output
generated by the diffusion U-Net model and the input Gaussian
noise. However, our primary objective is to reconstruct images
that exhibit a highlight on the polyp regions while simulta-
neously darkening the background regions. Consequently, the
conventional loss function used in vanilla diffusion models
proves to be unsuitable for our specific goal. In light of this, we
propose an innovative variant of DDPMs to redefine the diffusion
process.

In our approach, we steer the reconstruction process by
comparing the reconstruction output initiated from the noisy
output to the synthesized highlighted ground truths (detailed in
section III-B-2). This strategy enables us to train a diffusion
model capable of generating images in which the foreground
regions are highlighted while the background elements are dark-
ened. Through this alternative supervision method, we align our
diffusion model with the specific goal of improving boundary
visibility and emphasizing foreground subjects.

2) Highlighted Dataset Construction: In this part, we will
describe the process of constructing the highlighted ground
truths. Given an input image x0 ∈ R

H×W×C and the corre-
sponding mask c0 ∈ R

H×W , the constructed highlighted image
h0 ∈ R

H×W×C can be formulated as follows:

h0 = f(x0),

f(x) :=

{
x(h,w,c) , c(h,w) = 255

α · x(h,w,c) , c(h,w) = 0
, (6)

where f(·) represents the construction function controlling each
pixel value of h0 at (h,w, c), and α ∈ [0, 1] is a hyperparameter
representing the scale factor.

Algorithm 1: One Training Iteration of HDM.

Input: t ∼ Uniform({1, . . ., T}), x0 ∼ q(x0),
ε ∼ N (0, I)

Output: x̃0

1: xt =
√
ᾱtx0 +

√
1− ᾱtε

2: ε̃t = εθ(xt, t)
3: x̃0 = 1√

ᾱt
(xt −

√
1− ᾱtε̃t)

4: h0 = f(x0)
5: Take gradient descent step on ∇θ‖h0 − x̃0‖

3) Training Objective: After generating the highlighted im-
ages, we proceed to compile a specialized training dataset con-
sisting of triplet pairs. Each triplet is composed of the original
input image, its corresponding segmentation mask, and the
highlighted image. The Highlighted Diffusion Model (HDM)
developed in this work is specifically oriented towards enhancing
the polyp segmentation task. In line with this objective, during
the testing phase, we deliberately exclude the use of the seg-
mentation mask. Consequently, for HDM training, the focus is
directed solely to the original and its highlighted counterpart
as input. The HDM adheres to the conventional Denoising Dif-
fusion Probabilistic Model (DDPM) protocol, characterized by
unconditional training settings. Within this framework, during
the training phase, the highlighted image is employed as the
ground truth to guide the reconstruction process. In the sampling
process, the original image alone is utilized to generate the high-
light guidance, maintaining consistency with our established
methodology. From (3), we observe that xt can be directly
obtained in a single step from the initial input x0. Similarly,
the reverse process can be computed by estimating x̃0 from xt

using a closed-form expression:

x̃0 := g(xt, ε̃t) =
1√
ᾱt

(
xt −

√
1− ᾱtε̃t

)
. (7)

This implies the feasibility of reconstructing an image, denoted
as x̃0, from any given intermediate state xt during the diffusion
sequence. In our training framework, the fundamental objective
is to reduce the disparity between the reconstructed image x̃0,
which is generated from the model output ε̃t = εθ(xt, t), and the
designated highlighted image h0. To quantify this optimization
process, we formulate the reconstruction loss function:

Lrecon. := Et,xt,h0
[‖h0 − g(xt, εθ (xt, t))‖] , (8)

where ε(·) represents the diffusion U-Net model with learnable
parameters θ, and g(·) refers to (7). This loss function guides
the HDM to learn the intricacies of reconstructed images while
preserving the prominence of foreground elements. The detailed
procedure of one training iteration of HDM is shown in Algo-
rithm 1.

