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Online Alternate Generator Against
Adversarial Attacks
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Abstract— The field of computer vision has witnessed phenom-
enal progress in recent years partially due to the development
of deep convolutional neural networks. However, deep learning
models are notoriously sensitive to adversarial examples which
are synthesized by adding quasi-perceptible noises on real images.
Some existing defense methods require to re-train attacked target
networks and augment the train set via known adversarial
attacks, which is inefficient and might be unpromising with
unknown attack types. To overcome the above issues, we propose
a portable defense method, online alternate generator, which
does not need to access or modify the parameters of the target
networks. The proposed method works by online synthesizing
another image from scratch for an input image, instead of
removing or destroying adversarial noises. To avoid pretrained
parameters exploited by attackers, we alternately update the
generator and the synthesized image at the inference stage.
Experimental results demonstrate that the proposed defensive
scheme and method outperforms a series of state-of-the-art
defending models against gray-box adversarial attacks.

Index Terms— Deep neural network, adversarial attack, image
classification.

I. INTRODUCTION

N recent years, deep convolutional neural networks have

obtained state-of-the-art performances on many machine
learning benchmarks, since they can harvest adaptive features
on large-scale training sets, in comparison to traditional meth-
ods based on handcrafted features. However, deep learning
models are found to be vulnerable with adversarial attacks,
which aim at synthesizing adversarial samples that are percep-
tually similar to real images but can mislead attacked models
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Fig. 1. The effectiveness of removing adversarial noise by our proposed
method. (a) and (b) denote original images and their adversarial examples.
(c) and (d) denote our generated results by taking original images and
adversarial examples as reference respectively. The second row and the fourth
row are normalized absolute difference between original images (a) and (b-d).
Our results have different noise distribution from input adversarial examples.
The predicted probability of correct labels is attached under each sample of
(a-d). Our proposed defense method significantly increases the probability of
predicting correct labels.

to yield totally incorrect labels, as shown in Fig. 1(b). Adver-
sarial examples can be generated by applying quasi-perceptible
perturbations which does not change labels recognized by
human subjects. Such perturbations can be computed via
constrained optimization or backward propagation with an
incorrect supervision. Thus, given a pretrained farget network
that might be accessed and attacked by hackers, how to protect
it from adversarial attacks remains an important problem.
Many defense methods are developed to resist adversarial
attacks on deep learning models. These defense methods
can be roughly categorized into two groups. One group of
defenses act as a preprocessing component which does not
require accessing, modifying or re-training the attacked tar-
get network. These methods are portable and practical with
different target networks or tasks since the knowledge of
target networks may be confidential in real applications. These
methods usually resort to image denoising and smoothing to
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remove adversarial noises, or image transformations that could
destroy adversarial noises to some extent. Another group of
defense methods require to access or re-train the parameters
of target network. We argue that these methods may be
impractical and inefficient in real applications. For examples,
adversarial training methods need to obtain the knowledge of
adversarial attacks and might be unpromising to resist unseen
attack types. Kurakin et al. [1] also suggest that adversarial
training with single-step attacks does not confer robustness to
iterative adversarial samples. Ensemble adversarial training [2]
requires augmenting the train set by N x M times, designing
and training N different target networks, which is inefficient.
M is the number of different known adversarial attacks used in
adversarial training. It is difficult to transfer DefenseGAN [3]
on large images since training GAN with large images is
unstable and might need to adjust the network architecture
for different datasets.

Motivated by the above observations, in this article we aim
at addressing such a problem: developing a portable defense
method that protects a pretrained target network from unseen
adversarial attacks with images of large size.

We define a portable defense as a method that does not
need to access, modify or re-train the attacked target network.
We claim that developing a portable defense is important
because some parameters of the target network might be
commercially confidential. Re-designing and re-training the
target network could cause heavy load. A portable defense
allows itself as a reusable self-contained component invoked
via API. Developing a defense method against unseen attacks
is critical since it is impractical to know the attack type
used by attackers. On the other hand, developing a defense
method working with large images, whose size is not smaller
than 200 x 200, is practical and meaningful. Given the same
L~ norm upper bound, the number of possible adversarial
samples increases exponentially with the number of pixels.
Thus defending against adversarial attacks with larger images
is more difficult. Tramer et al. [2] also suggest that results
obtained on simple datasets [4] with small images does not
always generalize to harder tasks, for example, a classification
benchmark with larger images.

To address the above-mentioned issues, we conceive a novel
defending framework, online alternate generator. The proposed
defense scheme works by online synthesizing an image that
shares the same semantics with the input image but is almost
free from adversarial noises. To avoid the model parameters
stolen and exploited by attackers, we also propose to update
the generator and the synthesized image at the inference
stage, in an iterative and alternate manner. Besides, Gaussian
noise is utilized as an additional perturbation in updating
the synthesized image, to prevent the generator from fitting
adversarial noises.

Our proposed method enjoys the following strengths. First,
since the proposed method does not require any knowledge
of target networks or adversarial attacks, it is a portable
defense that can theoretically protect arbitrary target classifiers
from arbitrary unseen adversarial attacks. Second, a Gaussian
perturbation is added to yield an image, which not only intro-
duces randomness but also decreases the probability of fitting
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adversarial noise on the given input. Third, as the proposed
method adopts online training, its model parameters are not
fixed during inference and cannot be accessed beforehand by
potential attackers in real scene to synthesize an adversarial
example.

