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Abstract—Locating and stratifying the submucosal tu-
mor of the digestive tract from endoscopy ultrasound (EUS)
images are of vital significance to the preliminary diagnosis
of tumors. However, the above problems are challenging,
due to the poor appearance contrast between different lay-
ers of the digestive tract wall (DTW) and the narrowness of
each layer. Few of existing deep-learning based diagnosis
algorithms are devised to tackle this issue. In this article,
we build a multi-task framework for simultaneously locating
and stratifying the submucosal tumor. And considering the
awareness of the DTW is critical to the localization and
stratification of the tumor, we integrate the DTW segmen-
tation task into the proposed multi-task framework. Except
for sharing a common backbone model, the three tasks are
explicitly directed with a hierarchical guidance module, in
which the probability map of DTW itself is used to locally
enhance the feature representation for tumor localization,
and the probability maps of DTW and tumor are jointly
employed to locally enhance the feature representation for
tumor stratification. Moreover, by means of the dynamic
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class activation map, probability maps of DTW and tumor
are reused to enforce the stratification inference process
to pay more attention to DTW and tumor regions, con-
tributing to a reliable and interpretable submucosal tumor
stratification model. Additionally, considering the relation
with respect to other structures is beneficial for stratifying
tumors, we devise a graph reasoning module to replenish
non-local relation knowledge for the stratification branch.
Experiments on a Stomach-Esophagus and an Intestinal
EUS dataset prove that our method achieves very appealing
performance on both tumor localization and stratification,
significantly outperforming state-of-the-art object detection
approaches.

Index Terms—Class activation map, endoscopy
ultrasound, local feature enhancing, multi-task learning,
tumor localization and stratification.

|. INTRODUCTION

NDOSCOPIC ultrasound (EUS) is widely applied for
E the diagnosis and treatment of diseases in the digestive
tract [1], [2], [3]. It captures the imaging data by means of
a miniature high-frequency ultrasound probe attached on the
top of the endoscope. The morphological structures of the in-
tracavitary lesions, stratification and cancer infiltration can be
visualized in real time. Specifically, as shown in Fig. 1(a), we can
observe five layers of the digestive tract wall (DTW) in an EUS
image, including mucosa (M), mucosal muscle (MM), submu-
cosa (SM), proper muscle (PM) and adventitia (A). Submucosal
tumors refer to lesions originating from the layers below the
mucosa of the digestive tract. This article concentrates on the
localization and stratification of submucosal tumors. Automatic
localization of submucosal tumors is very valuable since it can
relieve the burden of radiologists and avoid misdiagnosis caused
by all underlying factors that lead to human error such as tired-
ness. In practical diagnosis, the identification of the layer where
the submucosal tumor originates is an essential step for tumor
categorization, e.g. lipomyoma and mesenchymoma reside in
the SM and PM layer respectively. We define this problem as
tumor stratification which is paramount to in-depth diagnosis
analysis. In experiments, we only consider three layers including
MM, SM and PM since submucosal tumors originating from the
adventitia layer are extremely rare.

With the vigorous development of deep learning techniques
based on convolutional neural networks (CNNs), computer-
aided diagnosis has already become an important role in clinical
scenes, e.g. disease recognition in CT images [4], [5] and lesion
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Fig. 1.

detection in chest X-ray images [6], [7]. However, CNN-based
tumor localization and stratification in EUS images is still under
explored. The work most related to ours is [8], which aims
at analyzing gastric mesenchymal tumors in EUS images, dif-
ferentiating gastrointestinal stromal tumors from benign mes-
enchymal tumors. Locating and stratifying submucosal tumors
are challenging due to the low visual contrast between different
structures in EUS images and the tiny thickness of DTW layers.
A straightforward method to tackle the tasks is to regard the
stratification as a three-way classification problem, and then
mechanically leverage general object detection algorithms, e.g.
Faster R-CNN [9] and YOLO [10]. However, such direct meth-
ods do not explicitly exploit the presence of the DTW which is a
paramount analysis clue for the localization and stratification
of the tumor regions. On the other hand, generalized object
detection methods simply learn the image context features in
a data-driven manner, treating each pixel equally. Due to the
scarcity of data, the simple application of such methods cannot
obtain effective results. At the same time, the lack of inter-
pretability of the solution process also limits the applicability of
the algorithm to the clinic. In practical diagnosis, it is critical for
CNN-based methods to point out the grounds that the inferences
depend on, instead of merely providing the final decisions.
Motivated by the above analysis, as shown in Fig. 2, we
devise a multi-task learning framework with hierarchical guid-
ance for tumor stratification, incorporating DTW segmentation,
tumor localization and stratification tasks. Following clinical
experiences, we believe that the segmentation of DTW is able
to guide the tumor localization, and tumor location together
with the DTW further play significant roles in tumor strat-
ification. Thus, we propose an implicit attention mechanism
based on hierarchical guidance, and an explicit online Class
Activation Mapping (CAM) constraint, for exploring the clues of
upstream tasks, e.g. DTW segmentation and tumor localization,
to guide the implementation of downstream tasks, e.g. tumor
stratification. Besides, a graph reasoning based Global Feature
Perception (GFP) module is introduced to capture global context
information for better tumor stratification.
The key contributions of this work are as follows:
¢ To our best knowledge, we are the first to tackle the joint
localization and stratification task of submucosal tumors
in endoscopy ultrasound images, which is an essential
preliminary step for further tumor diagnosis.