4) Highlighted Feature Extraction: During the sampling pro-
cess of diffusion models, the conventional strategy typically
initiates with pure Gaussian noise that is independent of any
input images. However, this is not suitable in the context of
our framework. The primary goal of the HDM is to extract
highlighted features that align with the distinct foreground and
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background characteristics of the input images. Therefore, the
conflict with the conventional strategy arises from initiating
the sampling process with pure Gaussian noise, which fails to
generate any useful highlighted regions due to its inability to
acknowledge the inherent correlation between these samples
and the images. An intuitive approach to address this issue is
to employ the original images as an extra condition for the
sampling process. This modification seems promising, as it seeks
to align the generated features more closely with the underlying
image content. However, the implementation introduces addi-
tional complexity to the models, increasing the computational
demands. Moreover, the implicit conditions derived from the
original images may not be accurately learned, leading to sub-
optimal feature alignment and introducing unwanted noise into
the downstream model training.

Given these considerations, we present an alternative strategy
to tackle this challenge. Our proposed approach maintains the
established practice of unconditional training for the diffusion
process. However, during the reverse sampling process, we
depart from convention by initiating with the noised images
instead of the pure Gaussian noise. As demonstrated in [47],
this strategic alteration leverages the inherent information con-
tained within the images, mitigating the misalignment issue
while preserving the core benefits of unconditional training.
Furthermore, it is worth noting that the U-Net architecture
has garnered significant attention and recognition within the
landscape of contemporary diffusion models. This architecture,
well-suited for parameterizing the diffusion denoising process,
has proven to be particularly effective. Prior studies [47] have
demonstrated that the output from the final layer of the U-Net
architecture encapsulates substantial semantic information. In
light of these findings, our research centers on harnessing this
information-rich output as a foundational substrate for shaping
our feature representations.

Specifically, during the sampling process, we initiate by intro-
ducing noise to the images in accordance with a predetermined
schedule, parameterized by t = 100. This noise injection pro-
cess is mathematically defined as follows:

xnoisy :=
√
ᾱtx0 +

√
1− ᾱtεt. (9)

Subsequently, we employ these “noised” images, denoted as
xnoisy, as the input to the U-Net model. The U-Net model
processes these images and yields a set of features, denoted
as f := εθ(xnoisy, t), which encapsulate relevant information
regarding the image content and noise introduced during the
sampling process.

C. HDM+: Plugging-In Process for Polyp Segmentation

We further introduce the HDM+ segmentation framework
that employs the highlighted features generated by the HDM
as plug-in priors to assist in the downstream task of polyp seg-
mentation, where the pre-trained HDM model is used to extract
feature maps that exhibit distinct representations of foreground
and background regions. These feature maps are then fed into
polyp segmentation models as plug-in priors to enhance their
performance.

Specifically, we designed a prior fusion module to effectively
utilize the generated highlights feature maps. First, to maintain
essential background information within these feature maps, we
developed a specialized weighting mechanism. This mechanism
involves normalizing the features, represented as f̄ within the
[0,1] range. These normalized features serve as weighting factors
for the original imagesx0. By applying these weights, we ensure
that both the highlighted foreground semantic information and
the crucial background information are preserved in the final
feature maps. This approach allows for the full utilization of
the contrast information inherent in the generated features, ef-
fectively maintaining the integrity of the background regions
without introducing unexpected noise. The weighting mecha-
nism can be represented as:

xf = f̄ ◦ x0, (10)

where the symbol ◦ denotes element-wise multiplication, and
xf signifies the actual prior guidance fed into the segmentation
models.

Subsequently, the highlighted features, serving as prior guid-
ance, are fused with the original image to generate the input
data for training the segmentation model. Initially, we explore
an intuitive approach of concatenating the prior guidance to
the original images through the channel dimension. However,
we observed that there is a critical challenge associated with
this strategy. As detailed in section IV-C, this straightforward
approach can lead to misalignment between the highlighted
features and the images, potentially diminishing the perfor-
mance of downstream models. To overcome this, we eschew
simple concatenation in favor of integrating a cross-attention
module. This module is designed to mitigate the misalignment
issues inherent in the fusion of feature maps and images. The
cross-attention mechanism operates by initially transforming
both inputs into linear representations using matrices WQ, WK ,
and WV . The query matrix Q, derived from these transforma-
tions, is then fused with the key matrix K. Subsequently, this
fused result undergoes further fusion with the value matrix V .
This process results in a deep fusion of the two inputs, thereby
eliminating the need for alignment and effectively addressing
the misalignment concerns. The operation of the cross-attention
module is mathematically formulated as follows:

