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Abstract—Due to the widespread applications in real-world
scenarios, metro ridership prediction is a crucial but challenging
task in intelligent transportation systems. However, conventional
methods either ignore the topological information of metro
systems or directly learn on physical topology, and cannot fully
explore the patterns of ridership evolution. To address this
problem, we model a metro system as graphs with various
topologies and propose a unified Physical-Virtual Collabora-
tion Graph Network (PVCGN), which can effectively learn the
complex ridership patterns from the tailor-designed graphs.
Specifically, a physical graph is directly built based on the
realistic topology of the studied metro system, while a similarity
graph and a correlation graph are built with virtual topologies
under the guidance of the inter-station passenger flow similarity
and correlation. These complementary graphs are incorporated
into a Graph Convolution Gated Recurrent Unit (GC-GRU)
for spatial-temporal representation learning. Further, a Fully-
Connected Gated Recurrent Unit (FC-GRU) is also applied to
capture the global evolution tendency. Finally, we develop a
Seq2Seq model with GC-GRU and FC-GRU to forecast the
future metro ridership sequentially. Extensive experiments on
two large-scale benchmarks (e.g., Shanghai Metro and Hangzhou
Metro) well demonstrate the superiority of our PVCGN for
station-level metro ridership prediction. Moreover, we apply
the proposed PVCGN to address the online origin-destination
(OD) ridership prediction and the experiment results show the
universality of our method. Our code and benchmarks are
available at https://github.com/HCPLab-SYSU/PVCGN.

Index Terms— Metro system, ridership prediction, graph con-
volutional networks, physical topology, virtual topology.

I. INTRODUCTION

ETRO is an efficient and economical travel mode in
metropolises, and it plays an important role in the
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daily life of residents. By the end of 2018, 35 metro systems
have been operated to serve tens of millions of passengers
in Mainland China.! For instance, over 10 million metro trip
transactions were made per day in 2018 for Beijing? and
Shanghai.®> Such huge metro ridership poses great challenges
for urban transportation and any carelessness of traffic man-
agement may result in citywide congestions. For improving the
service efficiencies of metro systems, a fundamental problem
is how to accurately forecast the ridership (e.g., inflow and
outflow) of each station, which is termed as station-level
metro ridership prediction in this work. Due to its potential
applications in traffic dispatch and route planning, this problem
has become a hotspot research topic [1]-[6] in the community
of intelligent transportation systems (ITSs).

Over the past decade, massive efforts have been made
to address the traffic states (e.g., flow, speed and demand)
prediction. In early works [7]-[9], the raw data of traffic
states at each time interval was usually transformed to be
a vector/sequence and the time series models [8], [10] were
applied for prediction. However, this data format failed to
maintain the spatial information of locations and the topolog-
ical connection information between two locations. In recent
years, deep neural networks (e.g., Long Short-term Mem-
ory [11] and Gated Recurrent Unit [12]) have been widely used
for citywide traffic prediction [13]-[19]. These works usually
partitioned the studied cities into regular grid maps on the
basis of geographical coordinate and organized the collected
traffic state data as Euclidean 2D or 3D tensors, which can
be straightway fed into convolutional networks for automatic
representation learning. Nevertheless, this manner is unsuitable
for metro systems, since their topologies are irregular graphs
and their data structures are non-Euclidean. Although the
transaction records of a metro system can be rendered as a
grid map [20], it is inefficient to learn ridership evolution
patterns from the rendered map, which is very sparse and can
not maintain the connection information of two stations.