(b)

(a) Hierarchical structure of the digestive tract wall (DTW). (b) Some examples of our endoscopic ultrasound (EUS) image dataset.
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Fig. 2. Brief framework of our proposed multi-task learning for diges-
tive tract wall segmentation, tumor localization and stratification. MM,
SM and PM denote mucosal muscle, submucosa and proper muscle,
respectively.

® We design a novel multi-task pipeline, incorporating DTW
segmentation, tumor localization and stratification tasks.
Upstream tasks are leveraged to guide the inference pro-
cess of downstream tasks via implicit hierarchical guid-
ance and explicit constraint on dynamic CAM. This helps
to increase the interpretability of our approach, and also
makes it coincide with the clinical experience. Moreover,
a graph reasoning module is devised to capture global
information for the tumor stratification task.

® Owing to the multi-task learning design and comprehen-
sive feature exploration, our method achieves superior per-
formance in locating and stratifying submucosal tumors
on two EUS image datasets, compared to state-of-the-art
object detection approaches.

[I. RELATED WORK

A. EUS Image Analysis

EUS plays an essential role in the diagnosis and treatment
of submucosal tumors. Recently, some CNN-based computer-
aided diagnosis (CNN-CAD) technologies have been applied
to the EUS image analysis and made great progress [8], [11],
[12], [13]. Specifically, these works mainly concentrate on the
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identification of gastrointestinal stromal tumors (GISTs), which
are the most common submucosal tumors of the gastrointesti-
nal tract. For instance, [8] develops a CNN-CAD system to
differentiate GISTs from benign mesenchymal tumors such as
leiomyomas and schwannomas. [11] aims to recognize GISTs
of the higher-risk group from those of the lower-risk group on
EUS images based on hand-craft feature extraction and a random
forest classification model.

Different from the above mentioned methods which focus on
the recognition of specific tumors, we define the general stratifi-
cation task for submucosal tumors, and devote to provide more
significant and comprehensive guidance for clinical diagnosis.

B. Lesion Detection

Since lesion detection relies heavily on object detection tech-
nologies in the computer vision community, we first make a brief
review of object detection. As a traditional computer vision task,
object detection aims to locate the object and predict its category
simultaneously. Early deep learning based methods [9], [10],
[14], [15], [16] widely adopt the anchor mechanism. Among
them, two-stage approaches [9], [14], [15] introduce a region
proposal network (RPN) to first generate the proposals, and
then classify each proposal based on the aligned features. In
contrast, one-stage methods [10], [16] jointly predict the object
category and anchor box offsets, improving the inference speed.
Recently, anchor-free methods abandon the anchor mechanism
and predict key points to locate objects, such as corners [17], cen-
ter points [18], [19] and hybrid extreme and center points [20].
Exploring the positive or negative sample selection strategy [21],
[22] is an effective manner to boost the performance of object
detection models.

With the prevalence of object detection approaches, plenty of
works [23], [24], [25], [26] apply them to the field of ultrasound
image analysis and lesion detection. However, as mentioned
above, locating and stratifying the submucosal tumors rely heav-
ily on global DTW guidance and contextual contrast reasoning.
The general object detection methods may be incapable of
tackling our proposed tasks since these approaches hardly learn
significant clues for tumor localization and stratification due to
the scarcity of data and the limitation of local region of interest
(ROI) features.

C. Multi-Task Learning

Multi-task learning aims to simultaneously solve multiple
related tasks, utilizing the mutual information among them to
promote performance for each task [27]. It has been widely
applied in medical image analysis. For instance, [28] proposes a
multi-task UNet for gastrointestinal stromal tumor segmentation
in EUS Images. [29] presents a multi-task attention based net-
work for semi-supervised medical image segmentation, which
incorporates supervised segmentation and unsupervised recon-
struction tasks. [30] establishes a multi-task learning framework
for segmentation and classification of tumors in 3D automated
breast ultrasound images, consisting of an encoder-decoder net-
work for segmentation and a lightweight multi-scale network
for classification. A corpus of works [31], [32], [33] perform

thoracic disease identification and localization on chest X-ray
images, under limited supervision, namely only image-level
annotations and a small amount of box-level annotations are
available. Recently, the fast-spreading COVID-19 draws world-
wide concerns. [34] devises a deep learning model to jointly
identify the COVID-19 patient and segment the corresponding
lesion region from CT images.

Compared to the above mentioned multi-task learning based
methods, our approach employs the DTW segmentation, tumor
localization and stratification sequentially, and integrates hier-
archical guidance among tasks, including implicit attention and
explicit constraints, to make full use of the inherited knowledge
and also improve the interpretability of the model.

D. Attention Mechanism

Attention mechanism has proven its effectiveness in many
computer vision and natural language processing tasks. Accord-
ing to the way obtaining the attention values, as in [33], we
can roughly divide attention into activation-based attention and
gradient-based attention.