CA(x1,x2) := softmax

(
WQx1 ⊗ (WKx2)

T

√
dk

)
⊗WV x2,

(11)

where CA(·) represents the cross-attention module, and ⊗ rep-
resents the matrix multiplication operation.

Above all, the overall training process of downstream tasks
can be represented as:

c̃0 = Seg(CA(x0,xf )), (12)

where c̃0 represents the segmentation prediction, and Seg(·)
represents the segmentation model. The overall segmentation
loss function can be formulated as:

Lseg. = Lw
IoU(c̃0, c0) + Lw

BCE(c̃0, c0), (13)
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TABLE I
COMPARISONS OF DIFFERENT SETTINGS APPLIED ON FOUR POLYP SEGMENTATION BASELINES

where c0 represents the ground truth,Lw
IoU(·) andLw

BCE(·) are the
weighted intersection over union (IoU) loss [48] and weighted
binary cross entropy (BCE) loss [48].

IV. EXPERIMENTS

A. Experimental Settings

1) Dataset: For the image-segmentation dataset, we per-
formed experiments on five publicly available polyp segmen-
tation datasets: EndoScene [49], CVC-ClincDB/CVC-612 [50],
CVC-ColonDB [25], ETIS [51], and Kvasir [52]. In line with the
standards set by PraNet [7] and Polyp-PVT [9], we used 1,450
images from the Kvasir and CVC-ClinicDB datasets for training.
The test sets of these five datasets were combined to form our
validation and test set for evaluation. For the video-segmentation
dataset, we utilized the SUN-SEG [53] dataset. Specifically, we
treated all frames in the dataset as individual images for input
to the diffusion model. We used the entire training dataset for
training and selected only the “unseen” dataset, comprising both
easy and hard cases, for our validation and test sets.

2) Compared Models: We compare our HDM+ with three
SOTA medical image segmentation methods: PraNet [7], FCB-
Former [54], and Polyp-PVT [9]. Also, we compare our HDM+
with other diffusion-based models that generate masks directly,
i.e., MedSegDiff [19]. For the video polyp segmentation, we
chose the FCBFormer and Polyp-PVT models as the baseline
methods.

3) Metrics: For image segmentation, we evaluated their per-
formances using the widely-used mean Intersection over Union
(mIoU) and mean Dice (mDice) metrics. For video polyp seg-
mentation, we assessed their performance using various met-
rics, including structure measure (Sα) [55], enhanced-alignment
measure (Eφ) [56], F-measure (Fβ) [57], weighted F-measure
(Fω

β ) [58], mean Dice, mean IoU, and mean Specificity (mSpe).
For hyperparameter settings, we followed the official settings of
Polyp-PVT.

4) Implementation Details: All the training images were re-
sized to a resolution of 352× 352. Our experiments were con-
ducted on a single NVIDIA A100 GPU using the AdamW
optimizer and the LambdaLR scheduler. The training settings
included a base learning rate of 1e− 6 and a batch size of 6.
For the image-segmentation dataset, we trained the diffusion
model for a maximum of 100 epochs. In the case of the video

segmentation dataset, the model was trained for a maximum of
40 epochs.

B. Quantitative Comparisons

Table I and Table II present a comparative analysis of our
proposed approach against each corresponding baseline method.
In the case of the image polyp segmentation, as depicted in
Table I, MedSegDiff fails to predict much useful semantic
information due to the large domain gap. However, our HDM
combined with other segmentation models generally outper-
forms the corresponding baselines. Specifically, compared to
PraNet, our method achieves a 3.2% and 2.6% improvement in
mean Dice and mean IoU scores, respectively. In comparison
to FCBFormer, our method yields a 0.4% and 0.3% increase.
Against PolypPVT, our method achieves a 0.7% and 0.4%
enhancement.

