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Language-Aware Spatial-Temporal Collaboration
for Referring Video Segmentation

Tianrui Hui , Si Liu , Zihan Ding, Shaofei Huang, Guanbin Li , Wenguan Wang , Luoqi Liu, and Jizhong Han

Abstract—Given a natural language referring expression, the
goal of referring video segmentation task is to predict the segmenta-
tion mask of the referred object in the video. Previous methods only
adopt 3D CNNs upon the video clip as a single encoder to extract
a mixed spatio-temporal feature for the target frame. Though 3D
convolutions are able to recognize which object is performing the
described actions, they still introduce misaligned spatial informa-
tion from adjacent frames, which inevitably confuses features of
the target frame and leads to inaccurate segmentation. To tackle
this issue, we propose a language-aware spatial-temporal collabo-
ration framework that contains a 3D temporal encoder upon the
video clip to recognize the described actions, and a 2D spatial
encoder upon the target frame to provide undisturbed spatial
features of the referred object. For multimodal features extrac-
tion, we propose a Cross-Modal Adaptive Modulation (CMAM)
module and its improved version CMAM+ to conduct adaptive
cross-modal interaction in the encoders with spatial- or temporal-
relevant language features which are also updated progressively
to enrich linguistic global context. In addition, we also propose
a Language-Aware Semantic Propagation (LASP) module in the
decoder to propagate semantic information from deep stages to
the shallow stages with language-aware sampling and assignment,
which is able to highlight language-compatible foreground visual
features and suppress language-incompatible background visual
features for better facilitating the spatial-temporal collaboration.
Extensive experiments on four popular referring video segmenta-
tion benchmarks demonstrate the superiority of our method over
the previous state-of-the-art methods.
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I. INTRODUCTION

R EFERRING video segmentation (RVS) is an emerging
task that aims to segment the foreground object in a

video described by a natural language referring expression.
Compared to video semantic segmentation [2], [3], [4] and
semi-supervised video object segmentation [5], [6], [7], RVS
is neither restricted by the predefined set of semantic categories
nor requires laborious mask annotations in the first frame, thus
endowing the RVS model with more flexibility due to the free-
form language expressions. Involving both computer vision and
natural language processing, RVS task opens up a wide range
of potential applications such as human-robot interaction [8],
language-driven video editing [9] and intelligent surveillance
video processing [10].

In Fig. 1, we present a video clip example where the target
frame is in the middle (only 3 frames are shown for brevity)
and a referring expression “a white and brown cat is jumping
backward”. The goal of RVS is to predict the pixel-level mask of
the referred cat on the target frame. Since the prediction relies on
the context information of the whole video clip, we claim that
both temporal motion modeling over the multiple frames and
spatial appearance modeling over the target frame are crucial
for tackling the RVS task. On the one hand, spatial modeling
alone is insufficient to identify the correct cat by exploiting only
appearance clues due to the existence of two white and brown
cats in the target frame. Instead, the model inclines to generate
plausible but false-positive predictions on other cats. Therefore,
incorporating information from adjacent frames is required to
recognize the described action for distinguishing the jumping
cat from the sitting one. As a result, temporal modeling over
the multiple frames serves as an indispensable component. On
the other hand, as the jumping cat possesses various poses and
locations in 3 frames, temporal modeling will inevitably disturb
the feature representation of the target frame by aggregating
features of the spatially-misaligned pixels from adjacent frames.
The correspondence between the target frame and its ground-
truth mask is hence obscured to some extent, which also leads
to the necessity of spatial modeling over the target frame to
compensate for undisturbed and precise spatial features.

However, previous methods [11], [12], [13], [14], [15] per-
form entangled spatial-temporal modeling over the multiple
frames. They first feed the video clip into a temporal encoder

0162-8828 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on September 26,2025 at 09:19:51 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1172-1554
https://orcid.org/0000-0002-9180-2935
https://orcid.org/0000-0002-4805-0926
https://orcid.org/0000-0002-0802-9567
mailto:huitianrui@gmail.com
mailto:nowherespyfly@gmail.com
mailto:nowherespyfly@gmail.com
mailto:hanjizhong@iie.ac.cn
mailto:liusi@buaa.edu.cn
mailto:dingzihan737@gmail.com
mailto:liguanbin@mail.sysu.edu.cn
mailto:liguanbin@mail.sysu.edu.cn
mailto:wenguanwang.ai@gmail.com
mailto:llq5@meitu.com
mailto:llq5@meitu.com
https://github.com/RyanHTR/CSTM
https://doi.org/10.1109/TPAMI.2023.3235720


HUI et al.: LANGUAGE-AWARE SPATIAL-TEMPORAL COLLABORATION FOR REFERRING VIDEO SEGMENTATION 8647

Fig. 1. Illustration of our motivation. (a) The target frame. (b) The input
video clip. (c) Spatial modeling alone can generate plausible segmentation
but may misidentify other objects due to insufficient action recognition ability.
(d) Temporal modeling alone can distinguish the correct object which performs
the described action but may introduce misaligned spatial features into the
target frame, yielding inaccurate segmentation. (e) Through language-aware
spatial-temporal collaboration, the correct object in the target frame can be well
segmented.

(3D CNN [16]) to extract multi-frame video features, then pool
out the temporal dimension to obtain a mixed spatio-temporal
feature of the target frame. According to the above discussion,
the feature of the target frame will be confused by mixing
multi-frame spatial information, yielding inaccurate segmenta-
tion. To tackle this limitation, we propose a language-aware
spatial-temporal collaboration framework to conduct spatial
modeling over the target frame and temporal modeling over the
multiple frames respectively with two independent multi-modal
encoders. For the temporal encoder, we adopt a 3D CNN [16]
to identify the object performing the described actions, which
serves as the coarse localization of the correct object. For the
spatial encoder, we adopt a 2D CNN [17] to provide undisturbed
and precise spatial feature of the target frame, which can be
regarded as the fine segmentation of the referred object.

