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ABSTRACT
Crowd counting is a fundamental yet challenging task that
aims to automatically estimate the number of people in
crowded scenes. Nowadays, with the rapid development of
thermal and depth sensors, thermal images and depth maps
become more accessible, which are proven to be beneficial
information in boosting the performance of crowd counting.
Consequently, we propose a Mutual Attention Transformer
(MAT) module to fully leverage the complementary informa-
tion of different modalities. Specifically, our MAT employs
a cross-modal mutual attention mechanism to utilize the fea-
tures of one modality to enhance the features of the other.
Moreover, to improve performance by learning better visual
representation and further exploiting modality-wise comple-
mentarity, we design a self-supervised pre-training method
based on cross-modal image reconstruction. Extensive ex-
periments on two standard benchmarks (i.e., RGBT-CC and
ShanghaiTechRGBD) show that the proposed method is ef-
fective and universal for multimodal crowd counting, outper-
forming previous state-of-the-art methods.

Index Terms— Crowd Counting, Multimodal, Mutual
Attention, Transformer, Self-Supervised Learning

1. INTRODUCTION

Crowd counting is a fundamental task in computer vision,
whose purpose is to accurately and automatically count the
number of pedestrians in images or surveillance videos. It
has drawn increasing attention due to its wide range of practi-
cal applications, such as crowd control, urban planning, traf-
fic management, etc. In the literature, numerous models have
been proposed to address this task and have achieved consid-
erable performance [1–7].

Nevertheless, most of the previous methods make predic-
tions of crowd count only based on the optical information in
RGB images, which may fail to perform accurate estimation
in the wild when encountering poor illumination conditions or
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Science Foundation of China under Grant No.61976250 and No.U1811463,
and in part by the Guangzhou Science and technology project under Grant
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(a) RGBT-CC [8]. (b) ShanghaiTechRGBD [9].

Fig. 1. Samples from RGBT-CC [8] dataset and Shang-
haiTechRGBD [9] dataset. Images in the first and second
row are the RGB images and thermal images (for RGBT-
CC)/depth maps(for ShanghaiTechRGBD), respectively.

suffering severe variations of scale and perspective. The re-
cent cross-modal approaches [8–10] show that incorporating
thermal images or depth maps as additional information into
RGB images delivers superior performance in crowd counting
since thermal images or depth maps are highly complemen-
tary to RGB images. Specifically, as shown in Figure 1(a),
thermal images are robust to illumination and can greatly help
recognize possible pedestrians from cluttered backgrounds.
Conversely, RGB images can help eliminate false positives
in thermal images [8]. Likewise, as shown in Figure 1(b), the
depth maps can exceedingly facilitate crowd counting by pro-
viding additional geometry information (e.g., size and loca-
tion of heads) [9,10], which alleviates the unfavorable effects
of large scale variations and perspective changes. And in turn,
the essential visual information of the crowd carried by RGB
images can help remove the objects having similar appear-
ances to pedestrians in depth maps. In a nutshell, additional
information from other modalities (i.e., thermal and depth)
and optical information (i.e., RGB images) are immensely
complementary to each other.

However, it remains challenging to explore and fuse the
complementary information of different modalities. Conven-
tional approaches [9–11] for multimodal data fusion either
simply combine multimodal data before feeding them into
networks or fuse features using ordinary fusion operations,
both failing to fully capture the complementarity between
modalities. Liu et al. [8] proposed an information aggrega-
tion and distribution module (IADM) with a shared branch to
leverage modality-wise complementarity in crowd counting.
However, IADM only uses local operations such as convo-
lution, element-wise addition/subtraction, etc., which fails to
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model global cross-modal dependencies and relationships.

Recently, Transformers [12] have been widely applied to
computer vision [13], since it was proven to have a strong po-
tential to capture long-range dependencies by self-attention
mechanism. Inspired by the success of Transformers, we pro-
pose a Mutual Attention Transformer (MAT) module to fully
exploit the complementary information of different modal-
ities. Specifically, our MATs are integrated into multi-
ple stages of two modality-specific backbones to hierarchi-
cally learn cross-modal joint representation. At each stage,
the features from each modality-specific backbone are con-
verted into sequences of patch embeddings, and then we em-
ploy cross-modal multi-head mutual attention to dynamically
propagate the patch embeddings of one modality to enhance
the patch embeddings of the other. The enhanced patch em-
beddings of each modality are rearranged to image-shape fea-
tures, which are further fed into the corresponding modality-
specific backbone for higher-level representation learning. It
is worth noting that our MAT is naturally effective for build-
ing cross-modal dependencies and relationships on both local
and global levels, and therefore can fully capture the comple-
mentarities of different modalities for robust crowd counting.