In general, the challenges of metro ridership prediction
lie in how to efficiently model the non-Euclidean structures
of metro systems and fully capture the ridership evolution
patterns. Although the emerging Graph Convolution Net-
works (GCN [21]-[23]) have been proven to be general for

1 https://en.wikipedia.org/wiki/Urban_rail_transit_in_China
2https://en.wikipedia.org/wiki/Beijingisubway
3 https://en.wikipedia.org/wiki/Shanghai_Metro
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non-Euclidean data embedding, how to construct the rea-
sonable graphs in GCN still is an open problem and the
construction strategy is varying in different tasks [24]-[27].
Some recent works [28]-[34] have applied GCN to traffic
prediction and most of them directly build geographical graphs
based on the physical topologies of the studied traffic systems.
However, this simple strategy is suboptimal for metro ridership
prediction, since it only learns the local spatial dependency of
neighboring stations and can not fully capture the inter-station
flow patterns in a metro system. Therefore, except for the phys-
ical topologies, we should construct some more reasonable
graphs with human domain knowledge, such as:

« Inter-station Flow Similarity: Intuitively, two metro
stations in different regions may have similar evolution
patterns of passenger flow, if their located regions share
the same functionality (e.g., office districts). Even though
these stations are not directly linked in the real-world
metro system, we can connect them in GCN with a virtual
edge to jointly learn the evolution patterns.

o Inter-station Flow Correlation: In general, the ridership
between every two stations is not uniform and the direc-
tion of passenger flow implicitly represents the correlation
of two stations. For instance, if (i) the majority of inflow
of station a streams to station b, or (ii) the outflow of
station a primarily comes from station b, we argue that
the stations a and b are highly correlated. Under such
circumstances, these stations could also be connected to
learn the ridership interaction among stations.

Based on the above observations, we propose a unified
Physical-Virtual Collaboration Graph Network (PVCGN) to
predict the future metro ridership in an end-to-end manner.
To fully explore the ridership evolution patterns, we utilize
the metro physical topology information and human domain
knowledge to construct three complementary graphs. First,
a physical graph is directly formed on the basis of the realistic
topology of the studied metro system. Then, a similarity
graph and a correlation graph are built with virtual topologies
respectively based on the passenger flow similarity and cor-
relation among different stations. In particular, the similarity
score of two stations is obtained by computing the warping
distance between their historical flow series with Dynamic
Time Warping (DTW [35]), while the correlation ratio is
determined by the historical origin-destination distribution
of ridership. These tailor-designed graphs are incorporated
into an extended Graph Convolution Gated Recurrent Unit to
collaboratively capture the ridership evolution patterns. Fur-
thermore, a Fully-Connected Gated Recurrent Unit is utilized
to learn the semantic feature of global evolution tendency.
Finally, we apply a Seq2Seq model [36] to sequentially
forecast the metro ridership at the next several time inter-
vals. To verify the effectiveness of our PVCGN, we conduct
extensive experiments on two large-scale benchmarks (i.e.,
Shanghai Metro and Hangzhou Metro) and the evaluation
results show that our approach outperforms existing state-of-
the-art methods under various comparison circumstances. For
verifying the universality of our method, we further employ
the proposed PVCGN to forecast the online origin-destination
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(OD) ridership and the experiment results also demonstrate the
effectiveness of PVCGN for OD ridership prediction.

In summary, our major contributions are four-fold:

o We develop a unified Physical-Virtual Collaboration
Graph Network (PVCGN) to address the station-level
metro ridership prediction. Specifically, PVCGN incorpo-
rates a physical graph, a similarity graph and a correlation
graph into a Graph Convolution Gated Recurrent Unit to
facilitate the spatial-temporal representation learning.

o The physical graph is built based on the realistic topology
of a metro system, while the other two virtual graphs
are constructed with human domain knowledge to fully
exploit the ridership evolution patterns.

« Extensive experiments on two real-world metro ridership
benchmarks show that our PVCGN comprehensively out-
performs state-of-the-art methods for station-level rider-
ship prediction.

o As a general model, our PVCGN can be directly
employed for online origin-destination ridership predic-
tion and also achieves superior performance.

The remaining parts of this paper are organized as follows.
We first investigate the deep learning on graphs and some
related works of traffic states prediction in Section II. The pro-
posed PVCGN is then introduced systematically in Section III.
We conduct extensive comparisons for station-level metro rid-
ership prediction in Section IV and extend PVCGN to forecast
online OD ridership in Section V. Finally, we conclude this
paper and discuss future works in Section VI.