In addition, the referring expression also contains both
spatial-relevant information (appearance words, e.g., “white and
brown”) and temporal-relevant information (action words, e.g.,
“jumping backward”). To accomplish adaptive cross-modal in-
teraction in the two encoders, features of spatial-relevant words
can play a bigger role when interacting with the visual feature
from the spatial encoder, and vice versa for the temporal encoder.
Therefore, we propose a Cross-Modal Adaptive Modulation
(CMAM) module utilizing cross-modal attention to dynamically
recombine spatial- or temporal-relevant language features, by
which the corresponding visual features are adaptively modu-
lated. The CMAM module is densely inserted into each stage of
the two encoders, thus enabling visual features to hierarchically
interact with language features and highlighting regions of the
referred object. For CMAM in each stage, we further supplement
the recombined language feature to original words features
with self-attention, which enriches the global context of words
features with cross-modal spatial or temporal preference. The

enhanced words features serve as the input of the next stage,
which forms a progressive language update path through the
visual encoders for more effective cross-modal interaction. We
denote this improved module as CMAM+ which bears obvious
superiority over the original CMAM module.

In the decoder, spatial and temporal visual features from two
encoders are fused and propagated between adjacent stages for
comprehensive spatial-temporal collaboration. Concretely, we
also propose a Language-Aware Semantic Propagation (LASP)
module that first samples foreground pixel features most com-
patible with the language and background pixel features most
incompatible with the language in the deep stage of the decoder.
Then, these spatial-temporal pixel features are propagated to
the corresponding positions in the adjacent shallow stage to
selectively highlight language-compatible foreground features
and suppress language-incompatible background features. By
this means, our LASP can effectively aggregate high-level se-
mantic information in deep stages and low-level local details in
shallow stages through language sampling and propagation. The
aggregated spatial-temporal features establish a comprehensive
collaboration process that identifies the referred object and
refines the mask prediction in a stage-wise manner.

In summary, this paper has the following contributions:
� We propose a language-aware spatial-temporal collabo-

ration framework that consists of a temporal encoder to
recognize the described action and a spatial encoder to
provide undisturbed and precise spatial features of the
referred object based on language clues. Collaborative
spatial-temporal modeling can help the model better iden-
tify and segment the referred object.

� In the encoder, we also propose a Cross-Modal Adaptive
Modulation (CMAM) module and its improved version
CMAM+ to conduct adaptive cross-modal interaction with
spatial- or temporal-relevant language features which are
also updated in each stage.

� In the decoder, a Language-Aware Semantic Propaga-
tion (LASP) module is further proposed to highlight
language-compatible foreground visual features and sup-
press language-incompatible background visual features
by cross-stage feature sampling and semantic propagation,
which further facilitates the spatial-temporal collaboration.

� Extensive experiments on four popular referring video
segmentation benchmarks, i.e., A2D Sentences [11], J-
HMDB Sentences [11], Refer-YouTube-VOS [18] and
Refer-DAVIS [19], demonstrate that our method outper-
forms previous state-of-the-art methods.

This paper is built upon our conference version [1] and signif-
icantly extends it in several aspects. First, we extend the original
CMAM module as CMAM+where the global context of recom-
bined language feature is supplemented to initial words features,
forming a language update path through the encoders to make
language more adaptive to visual features in different stages.
Second, we newly propose a LASP module in the decoder to
highlight foreground features and suppress background features
via language-aware feature sampling and semantic propagation
from deep stages to shallow ones, by which the spatial-temporal
collaboration is further facilitated with aggregated multi-level
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contexts. Third, we make our model end-to-end trainable instead
of training encoders and decoder in two stages for better per-
formance and training efficiency. Fourth, we add considerable
new experiments including ablation study, qualitative analysis,
and comparison results on two more popular benchmarks. Our
extended model achieves large performance gains (5.2% mAP
on A2D Sentences and 5.7% mAP on J-HMDB Sentences) over
our conference version.

II. RELATED WORK

A. Referring Image Segmentation

Similar to RVS, referring image segmentation (RIS) aims to
segment the referred object in a static image. Early works [20],
[21], [22], [23] follow a concatenation-and-convolution scheme
to directly fuse visual and linguistic features with recurrent
refinement, dynamic filtering, or multi-scale context. Cross-
modal attention [24], [25], [26] combined with word semantic
classification [27] or linguistic structure analysis [28] further
improves the segmentation performance. MCN [29] proposes a
multi-task learning framework where referring localization and
segmentation can mutually refine each other by explicit loss
constraints. Position prior [30] and bottom-up visual reasoning
[31] are also exploited to gradually identify the regions of
referred objects. Recently, Transformer [32] has shown a notable
ability to capture long-range dependencies for feature extraction
in both language and vision communities. VLT [33] follows
the Transformer encoder-decoder framework of DETR [34]
where different combinations of language are directly utilized as
queries to find the most responsive regions on the image, which
achieves notable performance. LAVT [35] conducts visual and
linguistic feature fusion early in the intermediate stages of the
Vision Transformer backbone so that better cross-modal align-
ment can be achieved progressively through the visual encoder.
CRIS [36] proposes to transfer the rich vision-language prior
knowledge from the CLIP model [37] to the RIS task by de-
signing text-to-pixel contrastive learning for text-to-pixel align-
ment. Furthermore, DenseCLIP [38] transfers the pre-trained
knowledge of CLIP to more general dense prediction tasks
(e.g, object detection, instance segmentation, etc) by converting
image-text matching to pixel-text matching and prompting the
language model using visual contexts. In this paper, we focus
on the referring segmentation task on video data where temporal
information involving multiple frames is essential, and we seek
the collaboration of spatial-temporal modeling to better align
video and language modalities.

