2019 International Conference on Robotics and Automation (ICRA)
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019

Lightweight Contrast Modeling for Attention-Aware Visual Localization
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Abstract— Salient object detection, which aims at localizing
the attention-aware visual objects, is the indispensable tech-
nology for intelligent robots to understand and interact with
the complicated environments. Existing salient object detection
approaches mainly focus on the optimization of detection per-
formance, while ignoring the considerations for computational
resource consumption and algorithm efficiency. Contrarily, we
build a superior lightweight network architecture to simulta-
neously improve performance on both accuracy and efficiency
for salient object detection. Specifically, our proposed approach
adopts the lightweight bottleneck as its primary building block
to significantly reduce the number of parameters and to speed
up the process of training and inference. In practice, the visual
contrast is insufficiently discovered with the limitation of the
small empirical receptive field of CNN. To alleviate this issue,
we design a multi-scale convolution module to rapidly discover
high-level visual contrast. Moreover, a lightweight refinement
module is utilized to restore object saliency details with negligi-
ble extra cost. Extensive experiments on efficiency and accuracy
trade-offs show that our model is more competitive than the
state-of-the-art works on salient object detection task and has
prominent potentials for robots applications in real time.

I. INTRODUCTION

Attention-aware salient object detection is the indispens-
able preprocessing for intelligent robots to understand and
interact with the configurations of unknown and complicated
environments. It aims at locating the most visually distinctive
object regions in images and facilitates a convenient way
to direct the agent’s attention, which benefits many robotic
tasks, such as object grasping (e.g. Fig. 1), manipulation
and scene exploration. In case of disaster and emergency,
attention-aware salient object detection, as the preprocessing
step, is expected to be handled with high accuracy and high
efficiency.

With the prevalence of deep convolutional neural networks
(CNNs) in computer vision and robot-oriented applications,
the performance of salient object detection has dramatically
improved. Nevertheless, the performance gain comes at the
cost of consuming huge computing resources, which greatly
limits its application in the field of robotics. In this paper,
we aim at seeking a lightweight network for attention-aware
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(a) scene image

(b) salient object detection

Fig. 1. The application of salient object detection in the field of robot
control. By analyzing the most eye-attracting visual objects in the scene,
the robot can quickly perform precise grabs and subsequent operational
tasks.

salient object detection by improving the efficiency while
maintaining its accuracy as much as possible.

Various researches have focused on lightweight model
designs, such as exploring new algorithmic architectures
through network pruning, connectivity learning and hyper-
parameter optimization [1], [2], [3]. However, it would not
be appropriate to directly apply them in attention-aware
salient object detection because visual contrast is the most
significant factor [4], [5], [6] for accuracy improvement,
while these models are not tailor-designed for capturing the
subtle visual contrast in an image.

Various visual saliency detection approaches are based
on local or global contrast cues. In early works, the visual
contrast is illustrated by sophisticated hand-crafted low-
level features, such as color, intensity and texture. Recently,
CNN based models have been employed to obtain high-level
semantic features, which is more robust than hand-crafted
features, achieving better results than early attempts. Most
of these methods infer visual saliency by learning contrast
from a single input, and their output is derived from receptive
fields with a uniform size. Accordingly they may not perform
well enough when handling images with salient objects at
different scales. Resorting to a multi-scale fully convolutional
network is the most intuitive solution. Furthermore in order
to obtain the global context information, the general approach
is to expand the receptive field. However, consecutive down-
sampling of CNNs makes the resolution of final detected
salient object only a very small fraction of the original input
image, which is infeasible to accurately locate the salient
object.

In this paper, inspired by a recent work [3] which incorpo-
rates depth-wise separable convolutions to build lightweight
deep neural networks, we propose a lightweight multi-
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reduce model parameters for efficiency improvement. Our
LMNet consists of the basic feature representation, multi-
scale visual contrast learning and the lightweight refinement
module for fine-tuning. We utilize lightweight bottleneck
blocks to learn features, which has been proved to be very
efficient in [3]. Taking the output features as input, a multi-
scale fully convolutional network with pyramid average
pooling is designed to encode rich contextual information
for visual saliency reasoning. Finally, we incorporate a
lightweight refinement module to capture sharper salient
object inference, which gradually recovers the spatial in-
formation by resolution expansion. It is worth mentioning
that we apply the depth-wise separable convolution to both
the multi-scale contrast module and the refinement module,
resulting in an efficient end-to-end solution.