II. RELATED WORK
A. Deep Learning on Graphs

In machine learning, Euclidean data refers to the sig-
nals with an underlying Euclidean structure [37]-[43] (such
as speeches, images, and videos). Although deep Convolu-
tional/Recurrent Neural Networks (CNN/RNN) can handle
Euclidean data successfully, it is still challenging to deal
with non-Euclidean data (e.g., graphs), which is the data
structure of many applications. To address this issue, Graph
Convolution Networks (GCN) have been proposed to auto-
matically learn feature representation on graphs. For instance,
Brunaat et al. [21] introduced a graph-Laplacian spectral fil-
ter to generalize the convolution operators in non-Euclidean
domains. Defferrard et al. [44] presented a formulation of
CNN with spectral graph theory and designed fast localized
convolutional filters on graphs. Atwood and Towsley [45]
developed a spatial-based graph convolution and regarded it
as a diffusion process, in which the information of a node was
transferred to its neighboring nodes with a certain transition
probability. Velickovi€ et al. [46] assumed the contributions of
neighboring nodes to the central node were neither identical,
thus proposed a Graph Attention Network. Wu et al. [47]
reduced the complexity of GCN through successively remov-
ing nonlinearities and collapsing weight matrices between con-
secutive layers. Seo et al. [48] incorporated graph convolution
and RNN to simultaneously exploit the graph spatial and
dynamic information for structured sequences learning.

Recently, GCN has been widely applied to address various
tasks and the graph construction strategy varied in different
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works. For instance, in computer vision, Jiang et al. [49]
utilized the co-occurrence probability, attribute correlation
and spatial correlation of objects to build three graphs for
large-scale object detection. Chen er al. [27] constructed
a semantic-specific graph based on the statistical label
co-occurrence for multi-label image recognition. In natural
language processing, Beck et al. [50] used source dependency
information to built a Levi graph [51] for neural machine
translation. For semi-supervised document classification, Kipf
and Welling [23] introduces a first-order approximation of
spectral graph [44] and constructed their graphs based on
citation links. In data mining, the relations between items-
and-items, users-and-users and users-and-items were usually
leveraged to construct graph-based recommender systems [52].
In summary, how to build a graph is an open problem and
we should flexibly design the topology of a graph for a
specific task.

B. Traffic States Prediction

Accurately forecasting the future traffic states is crucial
for intelligent transportation systems and numerous models
have been proposed to address this task [53]-[55]. In early
works [7]-[9], [56], [57], mass traffic data was collected
from some specific locations and the raw data at each time
interval was arranged as a vector (sequence) in a certain
order. These vectors were further fed into time series models
for prediction. A representative work was the data aggrega-
tion (DA) model [58], in which the moving average (MA),
exponential smoothing (ES) and autoregressive MA (ARIMA)
were simultaneously applied to forecast traffic flow. However,
this simple data format was inefficient due to the lack of spatial
information, and these basic time series models failed to learn
the complex traffic patterns. Therefore, the above-mentioned
works were far from satisfactory in complex traffic scenarios.

In recent years, deep neural networks have become
the mainstream approach in this field. For instance,
Zhang et al. [13] utilized three residual networks to learn
the closeness, period and trend properties of crowd
flow. Wang ef al. [S9] developed an end-to-end convo-
lutional neural network to automatically discover the
supply-demand patterns from the car-hailing service data.
Zhang et al. [18] simultaneously predicted the region-based
flow and inter-region transitions with a deep multitask frame-
work. Subsequently, RNN and its various variants are also
widely adopted to learn the temporal patterns. For instance,
Yao et al. [14] proposed a Deep Multi-View Spatial-Temporal
Network for taxi demand prediction, which learned the spatial
relations and the temporal correlations with deep CNN and
Long Short-Term Memory (LSTM [11]) unit respectively.
Liu et al. [60] developed an attentive convolutional LSTM
network to dynamically learn the spatial-temporal represen-
tations with an attention mechanism. In [17], a periodically
shifted attention mechanism based LSTM was introduced
to capture the long-term periodic dependency and temporal
shifting. To fit the required input format of CNN and RNN,
most of these works divided the studied cities into regular
grid maps and transformed the raw traffic data to be tensors.
However, this preprocessing manner is ineffective to handle
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the traffic systems with irregular topologies, such as metro
systems and road networks.