In summary, this article has the following contributions:

o We develop a novel portable defense framework, online
alternate generator, which can resist unseen adversarial
attacks for unlimited pretrained classifiers, without the
knowledge of target networks or adversarial attacks.

o« We propose a stopping criteria which does not require
accessing any adversarial samples such that the proposed
method can deal with unseen attacks.

o We verify the transferability and generalization of the
proposed method with different adversarial attacks, tar-
get models and benchmarks. Different selections of
hyper-parameters are also well investigated.

o This article presents extensive experimental results to
verify that the proposed framework surpasses a wide
range of existing state-of-the-art defense algorithms.

II. RELATED WORK
A. Adversarial Attack

Deep convolutional neural networks have demonstrated
powerful fitting capacity in solving computer vision problems
for last several years, but they are threatened by adversarial
attacks [5]-[16]. Fast Gradient Sign Method (FGSM) [6] syn-
thesizes adversarial examples by adding some weighted gradi-
ents which increases the prediction loss of the attacked target
network, as shown in I,q, = I +¢€-sign(6L(F(I,0),Yr)/dI)
where [ denotes a real image and I,4, is the generated
adversarial example. sign(-) returns 1 for positive input, and
returns -1 for negative one. L(x,y) denotes a loss function
that estimates the difference between a prediction x and the
ground truth y. F(-,0) is the attacked target neural network
with parameters 6. Y; denotes the ground truth annotation of
image /. € is the [, norm of the adversarial perturbation and
the weight of the gradient with respect to /. Attack strength
can be controlled by €. The above algorithm is referred as
untargeted attack. A targeted variant [1] of FGSM encourages
the attacked network to predict high probability at some
deliberately incorrect category Y,4,, as formulated in 7,4, =
I —e€-sign(0L (F (1,0),Y44,) /01). Iterative Gradient Sign
Method (IGSM) [1], [17] iteratively apply FGSM multiple
times with a small step size to locate a stronger adversarial
sample, as shown in the following.

11/+1 =I—a 'Sign(aL(F(It,e), Yaa)/01)

Lyt = clip( 1,1 —€,1 +€) (1)

where I; is the adversarial example synthesized after ¢ iter-
ations and Iy = 1. II/Jrl is a temporary variable. clip(-, 1, u)
with lower bound / and upper bound u, is an element-wise
operator that ensures the Lo, of the adversarial perturbation
|I;+1 — I| within the bound e. Momentum based Iterative
FGSM (MI-FGSM) [12] introduces a momentum term to sta-
bilize the gradient descent and avoid the adversarial example
stuck in poor local minima, which helps to synthesize more
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transferable adversarial examples. Athalye er al. [18] pro-
pose three tricks, Backward Pass Differentiable Approxima-
tion, Expectation over Transformation and Reparameterization,
which have broken into most existing obfuscated gradients
based defenses under a white-box attack setting.

B. Gray-Box Attack Setting

Adpversarial attacks have multiple settings, according to how
much knowledge that adversaries can access. The settings
consist of white-box, gray-box and black-box. Adversaries
in white-box attacks can obtain all information about target
models and defense methods. In black-box setting, adversaries
do not know the architecture, the training data, the parameters
of target classifiers and defense methods. Gray-box attacks
have more than one definition. Previous works have defined
different gray-box adversarial attacks and developed defense
methods under their own settings. Taran et al. [19] define
a gray-box setting, where the attacker knows target network
architecture, training/testing data and the output label for each
input, but has no knowledge of the network parameters and
the defense mechanism. Zheng and Hong [20] utilize another
gray-box setting, where attackers know the architecture of
the target network and its defense strategy, but have no
knowledge of their parameters. Different from the above set-
tings where adversaries cannot obtain the network parameters,
Guo et al. [21] introduce the following gray-box setting: the
adversary has access to the model architecture and the model
parameters, but is unaware of defense strategies. In this article
we adopt the gray-box setting in [21]. It is a strong gray-box
attack setting since both the architecture and parameters of
target networks can be accessed by adversaries.

C. Defense Against Adversarial Attack

Many methods that aim at protecting some neural
model from adversarial examples are proposed recently
[31, [21]-[31]. SafetyNet [22] incorporates a deep convolu-
tional neural network with a RBF-SVM which converts the
final ReLU outputs to discrete codes to detect adversarial
examples. Guo et al. [21] utilize bit-depth quantization, JPEG
compression, total variance minimization and image quilting
to destory or remove adversarial noise. Xie ef al. [23] resort to
random resizing and random padding during inference stage
to leverage the cue that many adversarial examples are not
scale invariant. Pixel Defend [24] iteratively updates each pixel
of an input image using a pretrained PixelCNN [32] that is
learned to predict a pixel value based on other pixels. Defend-
GAN [3] learns to model the data distribution of clean images,
and solves a vector in its learned latent space to approximate
an input image. The latent vector is exploited to synthesize
a substitute for the input via a generative neural network.
HGD [25] makes use of high-level feature extracted by the
attacked target network to train an image denoiser that can
remove adversarial noise. Since HGD requires accessing the
intermediate outputs of target classifiers to tune the denoiser,
it is not a portable defense. MagNet [33] utilizes a detector to
reject inputs far from the manifold boundary of training data,
and an auto-encoder as reformer to find a substitute that is
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close to the input on the manifold. It is not straight-forward to
fairly compare MagNet with other methods that do not reject
adversarial examples. MagNet is based on the assumption
that samples of some classification task are on a manifold
of lower dimensions, and is only evaluated with small-size
images. Pixel Deflection [26] iteratively and locally swaps
two randomly sampled pixels according to their positions,
before applying image denoiser to destroy adversarial noise.
DIP [34] online trains a CNN that reconstructs the input image
from a noise map. The output of the trained CNN is sent
to be classified. Different from DIP, the proposed method
updates an image and a CNN from scratch in an alternate
way. The CNN does not directly output the synthesized image
but approximates the energy of a data distribution for input
images.