B. Referring Video Segmentation

The RVS task is first proposed in [11] where referring expres-
sion annotations are provided based on the A2D dataset [39]
containing pixel-level labels of both actors and actions. Gavri-
lyuk et al. [11] proposes to use dynamic filters in the decoder
to generate multi-scale cross-modal response maps for mask
refinement. Afterwards, Wang et al. [14] further incorporate
dynamic filters with deformable convolutions [40] to capture the
shape and geometric variations of referred objects. ACGA [12]

exploits asymmetric cross-attention mechanism to perform spa-
tial information exchange between visual and linguistic features
for cross-modal matching with enhanced multimodal context.
In [13], capsule networks [41] are introduced to encode video
and language features with dynamic routing, which explores
a different multimodal representation other than naive convolu-
tions. In addition to feature extracting, polar positional encoding
[15] is also devised to encode richer positional information
than general absolute or relative positional encodings, yielding
better localization results of the referred objects. CMPC-V [42]
performs entity, relation, and action reasoning on joint visual
and linguistic features with word analysis. CMSA [43] extends
the cross-modal self-attention to multiple frames for temporal
context extraction.

Since the common video object segmentation datasets (e.g.,
DAVIS [44] and YouTube-VOS [45]) also contain pixel-level
labeling of multiple instances in videos, some works extend them
with referring expression annotations and propose Refer-DAVIS
[19] and Refer-YouTube-VOS [18] benchmarks for dense RVS
prediction. In [19], a two-stage grounding-then-segmenting
pipeline is applied on the video input while Seo et al. [18] utilize
spatial-temporal memory attention to propagate features and
predictions of previous frames to the current target frame. HINet
[46] proposes to hierarchically fuse language features with vi-
sual features from different levels of the visual encoder so that
different concepts in the language can be extracted. Recently,
ReferFormer [47] follows the paradigms of DETR [34] and
VisTR [48] where language features are adopted as queries to
attend to different objects in the video frames by dense attention
operations in the Transformer encoder and decoder. MTTR [49]
leverages a similar framework as ReferFormer with instance
queries and utilizes a multimodal Transformer encoder to fuse
vision and language features. Different from these works, our
method proposes a spatial-temporal collaboration framework
that exploits language to adaptively modulate the visual features
in the encoders and highlight or suppress language-compatible
or -incompatible visual features in the decoder.

C. Semi-Supervised Video Object Segmentation

Given the manually-labeled masks of objects in the first
frame, the semi-supervised video object segmentation task aims
to segment these objects in the entire video sequence. The
main methodology of many works [7], [50], [51], [52], [53]
is to perform pixel-level feature similarity matching. FEELVOS
[50] exploits the information of the first frame and previous
frame to generate the template and the network is guided by
the feature matching result. EGMN [7] organizes the network
as a fully-connected graph where frames are stored as nodes
and cross-frame correlations are captured by edges. AOT [53]
utilizes Transformers to match and decode multiple objects
simultaneously in the same embedding space. Some works [50],
[54], [55] also focus on suppressing the background distraction.
CFBI [55] employs multiple windows to perform local matching
to exclude background distractors and capture object motions.
For our RVS task, the annotations in the first frame are replaced
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Fig. 2. Overall architecture of our method. Spatial and temporal encoders extract features of the target frame and the video clip respectively, aided by CMAM+
which dynamically interacts with multimodal features in each stage. LASP is also densely applied in adjacent stages of the decoder (except for the shallowest
stage) to highlight language-compatible foreground features and suppress language-incompatible background features.

by referring expressions so that both spatial-temporal collabo-
ration and vision-language alignment are important.

D. Spatial-Temporal Modeling

In order to solve video-related tasks, spatial-temporal mod-
eling [56], [57], [58] is an essential component. A direct way
of conducting spatial-temporal modeling is applying 3D CNNs
(e.g., C3D [59] and I3D [16]) to extract multi-frame features.
(2+1)D ConvNets [60], [61] are further proposed to decompose
3D convolution for reducing its computational budget. SlowFast
[62] proposes a slow path along with a fast path to capture spatial
and motion information respectively with different sampling
rates. TSM [63] proposes a lightweight temporal shift module
where a portion of feature channels on the time dimension is
shifted to approximately model temporal information, and this
operation can be generalized as a 1D temporal convolution [64].
In this paper, our model shares the same spirit with SlowFast
where the collaboration of spatial and temporal modeling with
language clues is proposed to jointly extract the precise spatial
information and inter-frame temporal context.

III. METHOD

Fig. 2 illustrates the overall architecture of our proposed
method. The input target frame, video clip and referring ex-
pression are processed by visual and linguistic encoders re-
spectively (i.e., 2D CNNs [17], 3D CNNs [16] and GRU [65]).
For visual input, we adopt a spatial encoder and a temporal
encoder to collaboratively extract spatial and temporal visual
features respectively. In each stage of the spatial and temporal
visual encoders, we apply our improved Cross-Modal Adaptive
Modulation module (CMAM+) to dynamically recombine lan-
guage features to modulate spatial- or temporal-relevant visual
features for adaptive cross-modal interaction. The recombined
language feature is further supplemented to original words

features to supplement global context for progressive language
update. Then in the decoder, we proposed a Language-Aware
Semantic Propagation (LASP) module which exploits cross-
stage feature sampling and semantic propagation to highlight
language-compatible foreground visual features and suppress
language-incompatible background visual features, thus further
facilitating the spatial-temporal collaboration. After stagewise
refinement and upsampling, our decoder finally outputs a feature
map of the same size as the input target frame to produce the
segmentation mask.