In summary, this paper has the following contributions:

« We propose a novel lightweight multi-scale convolution-
al network for salient object detection which consists
of the basic feature representation, multi-scale visual
contrast learning and the lightweight refinement module
for fine-tuning. The linear bottleneck blocks used in fea-
ture extracting and the depth-wise separable convolution
applied in multi-scale visual contrast learning and the
refinement module tremendously decrease the number
of parameters and model size, ensuring the efficiency
while maintaining accuracy.

o We introduce a multi-scale contrast module for captur-
ing visual contrast, which works by first encoding rich
contextual information with pyramid pooling, followed
by feeding feature maps to the depth-wise separable
convolution for subsequent model acceleration.

o This work presents intensive experiments on the trade-
off of efficiency and accuracy. Experimental results
demonstrate its superiority over state-of-the-art works
on salient object detection.

II. RELATED WORK

In this section, we discuss the most relevant work on
salient object detection and lightweight deep models.

Salient Object Detection. Traditional approaches on
visual salient object detection can be roughly categorized
into bottom-up and top-down methods. The bottom-up
approaches [7], [8], [9], [10] identify contrast of image
regions according their low-level visual attributes such
as color, intensity, texture and orientation. Contrarily,
the top-down approaches [11], [12], [13], [14] normally
incorporate high-level knowledge learning to obtain a
saliency map. Recently, salient object detection research
has been pushed into a new phase by the advancement
of deep CNNs. The rapidly sprung up deep models can
be further separated into two categories, i.e., patch based
multi-stage deep feature leaning approaches and end-to-end
FCN-based approaches. The former patch based approaches
[15], [16], [17] first partition an image into patches and
treat each patches as independent samples for training and
testing, resulting in inefficient learning and redundancy

among overlapping patches. By contrast, the FCN-based
approaches [18], [19], [20], [21] with encoder-decoder
structure, have been developed to directly map the whole
input image to corresponding saliency map in an end-to-end
trainable way. Particularly, some approaches [19], [21]
consider multi-scale features extracted from extra stacked
convolution layers to capture high-level contrast. Although
these end-to-end networks improve accuracy and become
the fundamental component, high computational resources
requiring is beyond the capabilities of robots.

Lightweight Deep Model Design. Lightweight deep mod-
el designs for resource-constrained applications have been
a new and fascinating research field for the last several
years. Early research utilizes manual tuning parameters and
training techniques to optimize networks [22], [23], [24],
[25]. Subsequently, many works [26], [27], [28], [29], [30]
explore new architecture through network pruning, connec-
tivity learning and hyper-parameter optimization. Recently, a
growing number of works [1], [2], [3], [31], [32] are devoted
to restructuring the connectivity of the internal convolutional
blocks. However, none of them have explored the attention-
aware visual localization model, which is essential in the
field of robotic cognition. This paper proposes a lightweight
but very effective neural network for attention-aware visual
localization.

III. LIGHTWEIGHT MULTI-SCALE NETWORK

As shown in Fig. 2, our designed LMNet architecture
is composed of lightweight bottleneck blocks, a multi-scale
contrast module, and a lightweight refinement module. Given
an input image, the feature representation, i.e. pre-trained tai-
lored VGG, is utilized to extract the feature map. Afterward,
the multi-scale contrast module is utilized to capture three-
level contrast context priors and further fuse them as the
global prior. Then the prior is concatenated with the original
feature map to produce the final encoder feature map. It is
followed by the lightweight refinement module to generate
the final saliency prediction. Therefore, our LMNet directly
maps a raw input image to its corresponding saliency map
in an end-to-end trainable fashion, through which the multi-
scale contrast module, the lightweight refinement module and
the feature representation can be optimized simultaneously.
The following subsections are dedicated to a detailed de-
scription of the proposed approach.

A. Lightweight Bottleneck Module

Since our proposed LMNet is basically constructed from
the lightweight bottleneck module to learning features
while requiring the less computational cost, we first detail
the module in this section. Specifically, the lightweight
bottleneck module is characterized by depth-wise separable
convolutions [33], linear bottlenecks, and inverted residuals.
It first expands the input to high dimension through a
point-wise convolution, i.e. 1 X 1 convolution, and then
filters the output with a lightweight depth-wise convolution.
Finally, another point-wise convolution is used to reduce

2105

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on October 26,2025 at 12:11:16 UTC from IEEE Xplore. Restrictions apply.