For better visual representation and modality-wise com-
plementarity learning, we design a novel and effective self-
supervised pre-training method based on cross-modal image
reconstruction to further boost performance. As a pretext
task, the reconstruction-based method corrupts the inputs and
learns to reconstruct them, during which the networks can
learn feature representation of the data [14]. Based on this
insight, we randomly mask (i.e., remove) blocks of the image
pairs from two modalities and force the networks learn to re-
construct them by predicting the pixel values of the masked
regions. The learned parameters are then transferred and fine-
tuned on crowd counting. Most importantly, the key idea
is that the reconstruction of some masked regions from one
modality can be facilitated by the counterparts from the other,
leading the networks to learn modality-wise complementarity.

In summary, our main contributions are three-fold:

• We propose Mutual Attention Transformer (MAT),
a cross-modal fusion module, for multimodal crowd
counting by fully leveraging the complementary infor-
mation of different modalities.

• We develop a novel and effective self-supervised pre-
training method based on cross-modal image recon-
struction to further boost the performance of multi-
modal crowd counting.

• Extensive experiments on two challenging multimodal
crowd counting benchmarks demonstrate the effective-
ness and universality of our method, which achieves su-
perior performance in comparison to previous state-of-
the-art approaches.

2. RELATED WORKS

Crowd counting approaches: A large number of methods
[1–7] with different network architectures were proposed for
crowd counting. The mainstream methods are regression-
based and usually generate density maps for crowd images
and then sum up all the values of pixels to get the final counts.
Meanwhile, various loss function designs [4,15,16] on crowd
counting were put forward to improve performance and/or the
quality of density maps. Recently, several works [8–10] in-
troduced additional information from other modalities (i.e.,
thermal [8] or depth [9, 10]) to crowd counting for better per-
formance.

Multimodal fusion methods: Multimodal fusion aims
to properly integrate information from different modalities to
make predictions for a specific task. Simple multimodal fu-
sion approaches often combine features from different modal-
ities using element-wise addition/multiplication or concate-
nation in the way of either “Early fusion” or “Late fusion”
[9–11]. Besides, two-stream-based networks with hybrid fu-
sion (i.e., hybrid of early and late fusion) [17–19] were pro-
posed to hierarchically learn cross-modal features. However,
most of these methods only consider the additional modality
as an auxiliary one and adopt one-way information transfer.
To leverage modality complementarities, a shared-branch-
based approach was proposed [8]. Nevertheless, they can-
not well capture the global long-range dependencies between
modalities, which are vital information for crowd counting.
In this paper, the proposed MAT module is naturally effective
for dynamically building long-range dependencies on both lo-
cal and global levels by utilizing mutual attention mechanism.

Transformers: Transformer [12], a new attention-based
building block, was first proposed to tackle the machine trans-
lation tasks and successfully applied in natural language pro-
cessing because of its strong ability to model global long-
range dependencies. Recently, Transformers were extended
to various computer vision tasks. For instance, ViT [13] con-
verted an image into a sequence of flattened 2D patches and
further processed it in a pure Transformer manner for image
classification. DETR [20] adopted a hybrid of convolutional
neural networks (CNN) and Transformers to address object
detection. And VisTR [21] fed the features extracted by CNN
of each video frame to a Transformer for video instance seg-
mentation. Besides, some Transformer-based methods were
proposed for multimodal tasks [22, 23]. Inspired by these
works, we propose a Transformer-based cross-modal feature
fusion method for multimodal crowd counting.

3. METHOD

In this work, we propose a multimodal crowd counting frame-
work embedded with Mutual Attention Transformer (MAT)
modules. Moreover, we design an image reconstruction-
based cross-modal self-supervised pre-training method to fur-
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Fig. 2. The proposed framework for multimodal crowd counting. With the proposed Mutual Attention Transformer (MAT)
modules embedded in several different layers between two modality-specific backbones, our method is capable of fully lever-
aging modality-wise complementarity. Note that “Reg” stands for regressor.

ther boost the performance of multimodal crowd counting. In
this section, we utilize CSRNet [2] on RGBT-CC [8] dataset
as an example to illustrate our method, where CSRNet is a
representative crowd counting network and RGBT-CC is an
RGB-thermal multimodal crowd counting dataset. Besides,
to demonstrate our framework is effective and universal for
different networks and datasets, we also implement it with the
network BL [16] and conduct experiments on an RGB-depth
dataset ShanghaiTechRGBD [9].