A. Visual and Linguistic Encoders

Given a video clip with T frames, we adopt ResNet-50
[17] as the spatial encoder to process the annotated target
frame F u ∈ RH0×W 0×3 in the middle of the clip, and I3D
[16] as the temporal encoder to process the whole video clip
F ∈ RT×H0×W 0×3 respectively. We denote visual features from
the ith stage (i ∈ [1, 5]) of the spatial and temporal encoders
as V i

s ∈ RHi×W i×Ci
v and V i

t ∈ RT i×Hi×W i×Ci
v respectively,

where Hi = H0

2i , W i = W 0

2i , and Ci
v are the height, width and

channel number of the ith visual feature. The reduction of T i

follows the protocol of the I3D network. An 8-dimensional
coordinate feature encoding relative position information of
each pixel is also adopted following [12]. Since the coordinate
feature is appended to visual features of all stages, we omit
its notation for simplicity. For the input referring expression
containing N words, we first embed each word into a vector
using GloVe embeddings [66] and then extract the linguistic
feature L ∈ RN×Cl by GRU [65], where Cl denotes the channel
number.

B. Cross-Modal Adaptive Modulation

The goal of our CMAM module is to form an effective inter-
action between visual and linguistic features by adaptive visual
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Fig. 3. Illustration of CMAM+ module. The linguistic feature is dynamically
recombined based on the relevance with visual features and further enriched by
global context with spatial or temporal preference. The situation of the temporal
encoder is denoted in parentheses, which is similar to the spatial encoder.

modulation with linguistic clues, thus highlighting matched
visual regions. We insert the CMAM module into each stage
of the spatial and temporal encoders so that the cross-modal
interaction can be densely refined. To clearly elaborate how
CMAM works, we take the ith stage of our spatial encoder as an
example and omit the superscript i for ease of presentation. As
illustrated in Fig. 3, given the visual feature V s ∈ RH×W×Cv

of the target frame and the linguistic feature L ∈ RN×Cl of the
sentence, we first perform cross-modal attention between V s

andL to obtain an attention mapY ∈ RN×HW which computes
the feature relevance between the target frame and each word.
In detail, V s and L are first projected to the same subspace by
linear layers (reshaping operations are omitted):

V ′
s = V sW 1,L

′
s = LW 2, (1)

where W 1 ∈ RCv×Cm and W 2 ∈ RCl×Cm are projection pa-
rameters, V ′

s ∈ RH×W×Cm , L′
s ∈ RN×Cm are projected fea-

tures. V ′
s is then reshaped to RHW×Cm to match the matrix

dimensions. We further conduct matrix multiplication between
V ′

s and L′
s to produce the attention map Y :

Y = L′
sV

′
s
T
. (2)

Here Y ∈ RN×HW calculates the feature relevance between
each word and each pixel on the spatial visual feature map. Then,
all the values on theHW dimension are summed and normalized
as follows:

y =

HW∑
j=1

Y j ,

ỹn =
exp(yn/ ‖y‖2)∑N
k=1 exp(y

k/ ‖y‖2)
, (3)

where ‖ · ‖2 denotes the �2-norm of a vector, Y j ∈ RN is
the feature relevance between N words and the jth pixel, and
ỹ = {ỹn}Nn=1 ∈ RN is the normalized global feature relevance

between each word and the whole target frame. Therefore, we
can use ỹ to linearly re-combine features of N words to ob-
tain adaptive sentence feature ls =

∑N
n=1(ỹ

nLn) ∈ RCl which
contains more spatial information matched with the spatial
visual feature V s of the target frame.

Afterwards, we adopt a linear layer and the sigmoid function
to project ls to RCv dimensions and generate channel-wise
modulation weights l̃s ∈ RCv :

l̃s = σ(lsW 3), (4)

where W 3 ∈ RCl×Cv is the projection parameter and σ denotes
sigmoid function. Then, l̃s is multiplied with feature of the target
frameV s to highlight sentence-relevant visual feature channels,
which shares similar spirits with SENet [67]. The modulated
feature is added to the original V s to ease optimization:

Ṽ s = V s + V s � l̃s, (5)

where � denotes elementwise multiplication.
In the original CMAM module, the language inputs for dif-

ferent encoder stages are identical where the linguistic adapt-
ability w.r.t the visual features is restricted to some extent.
To adapt visual features containing information of different
abstraction levels, we further improve the CMAM module with
an additional language update path through the visual encoders.
Concretely, we first concatenate the recombined sentence feature
ls ∈ RCl with the original words features L ∈ RN×Cl to form
L̂s ∈ R(N+1)×Cl , namely a new language sequence with length
of N + 1. Then, we conduct self-attention on L̂s to supplement
the global linguistic context to original words features with
cross-modal spatial or temporal preference as follows:

L̄s = L̂s + Fattn(L̂s, L̂s, L̂s)

= L̂s + softmax

(
L̂sW 4(L̂sW 5)

T

√
Cl

)
(L̂sW 6), (6)

where Fattn(q, k, v) denotes the general attention function
based on feature similarity, W 4, W 5 and W 6 are projection
parameters for query, key and value. Afterwards, we remove
the token corresponding to ls from L̄s ∈ R(N+1)×Cl to obtain
the enriched features of N words L̄′

s ∈ RN×Cl . We denote this
improved version of CMAM as CMAM+ where L̄′

s and Ṽ s are
its output and serve as the input features of CMAM+ module
in the next stage of the spatial visual encoder. For the temporal
visual encoder, the same operations are performed on the whole
video clip to highlight sentence-relevant temporal visual features
in each stage.