III. METHOD

This section describes the details of our proposed defense
framework, online alternate generator, and its mathematical
explanation. The proposed method can be regarded as a
pre-processing component that protects a target network or
target classifier from adversarial samples. Target network is
defined as a pre-trained neural model that is exposed to be
attacked. The parameters of a target network can be accessed
by attackers. That is to say, adversarial samples are synthesized
with the target network. The proposed method is portable
and practical, and it does not require accessing, modifying or
re-training the parameters of the target network. Different from
some existing pre-processing defenses that try to remove or
destroy adversarial noises, our proposed method synthesizes an
image from scratch. The synthesized image is almost identical
in appearance and semantics to the original image, but contains
much less adversarial perturbations, and hence achieve more
robust classification.

The overall pipeline of the proposed method is described
in Algorithm 1. Given an input image that may be an
adversarial sample, we define reference image (denoted as I
in Algorithm 1) as the input image, and synthesize another
image I; to replace the original input before passing it into
the target network for classification. For each input image,
the parameters ) of the generator F are initialized ran-
domly and the synthesized image [ is filled with zeros at
the beginning. Tx denotes the maximum number of outer
iterations while 77 denotes the maximum number of inner
iterations. Within each outer iteration, the synthesized image
is updated for 77 times while the network parameters of our
proposed method is updated once. Training the generator and
synthesizing the image are conducted alternately. For each
input image, the generator is updated for exactly Tn times
while the synthesized image I is updated for Ty * 77 times.
Notice that 6, in Algorithm 1 does not include any parameters
of the target network, but only the parameters of the proposed
defense method. In Line 7 of Algorithm 1, I7,4 is assigned
to Iy, since we employ a circular array I{1, 7,41} to restore
T7 + 1 latest snapshots of the synthesized image. An overview
of the proposed method is illustrated in Fig. 2, it is composed
of an image updating procedure and a network updating
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Fig. 2.

A Defense Framework: Online Alternate Generator. ref denotes the reference image /;. syn denotes the synthesized image ;. F(-,0) is the neural

network with parameters 6. The blue-boundary box represents image updating according to Eq. (3) while the orange-boundary box denotes network updating
according to Eq. (5). The blue bending arrow means the inner iterations of image updating in Algorithm 1 while the orange bending arrows denotes the outer

iterations of network updating.

Algorithm 1 Online Alternate Generation Algorithm

Input: ., reference image with potential adversarial noise
Output: I, synthesized image
1: Randomly initialize 6,
2 1,=0
3: fort =1to Ty do
4: for s=1to 17 do
5: Update I,4; with I; according to Eq. (3)
6 end for
7 I =1Ir 41
8 Update 6,1, with 6, according to Eq. (5)
9: end for
10: I, = ITI+1
11: return [,

process. Please refer to Algorithm 1 for the detailed iteration.
In the following sections, we will focus on the computation of
both image updating and network updating, and the theoretical
basis behind this alternative updating mechanism.

A. Image Updating

Let us discuss how to update a synthesized image initialized
by zeros, with a reference image I, and a neural network F. F
denotes the proposed generator instead of the target classifier.
Suppose I, and I are sampled from the same data distribution
denoted as p(I;0) = (1/2)e V"9 where I denotes an
image. 6 represents the parameters of the model and Z is a
normalization term. e denotes exponential and U is an energy
function. Then we utilize the neural network F in the proposed
framework to approximate the energy function, i.e., F(/,0) =
—U (I; ). To maximize the probability density of the synthe-
sized image Iy, we update /; to minimize the energy function
by Iyt = Iy — adU (Iy; 0) /o1 = Iy — a (—0F (I, 0) /1)
where I; is the current synthesized image and I;1p is the
updated image. o denotes the learning rate. F(I,6)/01 is
the gradients of neural network F (-, 8) with respect to image
I, and can be computed by backward propagation. In a sense,
generating an image is to reconstruct the reference image.
However, synthesizing an image with adversarial noise is
undesirable. Thus we further introduce a noise model during
image updating,

Ii41 =1y —a(=0F (Is,0) /0I) + €, D )

where D denotes some noise distribution, such as a gaussian
noise N(0, 1). €, is the strength of the noise. Adding noise
during image synthesis can increase the difficulty in recovering
subtle details, and thus decrease the chance of fitting adversar-
ial noise. Langevin Dynamics, which is originally to simulate
how particles move under a random force, has a similar form
with Eq (2), a modified gradient decent with a Gaussian
perturbation. To comprehend the relationship between o and
€y, we resort to Langevin Dynamics and come up with Eq (3)
following a previous work [35].