In activation-based attention, the Sigmoid or Softmax activa-
tion function is usually employed to estimate attention values
for re-weighting spatial positions or channel dimensions. [35]
squeezes the feature map to a single vector and then obtains the
channel-wise attention values through a fully connected layer
followed by a Sigmoid operation. Non-local module [36] can
be regarded as a special self-attention [37], which calculates the
correlation between each pixel and all other pixels, and thus
generates an attention map to enhance features with long-range
dependency. The CBAM module proposed in [38] combines
spatial and channel attention, capable of bringing benefit to
various tasks. DANet [39] utilizes both position attention and
channel attention to capture rich contextual information for
scene segmentation. The other type is gradient-based attention,
including CAM [40] and Grad-CAM [41], [42]. This line of at-
tention technique can identify regions with significant responses
to the inference result, thus they are widely used to explore
the interpretability of deep models and implement weakly su-
pervised object localization. Recently, some works [33], [43],
[44], [45] further extend the CAM inference process as online
trainable modules, which cooperates with the main classification
task for improving classification performance and increasing
interpretability simultaneously.

In this work, we combine activation-based attention and
gradient-based attention. Different from previous works, our
activation-based attention maps are obtained from the results
of DTW segmentation and tumor localization tasks, and are
employed to locally enhance the feature representations for
the downstream task namely tumor stratification, and guide the
dynamic CAM of tumor stratification.

[ll. METHODOLOGY
A. Problem Definition

This article targets at tackling the localization and stratifica-
tion of tumors in EUS images. The goal is to locate the region of
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Overview of our multi-task framework with hierarchical guidance. Feature pyramid network (FPN) is introduced to extract multi-scale

features. The segmentation of digestive tract wall (DTW) is delivered to guide the tumor localization. And then tumor location together with the
DTW segmentation further play significant roles in tumor stratification by implicit attention guidance and explicit class activation mapping (CAM)
constraints. Moreover, the global feature perception (GFP) module is devised to capture global information to further facilitate the tumor stratification

task.

the tumor inside the input image X, and identify its stratification
level namely predicting the probability vector s € [0, 1]V, Here,
N = 3 denotes the number of stratification levels of tumors in
EUS images.

B. Overview

The overview of our method is shown in Fig. 3. We propose a
multi-task framework with hierarchical guidance for EUS image
analysis, including DTW segmentation, tumor localization and
stratification. Our network includes a shared encoder to obtain
the feature representation of the input image. Due to the various
shapes and sizes of DTW and tumors, the feature pyramid
network (FPN) [46], built upon the backbone of the 34-layer
residual networks (ResNet34) [47], is adopted to extract features
for accurate DTW segmentation and tumor localization.

Given an image X € RIXWx3 "in which H, W, 3 are the
height, width and channels of the image respectively, the i-th
convolution block generates a feature map F; € RHxWixCi
where H = £ W/ = I and C; denotes the number of chan—
nels. {F; }?_, are fed into the FPN structure, resulting to the final
feature map F for segmenting DTW and locating the tumor.
First, 1 x 1 convolutions are utilized to unify the dimensions
of {F;}?_, to 64. We denote the features after dimensionality
reduction as {F;}?_,,inwhich F; = Conv2D(F;). Conv2D()
denotes the 2D convolution operation. Then, we obtain the
pyramid features F'; by the following formulas:

i=23

i=4 M

K

- {E o
F; + up2(Fiy1),

where up, denotes up-sampling the feature map by a factor
of 2. Finally, the pyramid features F2, F3, F4 and Fj are
post-processed by one convolution layer respectively. After

up-sampled to the shape of = x -, the resulted feature maps

are concatenated into the ﬁnal feature map F.

Referring to the clinical experience, the three tasks are imple-
mented step by step. The DTW segmentation result is directly
inferred from F. Then, after enhanced by the probability map of
DTW, F is exerted to predict the localization of the submucosal
tumor. Finally, when predicting the stratification level, a compre-
hensive feature representation is acquired via merging a variant
of F enhanced by the hierarchical guidance module, another
variant of F5 enhanced by the graph reasoning module [48],
and the original F's.

In order to further enhance the dependency to DTW and tumor
regions in the inference process of tumor stratification, we con-
strain the dynamic CAM with the DTW segmentation map and
tumor localization map, increasing the model interpretability. In
the subsequent sections, we will introduce each component of
our proposed framework in detail.

C. Enhancing Features With Hierarchical Guidance

The three tasks, DTW segmentation, tumor localization, and
tumor stratification, are implemented in a successive manner.
We devise a hierarchical guidance module for the purpose of
exploring the clues of upstream tasks to guide the inferring
processes of downstream tasks.

a) DTW Segmentation: Prior knowledge of DTW is
critical to the localization and stratification of tumors. Thus, we
employ a lightweight segmentation head, which is composed
of three convolution operations to infer the segmentation map
I\/[l)jﬂyaz from j?.

b) Tumor Localization: Locating tumors in ultrasound
images is challenging because the visual contrast between differ-
ent organizations is very low and tumors usually have diversified
sizes and shapes. DTW can provide significant clues to the
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Fig. 4. Architectures of Local Feature Enhancement modules. Left: the
module used to enhance features for tumor localization under the guid-
ance of digestive tract wall (DTW) segmentation maps; right: the module
employed to the feature for tumor stratification under the guidance of
both DTW and tumor segmentation maps.

localization of tumors, e.g. tumors usually lie inside DTW and
the contrast between abnormal and normal regions in DTW ben-
efit the identification of tumors. Hence, we regard the inferred
segmentation map of DTW as an attention map, and use it to
enhance the feature representation for tumor localization. In
practice, we design a local feature enhancement module (see
LFE-LOC in Fig. 4) to transform F into F,

F' =F o Mprw + F. (2)