C. Language-Aware Semantic Propagation

After dense cross-modal interaction by CMAM+ in the en-
coders, spatial and temporal visual features are fused in the
decoder to collaboratively generate the segmentation mask of
the referred object. Inspired by the spirits of previous works
[22], [54], [68], [69], [70] which show the visual features in deep
stages contain semantic information and those in shallow stages
preserve fine details, integrating multi-stage features can capture
the more comprehensive visual context of the referred object
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Fig. 4. Illustration of LASP module. The relevance score map between linguis-
tic and visual features is exploited to sample language-compatible foreground
pixels and language-incompatible background pixels from the deep stage. Fore-
ground and background visual features in the shallow stage are accordingly
highlighted and suppressed by the propagated deep semantics.

and refine the mask quality. To this end, we further propose
a new Language-Aware Semantic Propagation (LASP) module
where foreground pixels most compatible with language and
background pixels most incompatible with language are sampled
from features of deep stages. Then, the sampled language-aware
deep semantics are propagated to the shallow stages to highlight
foreground features and suppress background features for ac-
curately segmenting the referred object. The LASP module is
inserted into the adjacent stages of the decoder so that the deep
semantics are progressively propagated to the shallow stages and
recover feature resolution.

As illustrated in Fig. 4, let Ṽ
i

s and Ṽ
i

t denote features from the
ith stage (i = 3, 4, 5) of spatial encoder and temporal encoder
(target frame is selected) respectively. We first sum them to
obtain spatial-temporal visual featureDi ∈ RHi×W i×Cd . Then,
the words features updated by CMAM+ modules in the last
stages of spatial and temporal encoders, i.e., L̄′

s and L̄
′
t (stage

indexes are omitted), are averaged to obtain the global sentence
feature l̄ ∈ RCd :

l̄ =

[
N∑

k=1

L̄
′,k
s ;

N∑
k=1

L̄
′,k
t

]
W 7, (7)

where W 7 ∈ RCl×Cd is the parameter of linear layer and [; ]
denotes feature concatenation. We further perform relevance
filtering between l̄ and Di to yield the relevance score map
A ∈ R1×HiW i

which measures the feature compatibility be-
tween pixels and the whole sentence:

A = σ(̄lW 8(D
iW 9)

T), (8)

where W 8 and W 9 ∈ RCd×Cd are projection parameters and
σ is sigmoid function. Afterwards, we conduct adaptive max
pooling on the reshaped A ∈ RHi×W i

to obtain a small map
with size of Hm ×Wm which selects foreground pixels most
compatible with language. Then, the small map is upsampled to
the original size ofHi ×W i to form a soft foreground sampling

mask for extracting the language-compatible foreground feature
from Di as follows:

D̄
i
= Fup(Fmaxp(A))�Di, (9)

where Fmaxp and Fup denote max pooling and bilinear upsam-
pling. We utilize the indexes of max pooling to sample the most
language-compatible foreground pixels from D̄

i and save their
features as D̄i

f ∈ RHm×Wm×Cd .
The indexes of maximum values are transformed to the

corresponding positions on the feature of the previous stage
Di−1 ∈ RHi−1×W i−1×Cd so that the foreground features of the
(i− 1)th stage can also be sampled as D̄

i−1
f ∈ RHm×Wm×Cd .

Then, we conduct cross-stage attention between D̄i
f and D̄i−1

f to
propagate foreground semantics from deep stages to the shallow
stages:

D̃
i−1

f = D̄
i−1
f + Fattn(D̄

i−1
f , D̄

i
f , D̄

i
f), (10)

where Fattn(q, k, v) denotes the attention function based on

feature similarity as mentioned in (6). The obtained D̃
i−1

f ∈
RHm×Wm×Cd is assigned to the corresponding positions on
Di−1 ∈ RHi−1×W i−1×Cd with the transformed indexes to re-
place those features, thus highlighting language-compatible
foreground visual regions.

In addition, we also exploit the reversedA to yield a soft back-
ground sampling mask for extracting the language-incompatible
background feature from Di as follows:

D̂
i
= Fup(Fmaxp(1−A))�Di. (11)

Similarly, the max pooling indexes are used to sample the

most language-incompatible background pixels from D̂
i

and
save their features as D̄

i
b ∈ RHm×Wm×Cd . The corresponding

background features on Di−1 are also sampled as D̄i−1
b and we

perform similar cross-stage attention as (10):

D̃
i−1

b = D̄
i−1
b −Fattn(D̄

i−1
b , D̄

i
b, D̄

i
b) (12)

where the propagated background semantics are subtracted from
D̄

i−1
b to suppress language-incompatible background visual

regions. The obtained D̃
i−1

b is also assigned to the corresponding
positions on Di−1 and then fused with previous Di−1 assigned

by D̃
i−1

f to yield the final output of our LASP on the (i− 1)th
stage. After progressive upsampling, our decoder outputs the
visual feature with the same resolution as the input frame and
applies convolutions to predict the binary segmentation mask.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

We conduct experiments on four popular referring video
segmentation benchmarks. Details are presented as follows:

A2D Sentences [11]: This dataset is extended from the Actor-
Action Dataset [39] (A2D) with 6,655 referring expression
annotations in total. It consists of 8 actions categories performed
by 7 actors categories with a total number of 3,782 videos
collected from YouTube. In each video, 3 to 5 frames are labeled
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TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE A2D SENTENCES TESTING SET

with pixel-level masks of actors and actions for training and
evaluating segmentation performance. We follow [11] and use
its splits of 3,017 training videos, 737 testing videos and 28
unlabeled videos.

J-HMDB Sentences [11]: This dataset is an extension from the
J-HMDB dataset [71] which contains 21 action categories, 928
videos and corresponding 928 referring expressions. For each
video, one natural language referring expression is annotated
to describe the actions performed by the actors. All the actors
in the J-HMDB dataset are humans which are labeled with 2D
articulated human puppet masks for segmentation evaluation.