Feature Representation

syodusoyg
syoaudog
syodudog
syoausog

0.5%

Fig. 2.
convolutions and concatenation operations, respectively

the features back to low dimension again. More specifically,
a depth-wise separable convolution is decomposed into one
depth-wise convolution and a point-wise convolution. The
depth-wise convolutions deploy single convolutional filter
into each channel features, while the point-wise convolutions
further linearly combine the each channel features to yield
new feature representation. Thus, given an input tensor 7;
with dimension C; x H; x W; and convolved it with kernel
size K x K, assuming that the resulted feature map is of
size Cj x H; x W;, the corresponding computational cost
M of a depth-wise separable convolution is:

M:(K2><CZXHZXWZ)+(CZ><CJ XHlXWl) (1)
= (K2+CJ) X Cz XHi X Wi,
on the contrary, the cost R of a regular convolution operation

18:
R:KQXCjXCiXHiXWi. (2)

Therefore, the computation cost M of a depth-wise separable
convolution is much smaller than that of a regular convolu-
tion.

The inverted residuals refer to building shortcut connection
between the input layer before expanding operation and
the layer after dimensionality reduction of filtered features,
which are devoted to speed up the procedures of training and
inference. Meanwhile, to prevent useful information from
being damaged, the bottleneck module eliminates the non-
linear activation in the last layers of bottlenecks.

However, both the vanilla CNNs and the lightweight CNNs
realize different levels of feature modeling by stacking con-
volution operations and limited receptive field information
to learn the context information of the region and hence can
not accurately describe the contrast information of different
levels and are arduous to accurately detect salient object of
various scales. To address this issue, we propose a multi-scale

SMa
ordwresdn

Overview of our proposed lightweight multi-scale network. Bottlenecks are built up of as in [3]. DWS and @ denote depth-wise separable

contrast module to reasonably combine both global and local
contextual prior for accurate salient object detection.

B. Multi-Scale Contrast Module

Our proposed LMNet replaces the regular convolutions
with lightweight bottleneck blocks to extract feature maps.
However, as discussed in the aforementioned section, the
network, constitutive of bottleneck blocks, insufficiently in-
corporates the crucial global contrast prior for the loss of the
empirical receptive field. To address this issue, we propose
a multi-scale contrast module to reasonably combine both
global and local contextual prior for accurate salient object
detection.

The spatial pyramid average pooling has been successfully
applied to semantic segmentation [34] and image classi-
fication [35] tasks where spatial statistics provide a good
descriptor for overall image interpretation. We further extend
pyramid average pooling to capturing multi-scale contrast
context for salient object detection. As shown in Fig. 2,
the multi-scale contrast module consists of pyramid average
pooling and a depth-wise separable convolution (i.e., a depth-
wise convolution coupled with a point-wise convolution).

The pyramid average pooling is built up of three different
pyramid sizes, i.e. small, middle and large size. The large-
size pooling highlighted in yellow is the coarsest global
pooling to generate a single bin output. The following other
size pooling partitions the feature map into different sub-
regions and forms pooled representation for each correspond-
ing sub-region with bin sizes of 4 x 4, 16 x 16 respectively.
Furthermore, to lighten the model, we reduce the dimension
of different-size output features to 1/3 of the original input
one after through one depth-wise separable convolution layer.
Compared with that only using one 1 x 1 convolution to
reduce the feature dimension, our strategy using one depth-
wise separable convolution can extract the more expressive
features and further improve the accuracy performance by
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more than 0.5% with the negligible computation cost. Con-
sequently, the outputs are of disparate sizes. Then we directly
upsample the shrunken outputs via bilinear interpolation to
achieve the final pyramid contrast features with the same
resolutions as the one of original feature map. Finally, the
original features and the final pyramid contrast features are
concatenated to generate the final encoder feature maps.

C. Lightweight Refinement Module

The features from the feature representation are zoomed
out with output stride 16. The common decoding technolo-
gies are one-step bilinearly upsampling by a factor of equiv-
alent stride, and multi-step bilinearly upsampling via skip
connections as done in [36]. Nonetheless, the former one-
step bilinearly upsampling technology is too naive to restore
object saliency details, while the latter multi-stage skip-
connection decoder marginally improves the performance at
the cost of overmuch additional computing resources. We
thus propose a plain and effective strategy, i.e. lightweight
refinement module, as shown in Fig. 2.