‘®’ denotes the element-wise multiplication with broadcasting
mechanism. F' is fed into the tumor localization head which
is also constituted by three convolution layers and derives a
location map Myymor € RT*T %1,

c) Multi-level Guidance for Tumor stratification:
Based on the clinical experience, the task of tumor stratification
requires to first locate the tumor region, and then observe the
infiltration level in the DTW. Therefore, regions of the tumor
and DTW are the key factors for tumor stratification. In order
to incorporate the above two kinds of knowledge, we design
two strategies: implicit attention guidance and explicit CAM
constraints. In this section, we discuss the former in detail.
Specifically, similar to the LFE-LOC module, we also design a
local feature enhancement module for stratification (LFE-STR)
to obtain the features F§ € R * % *2% through enhancing ¥
with Mprw and Mrymor,

= ];1 © 1\/IDTW + F © MTumor + F (3)

F; denotes the locally enhanced representation for tumor
stratification. In addition, we also extract a global feature repre-
sentation to strengthen the global understanding as introduced
in the next subsection.

D. Stratifying Tumor With Global Feature Perception

To further capture the global structure dependencies for fa-
cilitating the tumor stratification, we design the global feature
perception (GFP) module, which takes the F'5 € R 32 * 35 *512 gg
input and d generates a globally enhanced feature representation,

€ R35*32 %256 As shown in Fig. 5, the core operation of the

Fig. 5. Architecture of the Global Feature Perception module. The top
one 1 x 1 convolution (0) is used to produce the bi-projection between
the coordinate and latent interaction spaces. The left (¢) and right
1 x 1 convolutions in the dashed box are utilized to reduce and expand
dimensions. Two 1D convolutions are to perform graph reasoning.

proposed GFP is based on graph reasoning, consisting of three
steps.
1) Given the F%, which has the same dimensions with
the original F5 after the first convolution process, one
1 x 1 convolution is adopted to create a new embedding
of Fy to save the computation resources, resulting to
G c R# X K and the other 1 x 1 convolution is used
to generate a tensor P € R 3232 *Q for node projection.
@ denotes the number of feature nodes. The spatial di-
mensions of G and P are flattened, forming G e RLxK
and P € RL¥Q respectively (L = 55 X —) The gener-
ated representation of nodes in the 1nteract10n space is
V =P7G.
2) Graph convolution [49], [50] is employed to explore the
relationship among feature nodes. Specifically, we build
a graph method based on a learnable adjacency matrix
A . Then, the graph convolution can be formulated as:

Z=(1-A,)V)W,. 4)

where I is the identity matrix, A 4 indicates the adjacency
matrix, and W denotes the state update function. As
in [48], we implement this formula via two cascaded
1D convolutions along channel-wise and node-wise di-
rections respectively:

Z = ConvlD((Conv1D(V) + V)T, 3

3) Z are projected back into the original space, resulting
to G’ = PZ. Then G’ is reshaped to G’ € R% SEXK
which is subsequently transformed into R € R 3% * 3% ¥512
via a 1 x 1 2D convolution. The output of GFP Fj €

IR 52 * 32 *256 g formed by applying another convolution

to the addition of Ff; and R.
The final feature used for stratification prediction is formed
through fusing F';, ' and original F'5. First, we downsample the
size of F} into (ﬂ X —) via max-pooling. Then, the downsam-

pled variant of Fj is concatenated with F§ and F'5 to construct

the context-preserved fine-grained feature F* € R332 531024

which is aggregated into a 1024-dimensional vector via the
global average pooling. Finally, one fully-connected layer at-
tached with a softmax function is used to infer the stratification
result s.
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Fig. 6. Pseudo labels created by three steps.

E. Joint Training

We jointly train DTW segmentation, tumor localization and
stratification to optimize our multi-task network. The specific
loss item of each task is introduced in this section.

1) DTW Segmentation: Considering that annotating pixel-
wise labels of the DTW region is very labor-intensive and
cumbersome, we devise an interactive labeling algorithm to
create pseudo labels for the DTW.

a) We normalize every ultrasound image into [0,1], and then
predefine a threshold (0.6 in our experiment) to roughly
segment the DTW.

b) Aboard-certificated ultrasound expert is required to select
out samples whose segmentation results in the last step
have acceptable quality. We train a U-Net segmentation
model [51] with these selected images to re-annotate the
remaining images. Practically, the trained U-Net is used
to infer the DTW segmentation map of each remaining
image, which is subsequently converted to a pseudo DTW
label via cutting it with a threshold of 0.5. Only the largest
connected component is preserved as the final annotation
for every image.

Anexample of the annotation process is shown in Fig. 6. Every
step in the interactive labeling algorithm benefits improving the
region of DTW. The generated DTW masks are used to guide
the learning of DTW segmentation in our proposed method. The
loss function is formed by combining the binary cross entropy
loss and the Dice loss:

L* = Bee(Mprw, Gprw) + DiceMprw, Gprw), (6)

H W
1
Bee(Mprw, Gprw) = =75 > (gijlog(ma ;)

i=1 j=1
+ (1 = gi3)log(1 —mi ;)), (7)
23 S mijgi g+ o

- Z{{ Z;/V(mi,j +9i5) + a
®)

M pryw is bilinearly upsampled to the size of the original image,
and Gprw is the pseudo label generated by the interactive
labeling algorithm. m; ;, g; ; denote the (3, j) pixel in M prw
and G prw, respectively. a(=1) refers to a smoothing factor for
the Dice loss.