Refer-YouTube-VOS [18]: This dataset is built upon the com-
mon video object segmentation dataset YouTube-VOS [45]
which contains 3,978 video sequences with densely sampled
(every 5 frames in 30-fps) multi-instance mask annotations and
their corresponding referring expressions. Following the official
description of collectors [18], we adopt the split of 3,471 training
videos, 202 validation videos, and 305 testing videos.

Refer-DAVIS [19]: This dataset is extended from another
common video object segmentation dataset DAVIS-17 [44]
containing 60 training videos and 30 validation videos, where
multiple instances are annotated pixel-wisely in each video.
Based on the contents of the first frame and the whole video
sequence, Refer-DAVIS annotates each video with two types of
referring expressions respectively.

We follow prior works [11], [12] to adopt Precision@X
(P@X), Overall IoU, and Mean IoU as evaluation metrics. Over-
all IoU is defined as the ratio of the accumulated intersection area
over the accumulated union area between ground-truth masks
and predictions on all the test samples. Mean IoU measures the
IoU between ground-truth masks and predictions averaged over
all the test samples. Precision@X calculates the percentage of
test samples whose IoU are higher than a predefined thresholdX ,
whereX ∈ [0.5, 0.6, 0.7, 0.8, 0.9]. The mean Average Precision
(mAP) [72] is also computed over the threshold section of
[0.50:0.05:0.95]. For Refer-YouTube-VOS and Refer-DAVIS,
we follow [18] to use region similarity (J ) and contour accuracy
(F) as metrics.

B. Implementation Details

For the spatial encoder and temporal encoder, we adopt 2D
ResNet [17] pretrained on the ImageNet [73] dataset and I3D

[16] pretrained on the Kinetics400 [16] dataset as the backbone
networks respectively. The spatial encoder takes the annotated
target frame as input while the temporal encoder takes the video
clip of 8 frames as input where the target frame is in the middle.
We utilize GRU [65] as the language encoder to extract linguistic
features where the hidden dims are set as 300. The GloVe word
embedding [66] pretrained on the Common Crawl with 840B
tokens is used to embed input words. The maximum sequence
length of the input referring expression is set as 20. The height
and width of the input frames are resized to 320× 320. In the
decoder, the number of feature channels Cd = 256, and the
output size of adaptive max pooling in the LASP module is set as
8× 8. Adam [74] is utilized as the optimizer to train our model
in an end-to-end manner and the model is trained for 15 epochs
in total. For A2D Sentences and Refer-YouTube-VOS datasets,
the initial learning rate is set as 1e−4 and we reduce it by 2×
after 10, 12, and 14 epochs. Following [11], [12], [15], we use the
best model pretrained on the A2D Sentences dataset to evaluate
it on the whole J-HMDB Sentences dataset without finetuning.
For Refer-DAVIS, we adopt the best model pretrained on the
Refer-YouTube-VOS dataset and finetune it for 1 epoch with
the learning rate of 1e−5. All the inference speeds are calculated
on the same machine with a single NVIDIA Tesla V100 GPU.
Our method is implemented with PyTorch and MindSpore.

C. Comparison With State-of-the-art Methods

We conduct experiments on four RVS datasets to compare
our method with previous state-of-the-art methods. As shown
in Table I, our methods outperform previous ones on the A2D
Sentences testing set, indicating the effectiveness of spatial-
temporal collaboration and adaptive visual-linguistic interac-
tion. It is also worth mentioning that our extended method
achieves significant performance gains over the previous con-
ference version, which shows the language update in CMAM+,
semantic propagation via language sampling of LASP and ad-
vanced end-to-end training strategy are quite effective improve-
ments. For the most rigorous metric P@0.9, our extension is
also superior to the performances of our conference version and
other methods, demonstrating that our extended method can not
only accurately identify the correct object through cross-modal
alignment, but also generate a finer mask to cover the object.
Since Mean IoU treats objects of different scales equally while
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TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE WHOLE J-HMDB SENTENCES DATASET USING THE BEST MODEL TRAINED ON A2D SENTENCES

WITHOUT FURTHER FINETUNING

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE

REFER-YOUTUBE-VOS VALIDATION SET

Overall IoU favors large objects, our improvements on IoU met-
rics also show that our method can well handle the scale variation
of objects. Our extension model also obtains faster inference
speed than our conference version and prior methods due to
optimized network implementations and structures, showing its
good efficiency.

Following prior works [12], [14], [15], we further verify the
generalization ability of our method on the whole J-HMDB
Sentences dataset. The best model pretrained on the A2D Sen-
tences dataset is adopted to directly evaluate all the samples
on the J-HMDB Sentences without finetuning. As shown in the
Table II, our extension also significantly outperforms previous
state-of-the-art methods as well as our conference version, indi-
cating that our method can excavate richer multimodal informa-
tion through the collaborative learning of spatial and temporal
encoders, leading to stronger generalization ability. Note that all
the methods including ours yield approximate zero performance
on P@0.9, which is probably because models cannot predict
particularly complete masks on unseen samples without training
on J-HMDB Sentences.

We also conduct more performance comparisons on two
newly proposed datasets Refer-YouTube-VOS and Refer-
DAVIS, in which video frames are annotated more densely
and the object categories are richer as well. Table III sum-
marizes the results on Refer-YouTube-VOS. Comparing with
CMPC-V [42] and URVOS [18], our method achieves1.82% and
2.07% improvements onJ&F metric respectively, showing our
method can well segment objects which are referred in complex
scenes and long videos. Moreover, we adopt the best model

TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE REFER-DAVIS

VALIDATION SET

pretrained on the Refer-YouTube-VOS dataset to finetune it on
the Refer-DAVIS dataset following [18]. Results in Table IV also
demonstrate that our model outperforms previous approaches.

D. Ablation Studies

To evaluate the different designs of our framework, we con-
duct ablation studies on the A2D Sentences dataset.