3.1. Overview

As shown in Figure 2, the proposed framework consists of
two modality-specific backbones with several Mutual Atten-
tion Transformer (MAT) modules embedded in between, and
a regressor (“Reg” module shown in Figure 2). Specifically,
these two backbones hierarchically extract the features of
RGB images and thermal images, respectively. Meanwhile,
the MATs perform cross-modal feature fusion at several spe-
cific layers. Then, the concatenation of the last features of
these two backbones is fed into the regressor to generate the
final high-quality crowd density maps.

The aforementioned modality-specific backbones and re-
gressor are implemented based on CSRNet. CSRNet consists
of a front-end and a back-end, where the front-end is the first
10 convolutional layers of VGG16 [24] and the back-end is
composed of six dilated convolutional layers along with a fi-
nal 1×1 convolutional layer. In our framework, the modality-
specific backbones are based on the front-end and the regres-
sor is based on the back-end.

As shown in Figure 2, the network takes an RGB image R
and a thermal image T as inputs and generates a crowd den-
sity map D. The two modality-specific backbones extract the
features of R and T , respectively. For convenience, follow-

ing Liu et al. [8], we denote the extracted features of R and
T at layer Convi j as F i,j

r and F i,j
t , respectively. To enable

cross-modal feature fusion and fully leverage modality-wise
complementarity hierarchically, we embed our MAT modules
between the two modality-specific backbones at several dif-
ferent layers, which are Conv1 2, Conv2 2, Conv3 3, and
Conv4 3. Specifically, the MAT embedded at layer Convi j
takes F i,j

r and F i,j
t as inputs to perform cross-modal feature

fusion by utilizing one to enhance the other. The operation of
MAT can be formulated as follow:

F̂ i,j
r , F̂ i,j

t = MAT(F i,j
r , F i,j

t ), (1)
where F̂ i,j

r and F̂ i,j
t are the enhanced features of F i,j

r and
F i,j
t , respectively. And then F̂ i,j

r and F̂ i,j
t are fed to the fol-

lowing layers of their respective backbones. Note that the last
enhanced features (i.e., F̂ 4,3

r and F̂ 4,3
t ) are concatenated then

fed to the regressor to generate the final density map D.

3.2. Mutual Attention Transformer

In order to fully exploit the modality-wise complementarity
and capture global long-range dependencies between modali-
ties, we propose a Mutual Attention Transformer (MAT) mod-
ule. As depicted in Figure 2, MAT takes F i,j

r , F i,j
t as inputs

and outputs the corresponding enhanced features F̂ i,j
r , F̂ i,j

t

after feature fusion.
In general, the input features of a MAT are first con-

verted to sequences of patch embeddings and then are fed to
the multi-head mutual attention sub-module to perform cross-
modal mutual attention and fusion by modeling long-range
relationships of two modalities. After that, the fused patch
embeddings are fed to two feed-forward networks, respec-
tively, and then reshaped and rearranged to obtain the fused
features. Finally, the enhanced features are obtained by com-
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puting the element-wise addition of the fused features and
the input features. For simplicity, in this section, we denote
F i,j
r , F i,j

t , F̂ i,j
r , and F̂ i,j

t as Fr, Ft, F̂r, and F̂t, respectively.
We first employ two 1×1 convolutional layers to reduce

the number of channels of Fr, Ft ∈ RH×W×C , yielding the
features F ′

r, F
′
t ∈ RH×W×C′

, respectively, where (H,W ) is
the spatial resolution of the features, C is the original num-
ber of channels, and C ′ is the reduced number of channels.
The following multi-head mutual attention layer and the two
feed-forward networks expect sequences as inputs, thus we
reshape F ′

r, F
′
t into two sequences of flattened 2D patches

x
(p)
r ,x

(p)
t ∈ RN×dpatch , where dpatch = P 2 ·C ′ is the dimen-

sion of each flattened patches with the resolution of (P, P ),
and N = HW/P 2 is the number of patches. Then, we en-
code x