To improve the generality of the above-mentioned methods,
some researchers have attempted to address this task with
Graph Convolutional Networks. For instance, Li ef al. [28]
modeled the traffic flow as a diffusion process on a directed
graph and captured the spatial dependency with bidirectional
random walks, while Zhao et al. [32] proposed a temporal
graph convolutional network for traffic forecasting based on
urban road networks. Guo et al. [61] and Zheng et al. [34]
introduced attention mechanisms into spatial-temporal graph
networks to dynamically model the impact of various factors
for traffic prediction. Wu et al. [62] developed an adaptive
dependency matrix with node embedding to precisely capture
the hidden spatial dependency. Bai et al. [63] utilized a hier-
archical graph convolutional structure to capture both spatial
and temporal correlations for multi-step passenger demand
prediction. Song et al. [64] developed a Spatial-Temporal Syn-
chronous Graph Convolutional Networks (STSGCN), which
captured the complex localized spatial-temporal correlations
through a spatial-temporal synchronous modeling mechanism.
Recently, GCN has also been employed to metro ridership
prediction. In [65], graph convolution operations were applied
to capture the irregular spatiotemporal dependencies along
with the metro network, but their graph was directly built
based on the physical topology of metro systems. In constant,
we combine the physical topologies information and human
domain knowledge to construct three collaborative graphs with
various topologies, which can effectively capture the complex
patterns.

The most relevant work to ours is ST-MGCN [31], which
incorporated a neighborhood graph (NGraph), a transporta-
tion connectivity graph (TGraph), and a functional similarity
graph (FGraph) for ride-hailing demand prediction. The dif-
ferences between our PVCGN and ST-MGCN are two-fold.
First, ST-MGCN relied heavily on the extra information of
road networks (e.g., motorway and highway) and Point of
Interests (POI) for graph construction. However, this informa-
tion is inaccessible in many scenarios. In contrast, our PVCGN
does not require any external information, and our graphs can
be directly built with the spatial topology information and the
historical ridership data. Thus our method is more flexible
and universal for traffic prediction. Second, ST-MGCN paid
more attention to building the physical graphs (i.e., NGraph
and TGraph) based on real-world topologies and only built a
virtual graph (i.e., FGraph) with the external POI information.
In contrast, except for the physical graph, our PVCGN fully
explores the potential traffic patterns (such as inter-station flow
similarity and OD correlation) for virtual graph construction.
Therefore, our method can learn more comprehensive and
knowledgeable representation for traffic prediction.

C. Traffic Origin-Destination Prediction

Traffic origin-destination (OD) prediction is a challenging
task, which aims to forecast the traffic flow or demand
between any two positions. Some early works [66]-[68] usu-
ally employed time series models (e.g., Kalman filter) to esti-
mate the OD flow, while recent works developed various deep
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neural networks to forecast the OD matrices. For instance,
Liu et al. [16] proposed a Contextualized Spatial-Temporal
Network that incorporated local spatial context, temporal
evolution context, and global correlation context to forecast
taxi OD demand. Chu er al. [69] developed a Multi-Scale
Convolutional LSTM Network for taxi OD flow predic-
tion. Wang et al. [70] developed a Grid-Embedding based
Multi-task Learning framework that applied graph convolu-
tions among geographical and semantic neighbors to model
the OD transferring patterns. Shi et al. [71] utilized long
short-term memory units to extract temporal features for each
OD pair and then learned the spatial dependency of origins
and destinations by a two-dimensional graph convolutional
network. In the aforementioned ride-hailing applications, the
origin and destination of a passenger are known once a taxi
request is generated. However, in online metro systems, the
destination of a passenger is unknown until it reaches the
destination station, so we can not obtain the complete OD
distribution immediately to forecast the future OD demand.
To address this issue, Gong et al. [72] used some indication
matrices to mask and neglect the potential unfinished metro
orders. In our work, we apply the proposed PVCGN to handle
this task by learning a mapping from the historical incomplete
OD demands to the future complete OD demands, and more
details can be found in Section V.