We first bilinearly upsample the encoder features by a
factor of 4 and then concatenate them with the corresponding
low-level features from the feature representation that have
the same spatial resolution. The channel number of the
encoder features is much larger than that of the low-level
features, which overshadows the importance of the low-level
features and make the network harder to train. Therefore, we
apply a few 3 x 3 depth-wise convolutions and one 1 x 1
convolution on the encoder features to reduce their channels
while retaining crucial contrast features. After the concate-
nation, we apply another 3 x 3 depth-wise convolutions to
refine the features and obtain sharper contrast results, and
one 1 x 1 convolution to further lighten the module. In what
follows, another simple bilinear upsampling by a factor of 4
is used.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

Datasets. We evaluate the performance of our method on five
public visual saliency datasets, including MSRA-B [37], DU-
TOMRON [38], HKU-IS [15], ECSSD [39], and PASCAL-S
[13], all of which are available online and have been widely
used recently. MSRA-B [37] contains 5000 images with
diverse image contents. Most images in this dataset have only
one coarsely annotated salient object. DUTOMRON [38] is
another large challenging dataset containing 5168 images,
most of which have multiple salient objects in relatively
complex and cluttered backgrounds. HKU-IS [15] contains
4447 challenging images, each of which has either low
contrast or multiple salient objects. ECSSD [39] contains
1000 semantically meaningful but structurally complex nat-
ural images acquired from the Internet. PASCAL-S [13] was
built upon the validation set of the PASCAL VOC 2010
segmentation challenge. It contains 850 images with the
ground-truth masks labeled by 12 subjects. In our experi-
ments, the threshold is set as 0.5 to obtain binary masks as
suggested in [13]. Many images in this dataset have multiple

salient objects either with low contrast or overlapping with
the image boundary. To obtain a fair comparison with other
methods, as done in [20], [40], [15], we combine the training
sets of both the MSRA-B dataset [37] and the HKU-IS
dataset [15] as our training set for salient region detection.
The validation sets in the aforementioned two datasets are
also combined as our validation set. Then we directly applied
the trained model to test over all of the datasets.

Evaluation Criteria. We evaluate the performance on both
accuracy and efficiency. The efficiency is measured by
multiply-adds (MADD), actual latency (i.e., running time
on GPU or CPU), and the number of parameters as in
[3]. The accuracy is evaluated using precision-recall (PR)
curves, F-measure and mean absolute error (MAE). Note
that the predicted saliency map is converted to a binary
mask using a threshold. The precision and recall is calculated
by comparing the binary mask against the ground truth.
Averaging precision and recall over saliency maps of a given
dataset yields the PR curve. The F-measure is defined as

(1 + B2) - Precision - Recall
32 - Precision + Recall

Fg = 3)

where 32 is set as 0.3 to highlight the importance of the pre-
cision as suggested in [41], [18]. The maximum F-measure
(maxF) calculated from the PR curve is reported. MAE [9]
pixel-wisely measures the numerical distance between an
estimated saliency map M and the ground truth G,

W H

LSS IMGGE), @)

i=1 j=1

MAFE =

where W and H denote the width and height of the saliency
map, M (i,7) stands for the saliency value of the pixel at
(1,7) and the same for G(3, j).

Implementation Details. Our LMNet is implemented on
the tensorflow [42], a flexible open source architecture with
strong support for deep learning. In this paper, we use the
tailored VGG as feature representation (downsampling the
inputs by a factor of 16) and pre-trained over the ImageNet
dataset [43]. The expansion rates in the bottleneck blocks are
all set to 6 as in [3]. We take the tailored lightweight VGG
followed by one-step bilinearly upsampling operations (i.e.,
stride = 16) as a baseline model (BS). Then, the baseline
model integrating with the multi-scale contrast module and
lightweight refinement module is serviced as our final model
for still image salient object detection when comparing with
other benchmarks and performing the ablation study. During
training and testing, the images are all resized to 512*512
through zero padding before feeding into the network. We
train our framework in an end-to-end manner using RM-
SPropOptimizer with both decay and momentum set to 0.9.
The learning rate is initially set to 0.045 and decayed by
0.9 per epoch. Batch normalization is adopted after each
convolution and before activation. The loss function is an
image-level cross-entropy loss. Experiments are performed
on a desktop with a GeForce GTX TITAN Black GPU and a
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3.60GHz Intel processor. Limiting by the memory, the batch
size is default set to 6 in our experiment.