(p)
r ,x

(p)
t to patch embeddings x(emb)

r ,x
(emb)
t ∈ RN×d

by two fully connected layers (FCs), respectively, where d
is the dimension of each patch embeddings. Afterwards,
x
(emb)
r ,x

(emb)
t are further processed by two layer normaliza-

tion (LayerNorm) [25] layers, respectively.
As shown in Figure 2, the patch embeddings are then fed

to the subsequent multi-head mutual attention sub-module.
Specifically, x(emb)

r and x
(emb)
t are linearly projected to pro-

duce their queries, keys, and values, respectively, which are
denoted as Qr,Kr,V r ∈ RN×d and Qt,Kt,V t ∈ RN×d,
respectively. Following the vanilla Transformer [12], we em-
ploy Scaled Dot-Product Attention to perform mutual atten-
tion for each head, which can be formulated as:

headr,i = Softmax(Qr,iK
T
t,i/

√
dk)V t,i, (2)

headt,i = Softmax(Qt,iK
T
r,i/

√
dk)V r,i, (3)

where headr,i and headt,i are the ith head for R and T , re-
spectively, and dk = d

h where h is the number of heads. Then
the outputs of each head are concatenated and fed to a series
of operations including dropouts, residual connections, layer
normalizations and feed-forward networks. After that, we ob-
tain the fused patch embeddings ẋ(emb)

r , ẋ
(emb)
t ∈ RN×d.

Next, we utilize two FCs to decode ẋ
(emb)
r , ẋ

(emb)
t to two

sequences of fused flatten patches ẋ
(p)
r , ẋ

(p)
t ∈ RN×dpatch ,

respectively, which are then reshaped and rearranged to obtain
the fused features with C ′ channels, respectively. Afterwards,
we use another two 1×1 convolutional layers to recover the
number of channels, generating the fused features Ḟr, Ḟt ∈
RH×W×C , respectively.

Finally, we compute element-wise addition of the fused
features and the input features to get the enhanced features,
which can be expressed as:

F̂r = Fr + Ḟr, F̂t = Ft + Ḟt. (4)

3.3. Cross-Modal Self-Supervised Pre-Training Method

As discussed in previous sections, our MATs excel at mod-
eling long-range dependencies and relationships across dif-
ferent modalities to exploit modality-wise complementarity.

UP UP
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MAT
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Self-Supervised Reconstruction
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Supervised Crowd Counting

Conv
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C
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Fig. 3. The proposed cross-modal self-supervised pre-
training method for multimodal crowd counting.

For better visual representation and modality-wise comple-
mentarity learning, we design an image reconstruction-based
cross-modal self-supervised pre-training method to further
boost performance for multimodal crowd counting.

As shown in Figure 3, the network for self-supervised
reconstruction takes a pair of masked RGB image R̃ and
masked thermal image T̃ as inputs and output their recon-
structed images R̂ and T̂ , respectively. Specifically, the pro-
cedure of masking an image is: (1) choose a random rectangle
box in the image; (2) fill the box with its pixels’ mean value;
(3) repeat step (1)-(2) for n times, where n ∼ U(nmin, nmax)
and U stands for uniform distribution. Specifically, the net-
work consists of two modality-specific backbones with MATs
embedded in between, which are the same as the ones de-
scribed in Section 3.2, and two reconstructors. Each of the
reconstructors is composed of three “Up” modules and a 1×1
convolutional layer, where an “Up” module contains a de-
convolutional layer and two convolutional layers. After pre-
training, the reconstructors are removed. The remaining parts
of the network, having learned good visual representation and
modality-wise complementarity, are then transferred and fine-
tuned on crowd counting.

The network learns to reconstruct the original images
R, T by predicting the pixel values of the masked regions.
Standard pixel-wise reconstruction loss is computed in the
masked regions, which is defined as follows:

Lr =
1

N

N∑
i=1

∑
p∈Mi

(∥R̂i(p)−Ri(p)∥+∥T̂i(p)−Ti(p)∥), (5)

where N is the number of training samples, Mi is the union
region of all masked regions of both R̃i and T̃i, and p is the
index of a pixel. Note that we do not use extra training data
during pre-training.