2) Tumor Localization: Only bounding box annotations are
provided for the tumor localization task. For constraining the
probability map of the tumor, we convert the bounding box into
a mask, where pixels inside the bounding box are set to 1, and
other pixels are set to 0. Again, the combination of the binary

DiC@(MDTw, GDTW) =1

cross entropy loss and the Dice loss is used as the loss function
for the tumor localization task:

ﬁl = BC@(MTumora GTum,or) + Dice(MTumorv GTumor)-
©
Mrumor 1s upsampled to the size of the original image, and
Gumor 18 the mask converted from the bounding box annota-
tion.
3) Tumor Stratification: We adopt the cross entropy loss to
constrain the stratification prediction result s:

N
L= — Z Yn log(sy) (10)
n=1
where s,, indicates the predicted probability of the tumor belong-
ing to the n-th stratification level, and y,, is the corresponding
ground truth label. IV is the total number of levels.

Inspired from [43], we regularize the CAM of the tumor
stratification with the probability maps of DTW and tumor, to
further enhance the dependency to DTW and tumor regions in
the inference process of tumor stratification. An extra branch
consisting of one 1 x 1 convolution layer which shares the same
parameters with the classification head for tumor stratification is
introduced to dynamically estimate the CAM during the training
stage. It generates one CAM for each stratification level. Since
the identification of all levels depends on the same tumor and
DTW regions, we average all CAMs to a 3% X 3% x 1 tensor
Mo - Then, the following loss function is utilized to regularize
Mcam,,

5 Y

L% = Bee (Mcanm MDTW + MTum,or) )

The ground truth for CAM is obtained via averaging the pre-
dictions of DTW segmentation and tumor localization. M4,
is upsampled to the same size with the ground truth. The adop-
tion of (11) enforces the stratification branch to focus on the
DTW/tumor regions in the inference procedure, similar to the
behaviour of clinicians. This helps to improve the interpretability
of our method.

Overall Loss Function: The overall loss function for our
multi-task framework is formed by summing up (6), (9), (10)

and (11):

L =L+ 2L+ 1L + AL, (12)

where A1, Ao, and A3 are weights for balancing loss items L£?,
L', and L£° respectively. We set A; = 10, Ao = 10 and A3 = 10
in our experiments.

IV. EXPERIMENTS
A. Datasets and Settings

1) Datasets: We evaluate our method on two EUS image
datasets, which are collected from the sixth affiliated hospital of
Sun Yat-sen University with approval from the local research
ethics committee. The first is the Stomach-Esophagus EUS
dataset which contains 737 images (618 patients) in total. The
second is the Intestinal EUS dataset, containing 280 images
(212 patients) in total. The tumors are categorized into 3 classes
according to the invasion level, including mucosal muscle (MM),
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datasets.

Data distribution of the two endoscopic ultrasound (EUS) image

submucosa (SM) and proper muscle (PM). The number of each
class in the two datasets is shown in Fig. 7. Each tumor is
carefully annotated by experts for every image, in the format
of the bounding box.

To fully evaluate the performance of our method, we adopt two
experimental settings on both datasets, i.e., vanilla-validation
and cross-validation. Specifically, for vanilla-validation, the
Stomach-Esophagus EUS dataset is separated into a training
set of 588 images (500 patients) and a testing set of 149 images
(118 patients), and the Intestinal EUS dataset is split into 220
images (170 patients) for training and 60 images (42 patients) for
testing. Note that in the two datasets, the patients have no overlap
between the training set and test set. Besides, since the limited
number of datasets, we also conduct 5-fold cross-validation
on both datasets respectively to further evaluate our method.
And the patients have no overlap among different folds of both
datasets.

2) Experimental Details: Our model is implemented based
on the PyTorch [52] framework. The K and () in the graph
reasoning process are set to 256 and 128 respectively. In the
training phase, we use data augmentation methods such as
random horizontal flipping and random rotation to enlarge the
training set. All input images have a fixed size of 480 x 480. We
set the batch size to 8, and use SGD optimizer with a momentum
of 0.9 and a weight decay of 10~*. The total number of epochs is
set to 80. The learning rate is initially set to 0.001, and decayed
at the 30th and 60th epochs by 0.05.

3) Evaluation Metrics: Following previous works [31], [32],
[33], we adopt “the area under the ROC curve (AUC score)” and
“Accuracy” to measure the tumor stratification and localization
results. An inferred bounding box is identified as a correct pre-
diction if the intersection over union (IoU) ratio between it and
the ground-truth bounding box is larger than a specific threshold.
And our method obtains the inferred bounding box based on
the predicted tumor location map. For the DTW segmentation
task, 30 testing samples are selected and annotated by experts to
quantitatively evaluate the segmentation results with recall and
precision metrics.

B. Ablation Study

We conduct extensive experiments on the Stomach-
Esophagus EUS dataset under the vanilla-validation setting to
verify the hierarchical guidance of three tasks and the effective-
ness of each component.