Iyw1 = Is = (€,/2) (Is — OF (I, 0) /31) + €N (0, 1) (3)

where €, controls the magnitude of the Gaussian noise. eé /2
corresponds to the learning rate o. 1 — e§/2 is the inertia
factor of I;. Since random fluctuation is used to generate an
image, the distribution of images is changed into p(7;68) =
(1/2)e=U 0 (1/(27)!81/2)e=211IP | The multiplicative term
on the right is a Gaussian distribution with ¢ = 1. | S| denotes
the number of elements in image /.

B. Network Updating

The following details how to update the neural network F
such that the synthesized image I; gradually approximates the
reference image /. Notice that at the very beginning F is
initialized by randomization. Thus we update F' to maximize
the likelihood with respect to I,. Let L(0) = log(p(I;; 0)).
6 is trained along the direction maximizing the log likelihood
L(0) with gradient descent: 6,11 = 6; + pOL(6;)/06, where
6; denotes the current parameters at the time step 7. ;1
is the updated parameters. 0L(0;)/00 denotes the gradients
of the log likelihood function w.r.t §. As suggested in [36],
the gradient is computed in:

0L(0)/00 = 0F (133 6)/00 — Ep(1,0)[0F (15 61) /001, (4)

where Ep(;.9)[] is the expectation with I following the dis-
tribution p(7; #). The expectation is not explicitly calculated
but approximated by sampling. Langevin Dynamics, which is
adopted to update the image, is also a tool to sample image
I from distribution p(7; ). Thus we choose 0F (Iy; 6;)/00
to approximate the expectation E,(;.9)[-] for simplicity. Then
learning neural network F can be formulated as in Equation 5.

Or41 =0 + B(OF(I:;0)/00 — OF (I5; 0)/00) )
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For a testing image, Tn samples 0F (I; 0)/060 are selected
to approximate E,(;.)[0F (1; 8)/00]. In practice, Ty ranges
from 200 to 300. Thus, hundreds of samples 0 F (I;; 6)/00 are
used to approximate the expectation E ,(7.9)[0 F (I; 0)/00] and
such approximation is effective.

C. Analysis

This subsection presents explanation on why the synthesized
image I, approximate the reference image I, after alternately
updating /s and the network F'. In the following, we consider
F as a very simple prototype. The prototype model contains
a convolution layer, a ReLLU layer and a summation operator.
The prototype model contains a convolution layer, a ReLU
layer and a summation operator. I, the input of prototype
model, could be reshaped as a vector of shape 1 x chw.
The convolution layer has K kernels and the kernel size is
rp X ry. The weight of the convolution is denoted as W of
size cryry, X K, while the bias B is of size 1 x K. For simplicity,
we let h = r, and w = ry, so that the convolution operator is
only applied on a position. The output of the convolution is
IW + B, of size 1 x K. The ReLU function /1 is applied on
each element of /W + B. The summation operator sums up
all elements of A(I/W + B). Thus F(I) outputs a single scalar
and is formulated as:

F=3" (W + By ©)

According to the definition of ReLU, A(x) = max(0, x).
ReLU function can be represented as a multiplication between
the input and a Heaviside step function u. For x > 0, u(x)
equals 1. Otherwise, u(x) is 0. Thus A(x) = u(x)x. Then we
formulate Eq (6) as:

F() = 3 Wi+ BOU Wi+ By)

_ z:=l(u(1,<9)(1Wk + BY), @)

where u(I Wy + By) is a single scalar depending on [ and 6.
We denote u(I Wi + By) as u(1, ) for simplicity.

Assume that the synthesized image Iy and the reference
image I, belong to the same data distribution p(I;#). Since
we introduce Gaussian noise to synthesize /s, we assume that

[ )1|S\/2"’_”M2/2
T

Let 7* denote the image that maximizes the probability
p(I; 0). The proposed method is to synthesize an image I
that approximates to I*. Let F(I; ) approximate —U (I; 0).
To maximize the probability, we need to maximize —U (/; §)—
11117/2 as:

1 .
p(;0)=—e Uz:6) (8)

F(I) — (1112

K K
—P2+12 @I.OW)+> ull,0)B
=3 @ OWIIP2+ Cwd6).0) )

where C(u(1,0),6) depends on I and 8. When we update
image I; as I;41, we can set u(l,60) as u(ls,0) and fix
the network parameters d. Then we come up with I* =

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen).
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Z,le (u(Iy, O)Wy) to maximize Eq (9). Recall how we update
I;+1 as shown in Eq (3):

Iy = Iy — (e;/2)(I; — 9F (I, 0)/01) + €, N(0, 1)
= (1— ¢/ +€;/2-0F(I;,0)/0] + €;N(0,1)

= (1= /DL + /23 (Wl 0)We) + €N, 1)
= (1—€/2)I, +€2/2- " + &N, 1) (10)

As Eq (v), updating I is to do linear interpolation between
I; and I'* with a Gaussian perturbation. Thus the pixel values
of the synthesized image I; will approximate to those of I*,
which is the peak of highest probability. Since 7, is a sample
of high probability in the same data distribution with 7*, I
will also be visually similar to I,. When updating the network,
the proposed method tunes # to guarantee that the probability
of sampling /s is as high as sampling /.