Component Analysis: Table V presents the ablation results
of our proposed encoders and modules. The 1-st row denotes
the baseline model with only the temporal encoder (I3D [16]),
where multimodal interaction only occurs in the decoder by
visual and linguistic feature concatenation and fusion. The 2-nd
row integrates spatial encoder (2D ResNet [17]) with temporal
encoder to form a simple spatial-temporal collaboration model
and achieves 3.3% and 2.0% performance improvements on
mAP and Mean IoU metrics respectively, which demonstrates
that introducing spatial encoder can supplement the temporal
encoder with precise appearance information of the referred
object and facilitate mask prediction. When inserting our pro-
posed CMAM module in each stage of the two encoders, the
performance in the 3-rd row obtains notable gains on all met-
rics, which shows the effectiveness of adaptive visual feature
modulation with recombined language features. Moreover, by
replacing CMAM with our improved version of CMAM+ in
the 4th row, we can still observe performance boosts on all
metrics, showing the additional language update path through
the encoders can yield more comprehensive multimodal inter-
actions. As shown in the last row, our proposed LASP module
can yield further performance gains based on the model which
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TABLE V
VERIFYING THE EFFECTIVENESS OF EACH COMPONENT IN OUR LANGUAGE-AWARE SPATIAL-TEMPORAL COLLABORATION FRAMEWORK

TABLE VI
INSERTING STAGES OF THE CMAM+ MODULE IN THE ENCODERS WITH LASP

MODULE IN THE DECODER

has already achieved high performance. This result indicates
that propagating language-aware deep semantics to shallow
stages can effectively identify the referred object and refine the
segmentation mask as well.

Inserting Positions of CMAM+: We evaluate different insert-
ing positions of the CMAM+ module with the LASP mod-
ule in the decoder and present the results in Table VI. When
CMAM+ is inserted into the 2-nd and 3-rd stages of spatial
and temporal encoders, the model’s performance can witness
relatively significant improvements, which shows hierarchical
cross-modal interactions beginning from the shallow stages
can extract meaningful multimodal representations under the
refinement of LASP. As we insert CMAM+ into the deeper
stages of encoders, segmentation performance is also constantly
improved, which shows visual features of different abstraction
levels can be well modulated with dynamically recombined
and progressively updated linguistic features. The influence
on the inference speed in shallow stages is relatively larger
than in deep stages since high-resolution features require more
computations, but CMAM+ in shallow stages also obtains
more notable performance gains. We also remove the LASP
module to evaluate the independent performance gains of the
CMAM+ module in different inserting positions. As shown in
Table VIII, our CMAM+modules also consistently yield perfor-
mance gains in each stage with the same trend as in Table VI, and
the accumulative improvements in all 5 stages are significant as
well. Our CMAM+ modules in all 5 stages should be regarded
as a whole, and the results in the two tables well demonstrate that
our CMAM module can independently improve performance or
collaborate with the LASP module for further improvement.

Inserting Positions of LASP: We also evaluate different insert-
ing positions of the LASP module and summarize the results in
Table VIII. Compared with the 1-st row, inserting LASP between
the 5th and 4th stages can yield consistent performance improve-
ments on mAP and IoU metrics. The same trend can be seen

TABLE VII
INSERTING STAGES OF CMAM+ MODULE IN THE ENCODERS WITHOUT LASP

MODULE IN THE DECODER

TABLE VIII
INSERTING STAGES OF LASP MODULE

when inserting LASP between the 4th and 3-rd stages, which
indicates the effectiveness of propagating deep language-aware
semantics to shallow stages for highlighting foregrounds and
suppressing backgrounds. In the 4th row of Table VIII, stacking
LASP modules for three adjacent stages can further achieve
45.1% mAP and maintain high IoU performance, which also
shows that aggregating and propagating features from the last
three stages can obtain the balance between high-level semantics
and low-level details, thus facilitating the model to identify more
referred objects. However, the performance drops when incor-
porating features of the 1-st stage, which is probably because the
semantic information of the shallowest stage is too inadequate
and may introduce redundant noises. Our LASP module yields
consistently slight effects on the inference speed in each stage
of the decoder, which is because only a small set of pixels are
sampled to propagate semantics between adjacent stages, and
the computations are hence reduced.

Sub-component Analysis of LASP: We further verify the effec-
tiveness of two sub-components of the LASP module, namely
foreground feature highlighting and background feature sup-
pression. The experimental results are summarized in Table IX.
We can find that if our LASP module conducts only foreground
feature highlighting by sampling and propagating semantics of
language-compatible pixels from deep stages to shallow stages,
the performance is improved accordingly. When the background
feature suppression is introduced, it can still yield performance
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TABLE IX
SUB-COMPONENT ANALYSIS OF LASP MODULE

TABLE X
COMPARATIVE EXPERIMENTS OF DIFFERENT LANGUAGE ENCODING METHODS

ON A2D SENTENCES TESTING SET

Fig. 5. Qualitative comparison results. (a) Target frames. (b) Results of our
previous conference version CSTM [1]. (c) Results of our extended method.
(d) Ground-truth masks.

gains, which also indicates the effectiveness of sampling and
propagating semantics of language-incompatible background
pixels for noise reduction.

Different Language Encoding Methods: We conduct com-
parative experiments of our model using different language
encoding methods on the A2D Sentences dataset. As shown in
Table X, We can observe some counter-intuitive results where
pretrained language models yield inferior performance than se-
quential model GRU. We suppose this phenomenon is probably
because BERT-based large models may be more suitable for
processing longer sentences or documents while GRU may work
better at short sentences or phrases. Since the average length of
referring expressions in A2D Sentences is 6.9 words, BERT
may be too “heavy” to well handle this relatively shorter and
less complicated corpus. In addition, Ezen-Can [79] conducts
an empirical study that finds BERT does not always perform
better than sequential models on different scenarios and corpus,
which can also support our experimental results from the side.