III. METHODOLOGY

In this work, we propose a novel Physical-Virtual
Collaboration Graph Network (PVCGN) for station-level
metro ridership prediction. Based on the physical topology of
a metro system and human domain knowledge, we construct
a physical graph, a similarity graph and a correlation graph,
which are incorporated into a Graph Convolutional Gated
Recurrent Unit (GC-GRU) for local spatial-temporal repre-
sentation learning. Then, a Fully-Connected Gated Recurrent
Unit (FC-GRU) is applied to learn the global evolution feature.
Finally, we develop a Seq2Seq framework with GC-GRU and
FC-GRU to forecast the ridership of each metro station.

We first define some notations of ridership prediction before
introducing the details of PVCGN. The ridership data of
station { at time interval ¢ is denoted as X } € R?, where these
two values are the passenger counts of inflow/outflow. The
ridership of the whole metro system is represented as a signal
X, = (X!, X?,...,XN) e R¥*N where N is the number of
stations. Given a historical ridership sequence, our goal is to
predict a future ridership sequence:

Xf'f‘l» XI+27 R} Xt+m
— PVCGN(X/—nt1, Xi—nt2, -, Xo) (1)
where n refers to the length of the input sequence and m
is the length of the predicted sequence. For the convenience
in following subsections, we also denote the whole historical

ridership of station i as a vector X! € R?”, where T is the
number of time intervals in a training set.

A. Physical-Virtual Graphs

In this section, we describe how to construct the physi-
cal graph and two virtual graphs. By definition, a graph is
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composed of nodes, edges as well as the weights of edges.
In our work, the physical graph, similarity graph and correla-
tion graph are denoted as G, = (V, £,, Wp), Gy = (V, &, Wy)
and G. = (V, &, W), respectively. )V is the set of nodes
(]V] = N) and each node represents a real-world metro station.
Note that these three graphs share the same nodes, but have
different edges and edge weights. £,, & and &, are the edge
sets of different graphs. For a specific graph G, (o = p, s, ¢),
W, € RV*N denotes the weights of all edges. Specifically,
W, (i, j) is the weight of an edge from node j to node i.

1) Physical Graph: G, is directly built based on the
physical topology of the studied metro system. An edge is
formed to connect node i and j in &,, if the corresponding
station i and j are connected in real world. To calculate the
weights of these edges, we first construct a physical connection
matrix P € RV*N_ As shown in Fig.1-(a,)b), P(i, j) = 1 if
there exists an edge between node i and j, or else P(i, j) = 0.
To avoid the repetitive computation of graph self-loop, each
diagonal value P(i,i) is directly set to O and the self-loop
would be uniformly computed once for multi-graphs in Eq.7.
Finally, the edge weight W), is obtained by performing a linear
normalization on each row (See Fig.1-c). Specifically, W, (i, j)
is computed by:

PG, j)
S PG, k)

2) Similarity Graph: In this section, the similarities of
metro stations are used to guide the construction of Jj.
First, we construct a similarity score matrix § € RV*VN by
calculating the passenger flow similarities between every two

stations. Specifically, the score S(i, j) between station i and
j is computed with Dynamic Time Warping (DTW [35]):

Wy (i, j) = )