4. EXPERIMENTS

4.1. Implementation Details and Evaluation Metrics

In this work, we implement our multimodal crowd counting
framework based on CSRNet [2] and BL [16] on a single
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NVIDIA RTX 2080Ti GPU. We reduce 30% of the chan-
nels of every convolutional layer in the backbones to keep
the number of parameters similar to that of the original mod-
els for fair comparisons. Geometry-adaptive Gaussian ker-
nels [1] are applied to generate the ground truth density maps.
Adam [26] is adopted to optimize our networks. The learn-
ing rate is set to 1e-5 for crowd counting and 1e-4 for self-
supervised pre-training. The filters’ weights are randomly
initialized by Gaussian distributions with zero mean and stan-
dard deviation of 0.01.

Root Mean Square Error (RMSE) and Grid Average Mean
Absolute Error (GAME) [27] are used for evaluation. Specif-
ically, for GAME at level L, we divide an image into 4L non-
overlapping regions and calculate the counting error in each
region, which is defined as:

GAME(L) =
1

N

N∑
i=1

4L∑
j=1

∣∣∣ŷji − yji

∣∣∣ , (6)

where N is the number of test samples, ŷji and yji are the es-
timated count and the ground truth count in the jth region of
the ith image, respectively. In particular, GAME(0) is equiv-
alent to Mean Absolute Error (MAE).

4.2. Datasets

RGBT-CC: The recently proposed RGBT-CC [8] is a large-
scale free-view multimodal crowd counting benchmark and
contains 2,030 RGB-thermal image pairs. The number of im-
age pairs used for training, validation, and testing is 1,030,
200, and 800, respectively. It is an extremely challenging
dataset whose images are captured under different illumina-
tion conditions from various scenes, such as malls, streets,
playgrounds, stations, etc., which has an average of 68 pedes-
trians marked with point annotations per image.

ShanghaiTechRGBD: ShanghaiTechRGBD [9] is a
large-scale RGB-depth crowd counting dataset, consisting of
2,193 samples captured by surveillance cameras where each
of which contains an RGB image and a depth map. The
dataset has an average of 65.9 annotated heads per image.
Specifically, 1,193 samples in ShanghaiTechRGBD are used
for training and the remaining are for testing.

4.3. Comparison with State-of-the-art Methods

In this section, we evaluate and compare our proposed method
implemented based on CSRNet and BL with other state-of-
the-art methods on RGBT-CC and ShanghaiTechRGBD.

As shown in Table 1, both of our CSRNet-based and
BL-based methods outperform their corresponding IADM-
based [8] methods on all evaluation metrics by a large
margin. For example, on RGBT-CC, compared to CSR-
Net+IADM, our CSRNet-based method (i.e., CSRNet+Ours)
achieves 23.9% and 27.1% lower error of GAME(0) and
RMSE, respectively. And BL+Ours achieves an improve-
ment of 20.9% and 20.1% on GAME(0) and RMSE than

Table 1. Performance of different methods on RGBT-CC and
ShanghaiTechRGBD.

Method GAME(0)↓ GAME(1)↓ GAME(2)↓ GAME(3)↓ RMSE↓
RGBT-CC

UCNet [17] 33.96 42.42 53.06 65.07 56.31
HDFNet [18] 22.36 27.79 33.68 42.48 33.93
BBSNet [19] 19.56 25.07 31.25 39.24 32.48
MVMS [28] 19.97 25.10 31.02 38.91 33.97
CSRNet+IADM [8] 17.94 21.44 26.17 33.33 30.91
CSRNet+Ours 13.65 18.03 22.94 28.65 22.53
BL+IADM [8] 15.61 19.95 24.69 32.89 28.18
BL+Ours 12.35 16.29 20.81 29.09 22.53

ShanghaiTechRGBD
UCNet [17] 10.81 15.24 22.04 32.98 15.70
HDFNet [18] 8.32 13.93 17.97 22.62 13.01
BBSNet [19] 6.26 8.53 11.80 16.46 9.26
DetNet [29] 9.74 - - - 13.14
CL [15] 7.32 - - - 10.48
RDNet [9] 4.96 - - - 7.22
DPDNet [10] 4.23 5.67 7.04 9.64 6.75
BL+IADM [8] 7.13 9.28 13.00 19.53 10.27
BL+Ours 5.39 6.73 8.98 13.66 7.77
CSRNet+IADM [8] 4.38 5.95 8.02 11.02 7.06
CSRNet+Ours 3.54 4.82 6.52 9.07 5.28