In our real implementation (shown in Fig. 2) of the proposed
method, the neural network F, which contains a convolution,
a fully-connected layer and a non-linear activation, can be
approximated by the above-mentioned model. Therefore the
above analysis also works for our actual implementation.
Here we discuss the time complexity of the proposed online
alternate generation algorithm (shown in Algorithm 1). The
proposed algorithm consists of two nested loops. The outer
loop contains Ty iterations while the inner loop has 7; itera-
tions. Assume that computing Eq. (3) takes the same constant
time as computing Eq. (5). The overall time complexity is
O(Tn(Tr + 1)) = O(Tn - Ty). In practice, it takes about
30 seconds to process an input image of size 224 x 224.

D. Stopping Criteria

The proposed online alternate generation terminates after
Ty outer iterations as shown in Algorithm 1. On one hand,
larger network step Ty leads to unnecessary computations.
On the other hand, with smaller Ty, the proposed generator
could fail to reproduce the semantics of an input image,
which will seriously drop the classification accuracy of target
networks. More importantly, to develop a portable defense
against unseen attacks, we need to determine 7y without
tuning it on known adversarial samples. Here, we propose
to utilize images perturbed by Gaussian noises to choose the
network steps Ty . It is based on an assumption that the online
alternate generating process of adversarial samples and those
with Gaussian noises are similar. The experimental details and
results are presented in Section IV-E.

IV. EXPERIMENTS
A. Experimental Setting

1) Dataset: We evaluate the performance of our method
on ILSVRC 2012 dataset [39] and Oxford Flower-17 dataset
[40]. Most images in ILSVRC 2012 dataset are large images
whose size is not smaller than 200 x 200. Most images in
Oxford Flower-17 dataset are larger than 500 x 500. We claim
that it is practical and meaningful to develop a defense
method that works with large images. Because experimental
results obtained on simple dataset such as MNIST [4] do not
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TABLE I

ToP-1 ACCURACY OF DIFFERENT DEFENSE METHODS AGAINST FGSM, IGSM, MI-FGSM AND C&W ON ILSVRC 2012 DATASET AND OXFORD
FLOWER-17 DATASET. * INDICATES THAT THE METHOD NEEDS TO BE TRAINED BEFORE INFERENCE

Defense Methods ILSVRC 2012 Oxford Flower-17
FGSM IGSM MI-FGSM C&W FGSM IGSM MI-FGSM C&W
None 8.35% 0.05% 0.30% 0.00% 27.65% 7.35% 0.59% 0.00%
Mean Filter [37] 39.65% 67.65% 38.50% 75.55% 60.59% 73.24% 47.06% 66.47%
JPEG [38] 19.70% 54.55% 0.85% 67.50% 45.88% 47.94% 20.88% 28.82%
TVM [21] 41.00% 66.70% 53.45% 69.00% 69.12% 83.82% 70.88% 80.29%
Pixel Deflection [26] 41.70% 55.80% 51.10% 57.00% 71.47% 82.06% 70.59% 78.82%
Randomization [23] 40.05% 67.15% 44.80% 68.30% 72.65% 83.24% 62.94% 75.88%
x«Pixel Defend [24] 20.15% 55.25% 20.05% 66.75% 48.82% 53.53% 27.06% 37.35%
Ours 49.10% 75.25% 55.90% 77.95% 76.76% 87.35% 73.82% 84.41%
always generalize to harder tasks, as suggested by [2]. As 1.01
suggested in [23], it is less meaningful to attack misclassified —+ IGSM
images, we randomly choose 2000 correctly classified images 0.81
(2 images/class) from the validation set to perform experi-
ments. 3061
2) Target Network: We choose ResNetl8 [41] as the §
attacked target network on Oxford FLower-17 dataset, and QO. 4
utilize ResNet50 on ILSVRC 2012 dataset. To demonstrate
the transferability of out proposed defense method, we further 0.2
conduct experiments on Oxford Flower-17 dataset with dif- '
ferent target networks, including VGGI11 [42], MobileNet_v2
[43] and DenseNetl121 [44]. 0.0 0 5 10 15 20 25 30

3) Attack Methods: We exploit FGSM [6] and IGSM [1]
to construct targeted adversarial examples with randomly
selected target categories. We utilize MI-FGSM [12] and C&W
attack [45] to synthesize untargeted adversarial samples. In
this article, we adopt gray-box attacks [21] in which attackers
can access the target network and its parameters, but have no
knowledge of defense methods. L, norm is adopted to bound
adversarial perturbations. € denotes the upper bound of Lo
norm. We choose € for each attack type such that the adver-
sarial attack is strong enough and its resulting perturbation is
imperceptible. For example, we attack a ResNet18 model by
targeted IGSM, as shown in Fig. 3. As € grows from O to 5,
the top-1 accuracy of the attacked model drops rapidly. For
€ larger than 5, the top-1 accuracy becomes stable. In such
case, larger perturbations do not lead to stronger attack but
only synthesize noisy and undesirable images. For FGSM,
IGSM and MI-FGSM, ¢ is selected respectively as {6, 6, 2}
on ILSVRC 2012 dataset and {6, 6, 4} on Oxford Flower-
17 dataset. The number of iterations is set as min(e + 4,
ceil(1.25¢)), according to [1]. ceil(-) denotes rounding up to
an integer. The step size is set as 1.