S(i, j) = exp(-DWT(X', X/)), 3)

where DTW is a general algorithm for measuring the distance
between two temporal sequences. Note that S(i,i) is also
directly set to 0. Based on the matrix S, we select some station
pairs to build edges &. The selection strategy is flexible.
For instance, these virtual edges can be determined with a
predefined similarity threshold, or be built by choosing the
top-k station pairs with high similarity scores. More selection
details can be found in Section IV-A.2. Finally, we calculate
the edge weights Wy by conducting row normalization on S:

.. S@, j
Wi, j) = = d) @)
Zk:l S(l9 k) : L(5S7 i, k)
where L(&,i,k) = 1 if & contains an edge connecting

node i and k, or else L(&,i,k) = 0. A toy example of
similarity graph is shown in Fig.1-(d,e,f) and we can observe
that matrix § is symmetrical, but matrix W; is asymmetrical
due to the row normalization.

3) Correlation Graph: We utilize the origin-destination
distribution of ridership to build the virtual graph G.. First,
we construct a correlation ratio matrix C € RY*V_ Specifi-
cally, R(i, j) is computed by:

D(, j)

C(', ): _Pu.j)
. ZIICV:l D(l’k)

5)
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/ 1 1.00
S 1 1.00
(a) Physical Graph (b) Physical Connection Matrix (c) Physical Edge Weight
6 0.71 0.54 0.57 0.43
5 0.71 0.45 0.61 0.39
p B 0.38 0.51 Selectiog 0.43 0.57
1 ORPIRTELL 2“ RRRRTEA "4 0.38 0.44 ROW_Nor;n 0.46 0.54
0.45 0.44 0.48 033 0.32 0.35
S - 0.54 0.51 0.48 0.35 0.34 0.31
(d) Similarity Graph (e) Similarity Score Matrix (f) Similarity Edge Weight
0.56 0.34 0.62 0.38
0.48 0.40 0.55 0.45
0.35 | 0.54 Selection 0.39 | 0.61
 —
045 | 042 | Row-Norm 052 | 048
0.31 0.25 0.34 0.34 0.28 0.38
0.36 0.29 0.26 0.40 0.32 0.28

(g) Correlation Graph

Fig. 1.

(h) Correlation Ratio Matrix

(i) Correlation Edge Weight

lustration of the proposed physical-virtual graphs. In this figure, we take a metro system with six stations as an example to illustrate the construction

strategy of our physical-virtual graphs. First Row: (a) is the physical graph built based on the physical topology of the studied metro system. We perform
row normalization on the physical connection matrix (b) to obtain the edge weights (c). Second Row: (d) is the built similarity graph and its edges are
determined by the station pairs with high similarity scores in the matrix (e). The edge weights (d) are computed by conducting row normalization on the
similarity scores of the selected station pairs. Third Row: (g) is the built correlation graph. We compute the correlation ratio matrix (e) by measuring the
origin-destination distribution of ridership and select the station pairs with high correlation ratios to construct edges. The edge weights (i) are obtained by
conducting row normalization on the correlation ratios of the selected station pairs. Note that the origin is the top left corner for all matrices.

where D(i, j) is the total number of passengers that traveled
from station j to station i in the whole training set. Note
that C(i, i) is computed, since there are a small number of
passengers that entered and exited at the same station in the
real world. We use the similar selection strategy described in
Section III-A.2 to select some station pairs for edge construc-
tion. Finally, the edge weights W, is calculated by:

CG, J)
SN CGL k) - L(Eey iy k)

One example of correlation graph is shown in Fig.1-(d,e,f) and
we can see that G, is a directed graph, since R(i, j) # R(j,i).

WC(i5 .]) =

(6)

B. Graph Convolution Gated Recurrent Unit

As an alternative of LSTM [11], Gated Recurrent Unit has
been widely used for temporal modeling and it was usually
implemented with standard convolution or full-connection.
In this section, we incorporate the proposed physical-virtual
graphs to develop a unified Graph Convolution Gated Recur-
rent Unit (GC-GRU) for spatial-temporal feature learning.