B. Comparison with the State of the Art

We compare our LMNet against 7 state-of-the-art salient
object detection methods, including MDF [15], MC [17],
RFCN [44], DS [45], DCL [21], DSS [18], and PaTS [14].
For fair comparison, we use either the implementations or
the saliency maps provided by the authors. However, none
is is provided for PaTS [14] except for F-measure values
on MSRA, DUTOMRON, and ECSSD datasets. Therefore,
PaTS was just compared with others on F-measure.

TABLE 1T
COMPARISON OF THE SIZE AND THE COMPUTATIONAL COST BETWEEN
DIFFERENT NETWORKS. GPU(S) AND CPU(S) RESPECTIVELY DENOTE
THE RUNNING TIME (IN SECONDS) ON GPU AND CPU.

Methods ‘ Params MADD GPU(s) CPU(s)
MDF [15] 56.87TM 21.68G 29.141 750.768
MC [17] 116.56M 194.95G 2.949 71.545
RFCN [44] 137.70M 181.65G 4.863 40.259
DS [45] 134.27TM 180.88G 0.191 4.652
DCL [21] 66.25M 44791G 0.490 7.692
DSS [18] 62.24M 250.73G 0.737 7.221
OURS 2.10M 5.60G 0.024 0.362

We focus on devising a more computationally efficient
network for salient object detection through replacing the
regular convolutions with the lightweight module, i.e., depth-
wise separable convolutions and linear bottlenecks with in-
verted residuals. Comparisons of the size, the computational
cost and running time between above-mentioned different
networks are listed in Table II. As can be seen, our model
significantly reduces the number of parameters, which is
only 1/30 of the MDF [15], and takes a considerably less
computational cost of 5.60G multiply-adds. What’s more,
under lower-configured hardware, our model spends the least
running time: 0.024 seconds on GPU and 0.362 seconds on
CPU. Thus, benefiting from the lightweight modules, our
model yields the dramatic efficiency: significantly fewer pa-
rameters, smaller computational complexity, and less running
time. Therefore, our model meets the requirement of robot
system on efficiency.

Furthermore, our model maintains competitive accuracy.
We use PR curves, F-measure and MAE for the quantitative
evaluation on accuracy. As shown in Fig. 3, our model
gets a higher PR curve than all the other algorithms. The
comparison results of F-measure and MAE are illustrated in
Table I. Compared to the second best approach DSS, our
model increases 1.7% and reduces 0.008 on the average of
five datasets for maximum F-measure and MAE respectively.
Comprehensively, by virtue of the refinement effect of multi-
scale features and lightweight decoding, our proposed model
achieves higher maximum F-measure value and lower MAE
on all the five datasets at a cost of least memory resource.

The comparison results of accuracy are visualized in
Fig. 4. It can be observed that our model generates consid-
erable accurate saliency maps in various challenging cases,
e.g., low contrast between saliency and background, multiple

disconnected salient objects, and multi-scale salient objects.
It is also worth mentioning that thanks to the multi-scale
contrast module and lightweight refinement module, our
model produces sharper boundaries besides right salient
region. These advantages make our results very close to
the ground truth and even better than other methods on
many items. Therefore, with high efficiency and accuracy
our model is qualified to be employed on robot system.

C. Ablation Studies

Our LMNet consists of two important components: multi-

scale contrast module and lightweight refinement module. In
this section, we show the effectiveness and necessity of these
two components.
Effectiveness of Multi-Scale Contrast Module. We com-
pare the saliency map M, generated from the baseline model
(BS), and the saliency map M> from the model, indicated as
MSC, that integrates the multi-scale contrast module into the
BS using testing images in the MSRA-B dataset. As shown in
Fig. 5, our proposed multi-scale contrast module is capable of
discovering and understanding subtle visual contrast among
multi-scale feature maps. Besides, instead of the common
dimensionality reduction method using 1 x 1, our multi-scale
contrast module utilizes depth-wise separable convolutions to
reduce channels of each scale feature maps while retaining
the most representative features, and yields about 0.93%
boost to the F-measure. On the other hand, we also compare
the efficiency, i.e., the size, the computational cost and
running time, between the BS and MSC. As listed in Table
III, compared with the baseline, the multi-scale contrast
module increases very small number of extra parameters and
a negligible extra time computation cost while considerably
improving the performance.

TABLE III
COMPARISON OF THE SIZE AND THE COMPUTATIONAL COST BETWEEN
DIFFERENT DESIGN OPTIONS.