Moreover, for video polyp segmentation, as indicated in
Table II, our approach exhibits superior performance across
most of the metrics compared to the two baseline methods.
Specifically, for FCBFormer, the model enhanced with our
proposed highlighted features outperforms the baseline in all the
metrics. For Polyp-PVT, our HDM+ outperforms the baseline
method in terms of mean E-measure, mean F-measure, weighted
F-measure, mean Dice, and mean Specificity while achieving
comparable S-measure and mean IoU results. These results
demonstrate that our model has a strong learning ability to
effectively segment polyps.

C. Ablation Study

In this section, we conducted ablation studies to explore the
effectiveness of each component in our proposed prior fusion
module. Results are presented in Table III and Table IV. In
Table III, we compare the performances between three differ-
ent feature processing methods. One directly uses normalized
features computed by the HDM as the prior for the segmen-
tation model, denoted as (f̄ ), another using f̄ added with the
source image, denoted as (f̄ + x0), while the other employs our
proposed weighting mechanism, denoted as (xf ). Our methods
outperform the two base methods across the overall meanDice
and meanIoU, demonstrating the effectiveness of the proposed
highlighted feature processing process.
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TABLE II
COMPARISONS OF DIFFERENT SETTINGS OF TWO POLYP SEGMENTATION BASELINES ON THE SUN-SEG DATASET

TABLE III
ABLATION STUDY OF DIFFERENT FEATURE PROCESSING STRATEGIES

TABLE IV
COMPARATIVE EVALUATION OF CONCATENATE (CONCAT) AND

CROSS-ATTENTION (CROSS_ATTN) METHODS IN PRANET AND POLYP-PVT
MODELS, USING MEAN-DICE AND MEAN-IOU METRICS ACROSS FIVE

DISTINCT DATASETS TO ASSESS THE EFFECTIVENESS OF THESE METHODS
IN VARIOUS CONTEXTS

Similarly, we test the effectiveness of the cross-attention
module by removing it from the prior fusion module and re-
placing it with a vanilla concatenate operation. As shown in
Table IV, The cross-attention outperforms the concatenate in
terms of all the metrics for both PraNet and Polyp-PVT models,
which demonstrates the effectiveness of our proposed plug-in
strategy based on cross-attention for feature fusion. The subpar
performance of the concatenate method may be attributed to the
misalignment of highlighted features and images, which could
introduce noise into the dataset.

Furthermore, to validate the effectiveness of our proposed
generative model in highlighting segmentation objects, we
conducted an ablation study on the hyperparameter α in
Equation (6), which controls the trade-off between the original
image and the transformed image. We varied α across a range
of values (0, 0.2, 0.5, 0.8, and 1.0), where α = 0 represents the

Fig. 3. Comparative visualization of t-SNE and Grad-CAM plots show-
ing output features and layers in the untrained model, FCBFormer train-
ing, and enhanced HDM+FCBFormer training.

Fig. 4. Quantitative (a) and qualitative (b) comparisons of segmenta-
tion results using different scale factors (α).

use of polyp regions only without any background information
for guiding segmentation, and α = 1 represents the use of the
original image without transformation. The results, obtained
using PraNet, are presented in Fig. 4(a), which plots the mean
Dice score and mean IoU against different α values. Notably,
our proposed setting of α = 0.5 achieves the highest mean
Dice score and mean IoU, demonstrating the superiority of
our proposed generative model in highlighting segmentation
objects and justifying our choice of α. The optimal performance
at α = 0.5 suggests that our model strikes a balance between
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preserving the original image information and highlighting the
segmentation objects, leading to improved segmentation ac-
curacy. Additionally, we provide visual examples of the seg-
mentation results for different α values (α = 0, α = 0.5, and
α = 1.0) in Fig. 4(b). These visualizations illustrate that using
α = 0.5 yields better segmentation results, further supporting
our findings.