We first formulate the convolution on the proposed
physical-virtual graphs. Let us assume that the input of

graph convolution is [, = {1,1,1,2,...,1,1\'}, where I,i can
be the ridership data X! or its feature. The parameters of
this graph convolution are denoted as ®. By definition of
convolution, the output feature f (Iti) e R? of Iti is computed
by:

fah=eui+ > Wi, )oe,l
jENp(i)

+ > Wi, ) oo
JeNs()

+ D Wi, ) 001,
JeN()

where © is Hadamard product and ® = {®;, ®,, Oy, O.}.
Specifically, G)ll,i is the self-loop for all graphs and @, is
the learnable parameters. ®, denotes the parameters of the
physical graph G, and N, (i) represents the neighbor set
of node i in G,. Other notations Oy, ©., N;(i) and N.(i)
have similar semantic meanings. d is the dimensionality of
feature f (Iti ). In this manner, a node can dynamically receive
information from some highly-correlated neighbor nodes. For
convenience, the graph convolution in Eq.7 is abbreviated as
I; % © in the following.

)
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Xt-n+1 Xt-n+2 X <ZERO> Xes1 Xevm—1

Fig. 2.

Overview of Physical-Virtual Collaboration Graph Network (PVCGN) for station-level metro ridership prediction. PVCGN consists of an encoder
and a decoder, both of which contains two Collaborative Gated Recurrent Modules (CGRMs). The encoder takes {X; 41, X;—p42, ..

., X} as input and

the decoder forecasts a future ridership sequence {f{ i1 D¢ PR T b'¢ t+m} with fully-connected (FC) layers.

Since the above-mentioned operation is conducted on spa-
tial view, we embed the physical-virtual graph convolution
in a Gated Recurrent Unit to learn spatial-temporal fea-
tures. Specifically, the reset gate R, = {R,l, R,z,...,R,N 1,
update gate Z, = {Z!, Z2,..., ZN}, new information N, =

(N], N,z, e, NIN} and hidden state H; = {H}, th, e, HIN}
are computed by:
R =0(0OuxI; + O, x H 1 + b;)
Z; =0@uxI; + O, x H_1 + b;)
N; = tanh{Q,, * I, + R, © (Opp, * Hi—1 + by,)}
H=0-Z)ON +Z, 0 H_ (8)

where ¢ is the sigmoid function and H;_; is the hidden state
at last iteration. ®,, denotes the graph convolution parameters
between H; and X;, while ®,; denotes the parameters between
R; and H,_;. Other parameters @;,, @5, 0, and ©,; have
similar meanings. b, b, and b, are bias terms. The feature
dimensionality of R!, Z!, N/ and H| are also set to d. For
convenience, we denote the operation of Eq.8 as:

H; = GC-GRU(/;, H,-1) ©)

Thanks to this GC-GRU, we can effectively learn
spatial-temporal features from the ridership data of metro
systems.

C. Local-Global Feature Fusion

In previous works [5], [16], global features have been
proven to be also useful for traffic state prediction. However,
the proposed GC-GRU conducts convolution on local space
and fails to capture the global context. To address this issue,
we apply a Fully-Connected Gated Recurrent Unit (FC-GRU)
to learn the global evolution features of all stations and gener-
ate a comprehensive feature by fusing the output of GC-GRU
and FC-GRU. The developed fusion module is termed as
Collaborative Gated Recurrent Module (CGRM) in this work
and its architecture is shown in Fig.3.