1) Tumor Localization: The DTW segmentation provides
fundamental prior knowledge for the tumor localization task. To
verify our hypothesis, we compare the localization performance

TABLE |
ABLATION STUDY OF TUMOR LOCALIZATION PERFORMANCE (ACCURACY %).
‘W/0 LFE-LOC’ MEANS THE LOCAL FEATURE ENHANCEMENT GUIDED BY
DTW Is NOT USED

Threshold Method MM SM PM ALL
01 Ours(w/o LFE-Loc) 68.18 76.32 7528  74.50

’ Ours 7727 7895 7753 77.85

03 Ours(w/o LFE-Loc) 63.64 63.16 68.54 66.44

) Ours 68.18 71.05 70.79 70.47

05 Ours(w/o LFE-Loc) 54.55 52.63 5843 56.38

’ Ours 63.64 63.16 60.67 61.74

The best results are marked in bold.
TABLE Il

ABLATION STUDY OF TUMOR STRATIFICATION PERFORMANCE (AUC
SCORES %). v' INDICATES THE GFP MODULE OR CAM CONSTRAINT L% IS
ADOPTED. ‘LFE’ DENOTES THE GUIDANCE STRATEGY USED IN THE LOCAL

FEATURE ENHANCEMENT

No. GFP LFE L® MM SM PM Mean
1 9349 89.57 90.99 91.35
2 v 9427 9419 9283 93.76
3 DTW 9424 9376  91.65 93.22
4 Tumor 9452  93.69 9243  93.55
5 DTW+Tumor 95.17 9343 9328 93.96
6 v DTW+Tumor 9545 95.19 9290 94.51
7 v DTW+Tumor v 96.06 9533 9330 94.90

The best results are marked in bold.

with and without the prior knowledge of DTW. In Table I,
the experimental results show that under the guidance of the
DTW segmentation, our localization accuracy has substantial
improvement under different IoU thresholds, boosting the over-
all accuracy by 3.35%, 4.03%, 5.36% respectively.

2) Tumor Stratification: As shown in Table II, an elaborate
ablation study is conducted on the tumor stratification task as
well. No. 1 denotes the baseline model in which F'5 is directly
used to predict the stratification result. No. 2-6 incrementally
include our designed components into the baseline model. In
No. 2, the GFP module for capturing global relation information
is incorporated into the baseline model, and the concatenation
of F'5 and global features F'y is utilized for tumor stratification.
Comparing No. 2 to No. 1, the GFP module brings gains of
2.41% on the mean AUC metric. No. 3-5 introduce local fea-
ture enhancing strategies under different guidance maps into
the baseline model. We can see that the awareness of either
DTW or tumor region is beneficial for stratifying the tumor
as they can provide valuable prior knowledge. The usage of
both DTW and tumor generates better performance than using
DTW or tumor only, which indicates that the knowledge of
them is complementary to each other. Besides, the utilization
of the tumor guidance is marginally better than that of the DTW
guidance, since the stratification level is directly dependent on
the location of the tumor. No. 6 indicates the variant of our
method in which both GFP and LFE guided by both DTW
and tumor are employed to improve the baseline model. No.
7 denotes the final version of our method. As we can observe
from No. 6 and No. 7, the adoption of the CAM can benefit
the stratification task quantitatively apart from increasing the
interpretability.

To further explore the effect of each component and the
stability of the whole framework, we record the stratification
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Fig. 8. Stratification loss in the training stage of different variants of
our method.

TABLE IlI
ABLATION STUDY OF DTW SEGMENTATION PERFORMANCE
Threshold  Recall(%)  Precision(%)
0.1 65.94 40.27
0.2 60.24 42.12
0.3 56.31 43.19

loss in the training stage of three variants of our model and
draw their loss curves, as shown in Fig. 8. Specifically, in the
early stage of the training process, the baseline model exhibits
a steeper descent pattern. We believe it’s because the baseline
model without well-designed feature guidance and constraints is
easier to overfit the easy samples in the training set. However, as
the training process going, thanks to the CAM constraints and
other modules (i.e. GFP and LFE-STR), our method captures
the essential stratification evidence and thus further decreases
the stratification loss.

3) Digestive Tract Wall Segmentation: In Sections IV-B1 and
IV-B2, we have validated the efficacy of the DTW segmentation
to tumor localization and stratification. The quantitative per-
formance of our method in segmenting DTW is presented in
Table III. Although annotation data is not used, our method still
achieves considerable precision and recall values under different
thresholds.

C. Comparisons With Other State-of-the-Art Methods

To further demonstrate the superior performance of our
method on the tumor localization and stratification tasks, we
compare our approach with the state-of-the-art object detection
methods, including FCOS [18], CornetNet [17], YOLOvV3 [10],
PAA [22], ATSS [21] and Faster-RCNN [9] on both datasets un-
der two experimental settings. The object detection approaches
may output multiple bounding boxes with different class pre-
dictions. The bounding box with the highest confidence score is
regarded as the final result.

1) Tumor Localization: The detailed localization results of
vanilla-validation are shown in Tables IV and V, and we also
report the total accuracy under cross-validation setting in the
format of (Mean = Standard Deviation) in Tables VI and VII.
With the guidance of DTW, our method achieves outstanding
localization performance under different IoU thresholds on two

TABLE IV
TUMOR LOCALIZATION ACCURACY(%) ON STOMACH-ESOPHAGUS EUS
DATASET (VANILLA-VALIDATION)