4) Defense Methods: In this article, we compare our method
with six state-of-the-art portable defenses, including Mean
Filter [37], JPEG compression and decompression [38], TVM
[21], Pixel Deflection [26], Randomization [23] and Pixel
Defend [24]. All of these methods play a role as pre-
processings. In addition, the first five methods can be used
without training. Although Pixel Defend needs to train a
PixelCNN [32] network on the training set, it does not need to
access the parameters of adversarial attacks. Pixel Defend has

L. of adversarial perturbation, €

Fig. 3. Top-1 accuracy of ResNet18 attacked by targeted IGSM with different
€ (oo norm of adversarial perturbations) on Oxford Flower-17 dataset.

been successfully attacked by Athalye ef al. [18] in white-box
setting, but it is still meaningful to compare it with our
proposed method in the gray-box setting.

B. Comparison With the State-of-the-Art

We choose existing portable defenses that can work with
unseen attack types and large images for comparison. These
defense methods do not require accessing target networks
or attack types. This experiment is conducted with gray-box
attack setting. The parameters of all defenses are invisible
to attackers. As can be observed in TABLE I, our proposed
defense method achieves the best top-1 accuracy on both
ILSVRC 2012 dataset and Oxford Flower-17 dataset, against
four kinds of attacks, including FGSM, IGSM, MI-FGSM
and C&W. On ILSVRC 2012 dataset, The proposed method
outperforms the second best Pixel Deflection by 7.4% against
FGSM, and surpasses the second best Mean Filter by 7.6%
against IGSM. Our proposed method outperforms the second
best method TVM by 2.45% top-1 accuracy on MI-FGSM
and Mean Filter by 2.4% top-1 accuracy on C&W. On Oxford
Flower-17 dataset, the top-1 accuracy of our method is 4.1%
higher than the second best against FGSM and 3.5% higher
than TVM against IGSM. The proposed method outperforms
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TABLE II

INVESTIGATION OF THE PROPOSED METHOD WITH ENSEMBLE
ADVERSARIAL TRAINING. ADVERSARIAL EXAMPLES ARE
SYNTHESIZED USING MI-FGSM ON ILSVRC 2012 DATASET

Attacks With IncV3ens IncV3 + ours IncV3ens + ours
IncV4 71.80% 73.30% 78.45%
IncV3 34.70% 39.60% 71.70%

the second best method, TVM, by 2.94% top-1 accuracy on
MI-FGSM and 4.12% top-1 accuracy on C&W attack.

TABLE 1 shows that top-1 accuracy on IGSM is better
than FGSM, while the results in [17] suggest that IGSM is
stronger than FGSM on white-box attacks with the same €.
We claim that our experimental results is reasonable because
our experiments is tested on gray-box attacks. In our cases,
defense methods shown in TABLE I have modified the adver-
sarial perturbations in adversarial samples. Since adversarial
perturbations computed in iterative methods ‘fit’ the target
network better than single-step methods, minor changes on
iterative adversarial samples could reduce more attack effects
than single-step adversarial samples. It can be regarded as an
evidence supporting that stronger adversaries decrease trans-
ferability [17]. Experimental results in Pixel Deflection [26]
also show that classifier accuracy of IGSM is higher than
FGSM on gray-box attacks. Notice that the numeric results
of Pixel Deflection in our experiment may differ from those
in [26]. It is due to that we adopt Lo, norm following
the original FGSM/IGSM while Prakash er al. [26] use L,
norm. Different norm may result in different distribution of
adversarial noises and attack effects.

We discuss two reasons why the proposed method are
better than the previous works. First, the proposed method
synthesizes a new image with less adversarial noises to replace
the original input. In Sec III-C we have shown that the
synthesized image I; approximates to the original input /,. The
introduced Gaussian perturbation in Eq (3) avoids recovering
the adversarial noises of /,. Second, the transferability among
CNN models may be a reason. When updating image I, F
has also been updated for hundreds of times. That is to say,
Iy is synthesized based on hundreds of different CNN models
(a model F with different parameters). The pixel values of I
could be suitable for another CNN model (such as the target
classifier) to extract effective features.

C. Investigation With Adversarial Training

This section presents how our proposed method work with
Ensemble Adversarial Training method [2]. Noted that adver-
sarial training based methods are not portable defense as they
require to re-train the attacked target networks. As shown
in TABLE 1II, IncV3ens, IncV3+4ours and IncV3ens+ours
respectively denote an ensemble adversarial training IncV3
(Inception-V3) [46] model, a plain IncV3 model defended by
our proposed method and the Ensemble Adversarial Training
model defended by our proposed method. ‘Attacks With’
denotes the pre-trained models used to synthesize adversarial
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TABLE III

ToP-1 ACCURACY OF DIFFERENT DEFENSE METHODS AGAINSTIGSM ON
OXFORD FLOWER-17 DATASET WITH DIFFERENT TARGET
NETWORKS. * INDICATES THAT THE METHOD
REQUIRES OFFLINE TRAINING