D. Qualitative Analyses

To demonstrate the main contribution of our HDM+ that the
generated highlight feature can serve as an effective prior for
downstream segmentation tasks, we offer a visual comparison of
t-SNE and Grad-CAM [59], as shown in Fig. 3. The 1st column
shows the original colonoscopy image and its corresponding bi-
nary mask. The upper part of columns 2nd to 4td displays t-SNE
plots for various settings, which is used to evaluate the model’s
ability to distinguish different classes in the embedding space.
Our HDM+FCBFormer exhibits a clearer class cluster compared
to FCBFormer baseline results, demonstrating a stronger ability
to recognize concealed polyp features over the overwhelming
background. Additionally, the lower part shows the Grad-CAM
heatmaps that reveal the model’s focus areas. The most accurate
results illustrated that the proposed HDM provides effective
priors to guide the segmentation’s attention on critical polyp
regions. The visualization comparison confirms our model’s
proficiency in maintaining the semantic integrity of the image
while emphasizing diagnostically significant features.

Fig. 5 shows the highlighted features and the reconstructed
images generated from the HDM. The third column visualizes
the intermediate features generated by HDM, which are directly
processed and utilized in the second stage for polyp segmen-
tation, thereby bypassing the time-consuming reverse process
inherent in diffusion models. Compared with the original image,
the highlighted features preserve the semantic content while
drawing emphasis on the polyp areas. To further demonstrate
the capability of the pre-trained HDM in generating highlighted
images, we utilize the highlighted features for the reverse
process and obtain the samples displayed in the last column
for verification. As can be seen, the samples indeed exhibit
highlighted polyp regions. The figure also includes examples
from the test set, underscoring our model’s ability to generalize
and consistently highlight polyp regions across different data
sets.

Fig. 6 provides visual examples of polyp masks predicted by
HDM+ and competing networks. Our method owns two advan-
tages: 1) HDM+ demonstrates a stronger capability to adapt
to diverse data conditions. Specifically, it maintains a stable
recognition and segmentation ability of polyps across varying
acquisition environments, e.g., low contrast, highlight distrac-
tion, water reflection, small objects, and rotation. 2) Thanks
to the highlighted prior guidance, our model’s segmentation
results and the predicted edges are closer to the ground-truth
labels. Such observations not only validate the efficacy of our
highlighted features but also underscore the overall qualitative
superiority of our proposed approach in enhancing the accuracy
and reliability of polyp segmentation.

Fig. 5. Visualization of the highlighted features and reconstructed
samples as produced by HDM, showcasing the method’s ability to re-
tain semantic information and emphasize polyp regions. The top panel
(a) displays the train data, including the original images, ground truth
masks, highlighted features, and reconstructed images. The bottom
panel (b) depicts the test data with the same layout, indicating the
model’s robustness in generalizing the highlighting technique to unseen
images. Pixel values in feature maps are rescaled to enhance visibility
and samples are produced by the HDM beginning with a noised input
image at timestep t = 100.

V. DISCUSSION

In recent years, the exploration of diffusion models in med-
ical image segmentation has shown promising performance,
particularly in the challenging domain of polyp segmentation
from colonoscopy images. Our primary motivation is to enhance
segmentation performance by addressing three key challenges:
the significant variability in polyp size, shape, and color; the
poor contrast between polyps and surrounding tissues; and the
poor effectiveness and inefficiency of directly applying diffusion
models as an end-to-end segmentation model. Previous works
such as SANet [8] and ECC-PolypDet [12] have validated that
small and hidden polyps significantly impact the network’s
ability to localize targets, leading to inaccurate segmentation
boundaries. SANet incorporates a color exchange strategy to
eliminate the interference caused by color variations, while
ECC-PolypDet employs an additional contrastive learning mod-
ule to enhance the network’s ability to distinguish between
polyps and surrounding tissues. However, these methods implic-
itly strengthen the fitting capability of neural networks, which
may not be effective in all scenarios.