Fig. 6. Visualization of feature maps in LASP. (a) Target frames. (b) Feature
activations before LASP modules. (c) Feature activations after LASP modules.

Fig. 7. Qualitative comparison between our CMAM and CMAM+ modules.
(a) Target frames. (b) Ground-truth masks. (c) Results of our CMAM module
(d) Results of our CMAM+ module.

E. Qualitative Analysis

As illustrated in Fig. 5, we show qualitative comparison
between our previous conference version CSTM [1] and our
extended method. We can observe that our extended method
can better recognize which object is performing the described
action. Take the 3-rd row as an example, CSTM is confused
about the two guys while our extended method can correctly
identify the left guy using both appearance and motion clues
and yield accurate segmentation, indicating the effectiveness of
our extensions. In the 1-st and 2-nd rows, our extended method
can also predict accurate segmentations on the referred objects
under the existence of other distractors of the same categories
(blobs and humans), showing the model’s capacity in complex
scenes.

We also visualize the feature maps of LASP modules in Fig. 6.
Columns (b) and (c) show the feature activations before and after
LASP modules respectively. We can observe that the application
of LASP is able to highlight foreground feature regions that
are compatible with the language description while suppressing
background feature regions that are incompatible with the lan-
guage description. For example, activations of the man eating
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Fig. 8. Qualitative results of consecutive frames on A2D Sentences testing set. The colors of referring expressions correspond to the colors of segmentation
masks.

Fig. 9. Visualization of attention maps between words and frames in CMAM+. Red regions denote high attention values. Both spatial-related words and
temporal-related words can attend to corresponding visual regions.

a big sandwich in the 2-nd row are highlighted while other
background regions (e.g., the right sitting man and the table)
are properly suppressed. Similar highlighting and suppression
phenomenons can also be seen in the other two examples, which
well demonstrate the effectiveness of LASP modules.

Fig. 7 presents the qualitative comparison results between
our CMAM and CMAM+ modules. We can observe that our
CMAM+ module can produce more accurate segmentation
results than the CMAM module. For example, CMAM generates
additional false predictions on other distractors with similar
appearances such as the child in yellow in the 1-st row and
the ball-like gadget in the 2-nd row. In the 3-rd row, CMAM
misidentifies the referred man completely among these athletes
but CMAM+ complements the man’s head even though its

annotation in the ground-truth image is missing. Our CMAM+
module can correctly identify and segment these referred objects
in Fig. 7 with finer masks, showing the qualitative improvement
obtained by CMAM+ over CMAM.

In Fig. 8, we show qualitative results of our extended method
on consecutive multiple frames of the A2D Sentences testing set.
Different colors of segmentation masks correspond to different
colors of referring expressions. From these results, we can
observe that our extended method is able to accurately segment
different instances of the same categories (e.g., dogs and humans
in these examples). With object movements on consecutive
frames, our model can also predict stable segmentation results
on the referred objects, which demonstrates the effectiveness of
language-aware spatial-temporal collaboration.
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In addition, we also visualize the cross-modal attention maps
between visual features and linguistic features in our CMAM+
module. We show attention maps of different referring words
in Fig. 9. Redder regions represent higher attention values. We
can observe that both spatial-related words and temporal-related
words can attend to corresponding visual regions with rela-
tively higher attention values, which shows visual and linguistic
features can be well associated in our CMAM+ module to
better modulate and update features of different modalities. For
example, the spatial-related words (“child”, “white”, “rocks”)
can correctly attend to the corresponding two children, the man
in white clothes and the rocks on the cliffs. The temporal-related
words (“crawling”, “jumping”, “climbing”) can also attend to
the corresponding objects performing these actions.

V. CONCLUSION AND DISCUSSION

In this paper, we focus on the referring video segmentation
(RVS) task which predicts the pixel-level mask of the object
in the video referred by a natural language expression. Three
main scientific problems are revealed for the RVS task, includ-
ing spatial-temporal information exploitation, visual-linguistic
cross-modal interaction, and multi-scale visual feature aggrega-
tion. First, successful RVS models are expected to sufficiently
exploit both spatial and temporal information for correct dis-
tinguishment of the referred target in a video. However, pre-
vious methods only adopt 3D CNNs to extract an entangled
spatio-temporal feature where misaligned spatial information
from adjacent frames is introduced. To address this problem, we
propose a language-aware spatial-temporal collaboration frame-
work that provides undisturbed and precise spatial features of the
referred target and recognizes the described actions respectively.
Second, since both vision and language modalities are involved,
RVS models are required to match the correct visual entity in
the video with the linguistic semantic of referring expression.
To this end, the CMAM and CMAM+ modules are proposed
in the encoders to adaptively modulate visual features with
recombined language features meanwhile updating language
features with global contexts. Last, RVS models need to accu-
rately aggregate multi-scale visual features for better segmenting
objects with different sizes. Targeting at this issue, we propose an
LASP module to conduct language-aware semantic propagation
among multi-scale visual features, where language-compatible
foreground pixels are highlighted and language-incompatible
background pixels are suppressed. Extensive experiments on
four RVS benchmarks show our method outperforms previous
state-of-the-art methods.

Limitation and Future Work: In order to model temporal mo-
tion information, 3D CNN inevitably brings misaligned spatial
information from adjacent frames. To alleviate this problem, we
introduce an additional 2D CNN to compensate the target frame
with undisturbed spatial information. In the future, we plan
to explore new temporal motion modeling methods to reduce
misaligned spatial information as much as possible. In addition,
the cross-attention mechanism is a widely-adopted common
practice to extract correlations between different modalities.
In the future, we also plan to extract the visual-linguistic

correlations with new techniques more tailored to the RVS
task.
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