Threshold Method MM SM PM ALL
FCOS [18] 7273 7632 73.03 73.83
CornerNet [17] 72773 7895 7528 75.84
YOLOV3 [10] 68.18 7332 73.03 73.15
0.1 PAA [22] 72773 73.68 7528  74.50
ATSS [21] 68.18 7632 7528 74.50
Faster-RCNN [9] 7273  73.68 74.16 73.83
Ours 7727 7895 77.53 77.85
FCOS [18] 63.64 63.16 69.66 67.11
CornerNet [17] 59.09 6579 65.17 64.43
YOLOV3 [10] 63.18 63.16 68.54 67.11
0.3 PAA [22] 59.09 65.79 7191 68.46
ATSS [21] 63.64 63.16 68.54 66.44
Faster-RCNN [9] 63.64 65.79 70.79 68.46
Ours 68.18 71.05 70.79 7047
FCOS [18] 4091 52.63 60.67 55.70
CornerNet [17] 4545 52.63 5506 53.02
YOLOV3 [10] 59.09 4737 64.04 59.06
0.5 PAA [22] 5455 5526 6292 59.73
ATSS [21] 50.00 4737 60.67 55.70
Faster-RCNN [9] 54.55 57.89 65.17 61.74
Ours 63.64 63.16 60.67 61.74
The best results are marked in bold.
TABLE V

TUMOR LOCALIZATION ACCURACY(%) ON INTESTINAL EUS DATASET
(VANILLA-VALIDATION)

Threshold Method MM SM PM ALL
FCOS [18] 81.82  80.95 85.71 81.67
CornerNet [17] 54.55  76.19 42.86 68.33
YOLOvV3 [10] 54.55 83.33 71.43 76.67
0.1 PAA [22] 72773 78.57 85.71 78.33
ATSS [21] 63.64  78.57 85.71 76.67
Faster-RCNN [9] 9091 85.71 57.14 83.33
Ours 72773 92.86  100.00  90.00
FCOS [18] 7273 69.05 71.43 70.00
CornerNet [17] 54.55  69.05 42.86 63.33
YOLOv3 [10] 54.55  78.57 71.43 73.33
0.3 PAA [22] 63.64 71.43 57.14 68.33
ATSS [21] 4545  64.29 71.43 61.67
Faster-RCNN [9] 81.82  80.95 42.86 76.67
Ours 7273  88.10 85.71 85.00
FCOS [18] 7273  59.52 42.86 60.00
CornerNet [17] 36.36  57.14 28.57 50.00
YOLOvV3 [10] 54.55  61.90 42.86 58.33
0.5 PAA [22] 4545  54.76 14.29 48.33
ATSS [21] 36.36  45.24 42.86 43.33
Faster-RCNN [9] 63.64 61.90 42.86 60.00
Ours 54.55  66.67 71.43 65.00
The best results are marked in bold.
TABLE VI

TUMOR LOCALIZATION ACCURACY(%) ON STOMACH-ESOPHAGUS EUS
DATASET (CROSS-VALIDATION)

Threshold

Method 0.1 0.3 0.5
FCOS [18] 74.7740.92  67.71+£2.27  56.85+£1.96
CornerNet [17] 76.9443.28 64.86+3.16 54.28+3.48
YOLOV3 [10] 74.09+1.75  67.7142.68  58.894+3.46
PAA [22] 74.76+0.76  67.84+2.24  57.79+2.49
ATSS [21] 75.17+£1.36  66.08+1.30 56.99+1.70
Faster-RCNN [9] 75.854+1.72 69.344+2.04  59.01+2.96
Ours 78.70+2.58 69.88+1.77 58.74+2.74

The best results are marked in bold.
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TABLE VII
TUMOR LOCALIZATION ACCURACY(%) ON INTESTINAL EUS DATASET
(CROSS-VALIDATION)

Threshold

Method 0.1 0.3 0.5
FCOS [18] 83.97+£4.53  78.73£550  61.45+5.80
CornerNet [17] 80.57+6.84  72.67£7.26  58.73£5.00
YOLOV3 [10] 81.88+5.92  77.21+7.44  68.03£7.98
PAA [22] 81.85+£3.01  74.39+6.33  56.94+6.14
ATSS [21] 78.97+3.33  68.33+£3.80 49.03+4.67
Faster-RCNN [9] 83.21+4.05 77524293  65.45+3.25
Ours 86.36+4.07 81.36+4.58  70.82+4.98

The best results are marked in bold.

TABLE VIII
TUMOR STRATIFICATION ACCURACY(%) ON STOMACH-ESOPHAGUS EUS
DATASET (VANILLA-VALIDATION)

Method MM SM PM ALL
FCOS [18] 59.09 71.05 79.78  74.50
CornerNet [17] 68.18 78.95 89.89 83.89
YOLOV3 [10] 7727 7632 7753 77.18
PAA [22] 50.00 71.05 82.02 74.50
ATSS [21] 5455 6842 8090 73.83
Faster-RCNN [9] 59.09 65.79 83.15 75.17
Ours 86.36 86.84 91.01 89.26

The best results are marked in bold.

TABLE IX
TUMOR STRATIFICATION ACCURACY(%) ON INTESTINAL EUS DATASET
(VANILLA-VALIDATION)

Method MM SM PM ALL
FCOS [18] 4545 9048  57.14  778.33
CornerNet [17] 5455 9286 4286  80.00
YOLOV3 [10] 72.73 9524  57.14  86.67
PAA [22] 3636  97.62 2857 7833
ATSS [21] 3636  88.10 2857 71.67
Faster-RCNN [9] 3636  95.24 4286 78.33
Ours 54.55  100.00 85.71  90.00

The best results are marked in bold.