Defense Methods ResNetl8 VGG11 MobileNet v2 DenseNetl121

None 735%  9.71% 5.59% 5.29%
Mean Filter 73.24% 69.12% 82.65% 60.00%
JPEG 47.94% 50.00% 58.53% 27.56%
TVM 83.82% 67.94% 88.53% 73.24%
Pixel Deflection 82.06% 77.06% 82.65% 82.56%
Randomization 83.24% 72.65% 86.75% 72.53%
*Pixeldefend 53.53% 50.88% 61.47% 35.29%
Ours 87.35% 80.29% 91.18% 87.65%

examples. The pre-trained IncV3 model has the same architec-
ture but different parameters from IncV3ens. Thus attacks with
IncV4 (Inception-V4) [47] and IncV3 are in black-box setting
and gray-box setting respectively. The results indicate that the
proposed method outperforms Ensemble Adversarial Training
by 1.5% and 4.9% top-1 accuracy in black-box and gray-box
setting respectively. Besides, our proposed method signifi-
cantly enhances the top-1 accuracy of the IncV3ens model by
6.65% and 37% top-1 accuracy against attacks with IncV4 and
IncV3 respectively. Notice that Ensemble Adversarial Training
and the proposed method obtain a relatively lower accuracy
(less than 40%) on gray-box setting. Such situation could
be due to that the IncV3 model is relatively more sensitive
to the MI-FGSM attack than other models such as ResNet.
Besides, we find that combining the proposed method with
Ensemble Adversarial Training can achieve acceptable topl-
accuracy of 71.70%.

D. Transferability Analysis

This section investigates whether our defense method
is transferable to protect different kinds of target net-
works. Experiments are conducted on Oxford Flower-
17 dataset. Adversarial examples are generated using IGSM
in this section. The target networks includes VGGI11,
MobileNet_v2 and DenseNetl21. These target networks
are initialized with weights pretrained on ImageNet, and
then fine-tuned on the training set of Oxford FLower-
17 dataset. The top-1 accuracy of VGG11, MobileNet_v2 and
DenseNet121 are 91.47%, 97.35% and 96.47% respectively on
clean images from the test set. We determine € according to
the criteria discussed in the above section, and select € = 6
for ResNetl8, € = 8 for VGGI11, € = 6 for MobileNet_v2 and
€ = 8 for DenseNet121.

As shown in TABLE III, the proposed method demonstrates
higher top-1 accuracy than other state-of-the-art defense algo-
rithms. Our method exceeds TVM by 3.5% top-1 accuracy on
ResNet18, and outperforms Pixel Deflection by 3.2% topl-
accuracy on VGG11. On MobileNet_v2, the proposed method
surpasses the second best TVM by 2.6% top-1 accuracy. The
topl-accuracy of our method is 5.1% higher than the sec-
ond best Pixel Deflection on DenseNetl21. Notice that the
proposed method does not need offline training beforehand,
and therefore does not obtain any knowledge or response
of the attacked target networks. Tuning hyper-parameters is

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on October 26,2025 at 07:07:39 UTC from IEEE Xplore. Restrictions apply.



9312

1.0
0.81
)
£ 0.61
3
(9]
(9]
<0.4
—— Gaussian Noise
0.2 —— FGSM
— IGSM
0 100 200 300 400 500 600
Step

Fig. 4. Comparison among reference images with different noises. ‘Accuracy’
denotes top-1 accuracy. ‘Step’ corresponds to Network Steps. Gaussian Noise
means that images are degraded by Gaussian Noise. FGSM and IGSM denote
adversarial noises generated by FGSM and IGSM.

also independent of attacked target models. Thus the proposed
method is not biased towards any specific models, but enjoys
superior transferability with various types of target networks.

E. Ablation Study

Our proposed defense method contains several essential
hyper-parameters, including Network Steps Ty, Image Steps
T; and kernel size. We investigate how different settings of
these hyper-parameters affect the performance of our method
on Oxford Flower-17 dataset. When investigating a hyper-
parameter, other hyper-parameters are set as default values
suggested in Section IV-A.

1) Network Steps Ty: To determine Ty, the number of
iteration (in the outer loop), a straightforward way is to
generate adversarial samples with training set, run the pro-
posed method on these adversarial samples, and find out a
suitable value for Ty. However, as a defender we usually
do not know the exact attack type in testing stage. Thus
it is meaningful to determine 7 without the knowledge
of adversarial attacks. Since our proposed method does not
estimate the attack type of an input image, we assume that
using samples with non-adversarial noises also can determine
the iteration number. Then we conduct an experiment to verify
the assumption. We generate three sets of noisy samples for
training set. One set is generated by adding Gaussian noises
(u = 0, 0 = %£0.25). The other two sets are generated by
adding adversarial noises of FGSM and IGSM. We run the
proposed method for different iterations on these three sets of
data. We use the target image classifier to classify the images
synthesized by the proposed method at different iterations.
The results is shown in Fig 4 that has taken average of the
whole training set. It does reflect most of cases. The resulting
curve of IGSM, FGSM and Gaussian noises are marked with
red, blue and green color in Fig 4. As can be seen, these
three curves have almost the same trend, which converge and
become flat after around 200 steps. Thus we can barely rely
on the curve corresponding to Gaussian noise to determine a
suitable Network Steps. On ILSVRC 2012 dataset, Network
Steps is selected as 600 in the same way.
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TABLE IV
COMPARISON AMONG DIFFERENT IMAGE STEPS.

Image Steps 77 10 20 30 40
Top-1 Accuracy 87.05% 87.35% 87.35% 87.65%
TABLE V
COMPARISON AMONG DIFFERENT KERNEL SIZES.

Kernel Sizes 7TXxT7 11 x11 15x15 21 x21
Top-1 Accuracy 85.29% 86.18% 87.35% 86.18%

2) Image Steps T;: We evaluate four different Image Steps
with kernel size set to 15 x 15 and Network Steps set to 300.
As shown in TABLE IV, the top-1 accuracy increases as more
Image Steps is adopted. However, as larger Image Steps leads
to higher time cost, we select 7 = 20 to make a trade-off
between performance and efficiency.