Table 2. Ablation studies. “+SSP” indicates the model is self-
supervised pre-trained using our method described in Sec-
tion 3.3 then fine-tuned on crowd counting.
Method GAME(0)↓ GAME(1)↓ GAME(2)↓ GAME(3)↓ RMSE↓

RGBT-CC
CSRNet (Early fusion) 20.40 23.58 28.03 35.51 35.26
CSRNet (Late fusion) 19.87 25.60 31.93 41.60 35.09
CSRNet+MAT 15.39 19.70 24.65 30.75 25.55
CSRNet+MAT+SSP 13.65 18.03 22.94 28.65 22.53
BL (Early fusion) 18.70 22.55 26.83 34.62 32.67
BL (Late fusion) 17.18 21.07 25.75 33.72 33.32
BL+MAT 13.61 18.08 22.79 31.35 24.48
BL+MAT+SSP 12.35 16.29 20.81 29.09 22.53

ShanghaiTechRGBD
BL (Early fusion) 8.94 11.57 15.68 22.49 12.49
BL (Late fusion) 8.23 9.91 13.12 19.59 12.44
BL+MAT 6.61 8.16 10.90 16.62 9.39
BL+MAT+SSP 5.39 6.73 8.98 13.66 7.77
CSRNet (Early fusion) 4.92 6.78 9.47 13.06 7.41
CSRNet (Late fusion) 4.94 6.54 8.75 11.96 7.11
CSRNet+MAT 4.05 5.49 7.49 10.25 6.01
CSRNet+MAT+SSP 3.54 4.82 6.52 9.07 5.28

BL+IADM [8], respectively. In particular, BL+Ours becomes
the new state-of-the-art method on RGBT-CC. In addition, on
ShanghaiTechRGBD, CSRNet+Ours surpasses the existing
best method (i.e., DPDNet [10]) on all evaluation metrics. It
is worth noting that CSRNet+Ours achieves an improvement
of 16.3% and 21.8% on GAME(0) and RMSE over DPDNet,
respectively, and becomes the new state-of-the-art method
on ShanghaiTechRGBD. The outstanding performance well
demonstrates the superiority of our method. Thanks to
our tailor-designed MAT modules and self-supervised pre-
training scheme, our method can fully capture the modality-
wise complementarity by modeling dependencies and rela-
tionships across different modalities on both local and global
levels, resulting in excellent performance.

4.4. Ablation Studies

To convincingly demonstrate the effectiveness of each com-
ponent of our method, we conduct extensive ablation studies
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on both RGBT-CC and ShanghaiTechRGBD as shown in Ta-
ble 2. “CSRNet (Early fusion)” method feeds the concatena-
tion of RGB and thermal/depth images into the vanilla CSR-
Net. “CSRNet (Late fusion)” concatenates the features of
RGB and thermal/depth images extracted by two separated
backbones to generate density maps. Note that “CSRNet
(Late fusion)” is equivalent to our proposed framework with
all MATs removed. Similar rules are applied on BL.

Effectiveness of MAT: When equipped with MATs,
we can observe that both CSRNet and BL achieve sig-
nificantly superior performance on RGBT-CC and Shang-
haiTechRGBD. For instance, on RGBT-CC, RMSE of CSR-
Net+MAT and RMSE of BL+MAT are remarkably reduced
by 27.2% and 26.5%, respectively, compared to their “Late
fusion” methods.

Effectiveness of self-supervised pre-training (SSP):
The proposed self-supervised pre-training method can further
boost performance considerably. For example, compared to
CSRNet+MAT and BL+MAT on ShanghaiTechRGBD, CSR-
Net+MAT+SSP and BL+MAT+SSP further enjoy 12.2% and
17.3% of improvement on RMSE, respectively.

5. CONCLUSION

In this work, we propose a Mutual Attention Transformer
(MAT) module for multimodal crowd counting. Our MAT
can fully exploit the modality-wise complementarity to per-
form feature fusion by modeling cross-modal dependencies
and relationships on both local and global levels. In addition,
we develop a novel and effective self-supervised pre-training
method based on cross-modal image reconstruction to further
boost performance. Extensive experiments on two challeng-
ing multimodal crowd counting benchmarks demonstrate the
effectiveness and universality of our method.
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