Our motivation is derived from the strong generative and se-
mantic extraction capabilities of diffusion models, as identified
in previous literature. The features output by trained diffusion
models already contain coarse information about target locations
and shapes. Initially, we attempted to directly obtain prediction
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Fig. 6. Comparative visualization of segmentation results from test datasets, contrasting the performance of standard models against those
augmented with our highlighted feature technique. The sequence of images showcases the original endoscopic images, the ground truth (GT)
masks, and the outcomes from two distinct models, PraNet and Polyp-PVT, both with and without our enhancement (“HDM+”).

results through a segmentation head using these features, but
this approach yielded poor results, as confirmed by the results
of MedSegDiff [19] shown in Table I. However, we further
discovered that using this coarse information as guidance can
significantly improve the performance of the original down-
stream segmentation model without any elaborate design. Our
strategy can be seen as explicitly reinforcing the network by
using the features from the diffusion model. Additionally, after
training the HDM, we utilize only the diffusion U-Net output
for the second stage of polyp segmentation, which can be easily
integrated with any discriminative segmentation model in a
plug-and-play manner. The computational costs are primarily
reserved for HDM training, and once trained, the generation
of highlighted features incurs negligible overhead compared
to polyp segmentation. Extensive experiments validate that our
proposed method can be effectively generalized to both CNN-
based and Transformer-based models. Our work introduces a
novel perspective and research direction for the subsequent
design of polyp segmentation models.

Despite the promising performance of HDM+ across various
benchmarks, certain limitations persist. One notable challenge
arises still from polyps with extremely ambiguous boundaries,
which remain difficult for the model to accurately segment. As
illustrated in Fig. 7(a), the model struggled to distinguish the
small target from the large background, leading to inaccurate
segmentation. Additionally, the generation ability of HDM can
affect the performance of downstream baseline models, where
inaccurately highlighted features may introduce more noise
and impact performance. As shown in Fig. 7(b), less accurate
highlighted features generated by HDM can result in incorrect
segmentation by the baseline models.

Fig. 7. Illustration of failure cases: (a) Inaccurate segmentation of
image with unclear polyp boundary. (b) Failure case due to inaccurate
HDM feature.

We identify several promising directions for future improve-
ment. For the first challenge, while our primary contribution
is the proposed simple and plug-and-play HDM module that
can easily enhance the performance of baseline segmentation
models, the final performance still heavily depends on the
learning capability of the baseline model. Therefore, developing
more fine-grained polyp segmentation baselines could help more
effectively process polyps of varying sizes and shapes. For the
second challenge, jointly training the polyp segmentation model
and the HDM module may mitigate the issue of inaccurate
highlighted features by using both diffusion and segmentation
criteria to guide the models. Furthermore, as diffusion models
continue to evolve, applying more robust and efficient diffusion
models could capture more precise highlighted features, thereby
further improving segmentation accuracy.
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VI. CONCLUSION

Precise polyp segmentation is pivotal in colorectal cancer di-
agnosis, yet challenges such as limited data availability and com-
plex colonoscopic environments often hinder the performance
of conventional discriminative models. This paper presents an
innovative approach, employing a Highlighted Diffusion Model
(HDM) to generate explicit references by distinctly highlighting
the differences between polyps and the surrounding intestinal
walls. These references serve as plug-in priors for polyp seg-
mentation models. We introduce a sophisticated two-stage train-
ing and end-to-end inference framework named Highlighted
Diffusion Model Plus (HDM+), specifically designed for ac-
curate polyp segmentation. Specifically, to resolve issues of
reference feature misalignment while maintaining the integrity
of the original image data, the framework incorporates a cross-
attention mechanism for effective feature integration. This is
complemented by the utilization of processed features, which
are instrumental in retaining essential image details, thereby
enhancing the guidance provided to downstream models. Our
extensive experiments across six renowned public polyp seg-
mentation benchmarks validate the efficacy of our proposed
network in addressing the challenges of polyp segmentation.
We anticipate that this research will stimulate further exploration
and innovation in the application of generative models to polyp
segmentation and related fields.
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