Methods [ Params MADD GPU(s) CPU(s)
BS 1.83M 4.14G 0.022 0.333
MSC 2.09M 5.50G 0.023 0.340
OURS 2.10M 5.60G 0.024 0.362

Effectiveness of Lightweight Refinement Module. The
encoder features from our feature representation are com-
puted with output stride =16, thus the BS and MSC both
perform upsampling using in-network bilinear interpolation
by a factor of 16, whereas our final model with lightweight
refinement module adapts two-step upsampling: first bilin-
early upsampling the encoder features by a factor of 4 and
then concatenating them with the corresponding low-level
features from the network backbone that have the same
spatial resolution; and finally, upsampling the concatenated
features by a factor of 4 again. To better show the strength
of our proposed lightweight refinement module, we compare
the aforementioned saliency map My directly upsampling
with output stride =16 and the saliency map M3 gener-
ated from our final model integrated with the lightweight
refinement module using the testing images in the MSRA-
B dataset. The results are also shown in Fig. 5 and Table
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TABLE I
ACCURACY PERFORMANCE COMPARISON BETWEEN DIFFERENT NETWORKS ON FIVE PUBLIC DATASETS. THE BEST THREE RESULTS ON EACH
DATASET ARE SHOWN IN RED, BLUE, AND GREEN , RESPECTIVELY.

MSRA-B DUTOMRON HKU-IS ECSSD PASCAL-S
Methods maxF MAE | maxF MAE | maxF MAE maxF  MAE | maxF MAE
MDF [15] 0.885 0.104 | 0.677 0.095 | 0.860  0.129 | 0.833  0.108 | 0.764  0.145
MC [17] 0.872  0.062 | 0.701  0.089 | 0.781 0.098 0.822  0.107 | 0.721  0.147
RFCN [44] 0.062 | 0.747 0.079 0.097 0.118
DS [45] 0.856 0.061 | 0.765 0.070 | 0.808 0.071 0.810 0.160 | 0.818 0.170
DCL [21] 0.916 0.733  0.084 | 0.892 0.822
DSS [18] 0.927  0.028 0.913 0.039 0915 0.052 | 0.830 0.080
PaTS [14] 0.905 - 0.691 - - - 0.821 - - -
OURS 0.931 0.027 | 0.798 0.067 | 0.927 0.034 0913  0.065 | 0.862 0.074
1 MSRA-B : HKU-IS DUTOMRON
pp— 1
09 e R 09 0.9
08 \ 08 08
L 07 oo - 07
g n v £o6
é 06 gg;“ ; 06 —glsjgs é 0.5 DSS
=05 MDF 05 MDF & MDF
DS ——Ds | 04 DS
04 DCL 04 DCL 03 DCL \
O'ZU 0.2 04 0.6 0.8 1 0'20 0.2 04 0.6 0.8 1 *y 0.2 0.4 0.6 0.8 1

recall recall recall
Fig. 3. Comparison of precision-recall curves of 7 salient object detection methods on three popular datasets. Our LMNet consistently outperforms other
methods across all the testing datasets.

IMAGE MDF MC RFCN DS DSS OURS GT

Fig. 4. Visual comparison of saliency maps generated from state-of-the-art methods, including our LMNet. The ground truth (GT) is shown in the last
column. Our model consistently produces saliency maps closest to the ground truth.

(a) maxF (b) MAE (¢) PR Curve
0.05 0.9
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s
0.85 0.03 g 07 BS
0.02 0.6 MSC
OURS
0.8 0.01 0.5
BS MSC OURS BS MSC OURS 0.4 0.6 0.8 1

recall

Fig. 5.

Performance comparison between different design options

III. They are evident that the lightweight refinement module
improves the accuracy of our model by successfully restoring
object saliency details at the fairly low additional overhead.
Moreover, we adopt a few depth-wise separable convolutions,
rather than 1 x 1 convolutions to reduce channels of feature
maps after concatenations and boost F-measure by about
1.3% in comparison with the latter.

V. CONCLUSION

In this paper, we have presented a novel lightweight
multi-scale framework for visual localization that is directly
applied to mobile robots. Our proposed approach introduces

lightweight bottlenecks to significantly reduce the number
of parameters and accelerate the process of training and
inference. To alleviate the limitation of contrast learning
in contemporary CNN, we develop a multi-scale contrast
module to rapidly and sufficiently capture low-level and
high-level visual contrast. Besides, a lightweight refinement
module is incorporated to restore object saliency details with
negligible extra cost. Extensive experiments demonstrate the
effectiveness of the proposed framework, and has prominent
potentials for robots working in real time.
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