TABLE X
TUMOR STRATIFICATION AUC(%) ON STOMACH-ESOPHAGUS EUS DATASET
(VANILLA-VALIDATION)

Method MM SM PM Mean
FCOS [18] 72776 85.16 82.66 80.19
CornerNet [17] 76.25 8690 89.60 84.25
YOLOV3 [10] 89.51 85.87 82.04 85.81
PAA [22] 7398 63.16 5487 64.00
ATSS [21] 63.10 77.03 8893 76.35
Faster-RCNN [9] 82.50 88.93 83.46 84.96
Ours 96.06 9533 9330 94.90

The best results are marked in bold.

datasets. Compared with state-of-the-art object detection meth-
ods, our method shows competitive or superior performance.
For example, under the IoU threshold value of 0.1 and 0.3,
our method generates the best total accuracy of 78.70£2.58%
and 69.88+1.77% on the Stomach-Esophagus EUS dataset.
On the Intestinal EUS dataset, our method also achieves sig-
nificantly better total accuracy than other methods under the
cross-validation setting.

2) Tumor Stratification: Tables VIII, IX, X, and XI present
the tumor stratification accuracy and AUC results on two
datasets, respectively. And we also conduct 5-fold cross-
validation and exhibit the total accuracy and mean AUC in

TABLE XI
TUMOR STRATIFICATION AUC(%) ON INTESTINAL EUS DATASET
(VANILLA-VALIDATION)

Method MM SM PM Mean
FCOS [18] 7254 772.09  60.65 68.43
CornerNet [17] 7254 80.82 7453  75.96
YOLOV3 [10] 79.59 8333 90.57 84.50
PAA [22] 63.82 53.04 62.80 59.89
ATSS [21] 6642 6548 5849 63.46
Faster-RCNN [9]  88.68 82.54 5795 76.39
Ours 85.16 88.62 99.73 91.17

The best results are marked in bold.

TABLE XII
TUMOR STRATIFICATION PERFORMANCE(%) ON BOTH EUS DATASET
(CROSS-VALIDATION)

Method Stomach-Esophagus Intestinal
Accuracy AUC Accuracy AUC

FCOS [18] 76.12+1.83  82.54+1.87 78.57+£1.78  75.58+4.64
CornerNet [17] 81.27+3.72  83.26+£329 83.27£2.67 84.13+4.32
YOLOV3 [10] 77.88+0.97 84.84+1.12  83.884+2.53  87.69+3.10
PAA [22] 7721£2.45 63.48+1.28  80.03+2.28  63.954+2.90
ATSS [21] 76.13£2.77  79.254+2.42  75.7942.18  72.1714.66
Faster-RCNN [9]  76.53£1.33  84.11£1.12  81.124+4.37  80.924+3.78
Ours 86.56+2.25 94.25+1.42 86.00+3.88  90.71+3.52

The best results are marked in bold.

CAM(w/o constraints)

Image/GT Tumor CAM

Fig.9. Visualization results of our proposed multi-task network, includ-
ing tumor localization, digestive tract wall (DTW) segmentation and class
activation mapping (CAM) images, are shown in the second to fourth
columns, respectively. The input image and corresponding ground truth
(GT) annotation are shown in the first column. The last column is the
CAM result obtained without explicit constraints, which is messy and
lacks interpretability.

Table XII. We can conclude that our method outperforms other
object detection approaches by large margins. The experimental
results demonstrate that the general object detection methods
are not suitable for the tumor stratification task which relies
heavily on the surrounding DTW knowledge and global relation
information.

D. Visualization

A gallery of examples are provided in Figs. 9 and 10 to
visualize the DTW segmentation and tumor localization results,
together with CAMs of the tumor stratification task. As shown
by the three examples in Fig. 9, our method can accurately
identify the tumor and DTW regions. As shown by CAMs in
Figs. 9 and 10, thanks to the implicit hierarchical guidance
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Fig. 10.  Visualization of our class activation mapping (CAM) images.

module and the explicit CAM constraint, our model focuses
on the tumor and the DTW regions when implementing the
stratification prediction. This is consistent with the practical
clinical experience of ultrasound experts. As shown in Fig. 9,
the variant of our method without using constraint L* in (11)
generates CAMs lacking interpretability, while the CAMs of our
method are apparently more explainable.

V. CONCLUSION

In this work, we aim at tackling the joint tumor localization
and stratification problem in EUS images, which is of great
significance for the preliminary diagnosis of submucosal tu-
mors. Motivated by the experience of clinicians, we construct a
multi-task framework which successively implements the DTW
segmentation, tumor localization and tumor stratification tasks.

Quantitative experiments demonstrate that enhancing down-
stream tasks with the inference results of upstream tasks can
improve the performance of downstream tasks, e.g. tumor lo-
calization and tumor stratification. The reason is that upstream
tasks provide valuable clues for the implementation of down-
stream tasks. A global feature perception module based on graph
reasoning is applied to enhance the high-level features with
global relation information for tumor stratification. Performance
improvement on the tumor stratification task is observed after the
adoption of the global feature perception module. Constraining

the dynamic class activation mapping with DTW and tumor
probability maps is utilized to further enhance the dependency
to the prior knowledge of DTW and tumor regions. The con-
straint helps our method derive class activation maps with high
interpretability. Extensive experimental results on two EUS im-
age datasets show that our method achieves tumor localization
and stratification performance superior to state-of-the-art object
detection methods.
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