3) Kernel Size: We evaluate four different kernel sizes of
the first convolution layer, with Image Steps set to 20 and
Network Steps set to 300. TABLE V shows that our method
performs the best with kernel size 15 x 15. Small receptive
field is susceptible to adversarial perturbations. Convolutions
with smaller receptive field benefit the reconstruction of image
details, even including the adversarial perturbation on the
given inference image. On the contrary, images synthesized
by convolutions with larger receptive field may lower the
quality of small patterns and details, which also degrades the
classification accuracy.

FE. Investigation With Natural/Clean Images

We present the results on both clean and adversarial sam-
ples, as shown in TABLE VI. The results are obtained on
Oxford Flower-17 with C&W as attack and ResNetl8 as
target classifier. ‘None’ denotes the target classifier without
any defenses. In TABLE VI, JPEG and Pixel Defend are
the best on clean images, but their top-1 accuracy are less
than 40% and the worst on adversarial images. TVM is
worse than our method on both clean and adversarial samples.
Pixel Deflection is close to our method on clean images but
our method exceeds it by 5.59% top-1 accuracy against the
adversarial attack. Randomization surpasses our method by
2.9% on clean images but our method outperforms it by 8.6%
on adversarial examples. Comparing with DIP, our proposed
method obtains 1.5% higher topl-accuracy against adversarial
samples, and 2.4% lower accuracy on clean images. Overall,
the proposed method achieves the state-of-the-art trade-off
between natural images and adversarial examples.

G. Visualization of Online Alternate Generation

This section visualizes the synthesized image of our defense
method during the alternate generation. As shown in Fig. 5,
the columns captioned with ‘Iteration k’ are the intermedi-
ate synthesized images of our proposed defense method at
iteration k. The maximum number of iterations corresponds
to Network Steps that controls how many times the neural
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The visualization of our defense method on ILSVRC 2012 and Oxford Flower-17 dataset under targeted Iterative FGSM attack. We exhibit images

generated by our defense method at different iterations. (a) visualizes the difference between adversarial examples and original images. (b) visualizes the
difference between our results and original images. As can be observed, our results have different noise distribution from input adversarial examples.

TABLE VI
INVESTIGATION WITH NATURAL/CLEAN IMAGES

Defense Methods Clean Images Adversarial
None 97.06% 0.00%
Mean Filter [37] 94.71% 66.47%
JPEG [38] 97.06% 28.82%
TVM [21] 90.88% 80.29%
Pixel Deflection [26] 92.35% 78.82%
Randomization [23] 95.00% 75.88%
Pixel Defend [24] 96.76% 37.35%
DIP [34] 94.41% 82.94%
Ours 92.06% 84.41%

model in our method is updated. As the iteration number
increases, the synthesized image become clearer and sharper.
The synthesized image at the last iteration is visually similar
to the original image. The column captioned with (a) is
the residual map of an adversarial example (synthesized by
Iterative FGSM). The residual map of a synthesized image is
defined as a normalized pixel-wise absolute difference between
the synthesized image and its corresponding original image.
The column captioned with (b) is the residual map of the
synthesized image in our method. Comparing column (a) with
column (b), the residual map of an adversarial examples differs
from that of the synthesized image in our method, which
suggests that the noise distribution between an adversarial
example and its corresponding synthesized image is quite
distinct. The synthesized images could be less affected by the
adversarial noises.

H. Whether Alternate Update Is Necessary

To understand whether the alternate update scheme in our
proposed method is necessary, let us consider a simple auto-
encoder. The auto-encoder employs online training strategy
as the proposed method to achieve portable defense, but
does not adopt two-step update. Given an image, we first
randomly initialize the parameters of the auto-encoder, and
then online tune its parameters by taking the image as input
and supervision. After Ty -step updates, the auto-encoder takes

the image as input and outputs another image. The output
serves as a substitute to be sent into a target classifier. For fair
comparison, we instantiate the auto-encoder in a symmetric
form, and its encoder part as the same as the proposed gen-
erator. The auto-encoder consists of a convolution layer, two
fully-connected layers, a non-linear activation and a decon-
volution layer. The fully-connected layers are in between the
convolution and the deconvolution while the non-linear layer
is located in between these two fully-connected layers. The
first fully-connected layer encodes a tensor into a scalar while
the second one decodes a scalar into a tensor. The auto-encoder
achieves 82.94% on Oxford Flower-17 benchmark with C&W
as attack and ResNetl8 as target classifier. Our proposed
method using alternate update obtains 84.41%, slightly better
than the auto-encoder using one-step update. It may be due to
that the alternate update with Langevin Dynamics could better
sample a representative point in some latent space, and hence
recover more accurate semantics for an input image.

V. CONCLUSION

In this article we develop a novel portable defense frame-
work that reconstructs an image with less adversarial noise
and almost the same semantics as an input image. The recon-
structed image acts as a substitute to defend against adversarial
attacks. The hyper-parameters of our proposed defense do not
need to be tuned on any adversarial examples, which avoid a
bias towards some known attacks. The proposed defense does
not access, modify any parameters or intermediate outputs of
target models, which allows the defense portably transferable
to a wide range of target classifiers. Experimental results show
that our method obtains the state-of-the-art performance.
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