Specifically, the inputs of CGRM are I; and H,_;, where
I:I,_l is the output of last iteration. For GC-GRU, rather than

CGRM H,
4 g
H, H;
I e I
GC-GRU FC-GRU
rc|  |Fc
I t H t—1

Fig. 3. Illustration of Collaborative Gated Recurrent Module (CGRM) for
local and global feature fusion. Specifically, our CGRUs consists of a Graph
Convolution Gated Recurrent Unit (GC-GRU) and a Fully-Connected Gated
Recurrent Unit (FC-GRU). FC denotes a fully-connected layer.

take the original H; as input, it utilizes the accumulated infor-
mation in H;_ to update hidden state, thus Eq.9 becomes:

H; = GC-GRU(I,, H,_) (10)

For FC-GRU, we first transform /, and I:I,_l to an embedded
If € R? and H® | € RY with two fully-connected (FC)
layers. Then we feed If and H/ | into a common GRU [12]
implemented with fully-connection to generate a global hidden
state ﬁ,g € RY, which can be expressed as:

If = FC()), H_;=FC(H-),

Hf = FC-GRU(I{, Hf)), (11)

Finally, we incorporate H; and Htg to generate a com-

prehensive hidden state H, = {ﬁ ! ﬁtz, e, ﬁ,N } with a
fully-connected layer:
H' =FC(H! ® Hf), (12)

where @ denotes an operation of feature concatenation. H,
contains the local and global context of ridership, and we has
proved its effectiveness in Section IV-C.2.
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THE OVERVIEW OF SHMETRO AND HZMETRO DATASETS. “# STATION”

TABLE I

DENOTES THE NUMBER OF METRO STATIONS. “M” AND “MIN”
ARE THE ABBREVIATIONS OF “MILLION” AND
“MINUTE”, RESPECTIVELY

Dataset [ SHMetro [ HZMetro
City Shanghai, China Hangzhou, China
# Station 288 80
# Physical Edge 958 248
Ridership/Day 8.82 M 235 M
Time Interval 15 min 15 min

Training Timespan
Validation Timespan
Testing Timespan

7/01/2016 - 8/31/2016
9/01/2016 - 9/09/2016
9/10/2016 - 9/30/2016

1/01/2019 - 1/18/2019
1/19/2019 - 1/20/2019
1/21/2019 - 1/25/2019

D. Physical-Virtual Collaboration Graph Network

In this section, we apply the above-mentioned CGRUs
to construct a Physical-Virtual Collaboration Graph Net-
work (PVCGN) for station-level metro ridership prediction.
Following previous works [34], [63], [73]-[76], we also adopt
the Seq2Seq architecture to develop our framework, whose
architecture is shown in Fig.2.

Specifically, PVCGN consists of an encoder and a decoder,
both of which contain two CGRMs. In encoder, the rider-
ship data {X;_,+1, X;—»42, ..., X;} are sequentially fed into
CGRMs to accumulate the historical information. At itera-
tion i, the bottom CGRM takes X;_,; as input and its output
hidden state is fed into the above CGRM for high-level feature
learning. In particular, the initial hidden states of both CGRMs
at the first iteration are set to zero. In decoder, at the first
iteration, the input data is also set to zero and the final hidden
states of encoder are used to initialize the hidden states of the
decoder. The future ridership Xiq1is predicted by feeding the
output hidden state of the above CGRM into a fully-connected
layer. At iteration i (i > 2), the bottom CGRM takes
)A(Hi,] as input data and the above CGRM also applies a
fully-connected layer to forecast X ¢+i. Finally, we can obtain
a future ridership sequence {)A(H_l, X[J,_z, R )A(H_m}.

IV. EXPERIMENTS

In this section, we first introduce the settings of experi-
ments (e.g., dataset construction, implementation details, and
evaluation metrics). Then, we compare the proposed PVCGN
with eight representative approaches under various scenarios.
Finally, we conduct extensive internal analyses to verify the
effectiveness of each component in our method.

A. Experiments Settings

1) Dataset Construction: Since there are few public bench-
marks for metro ridership prediction, we collect a mass of
trip transaction records from two real-world metro systems
and construct two large-scale datasets, which are termed as
HZMetro and SHMetro respectively. The overviews of these
two datasets are summarized in Table I.

SHMetro: This dataset was built based on the metro system
of Shanghai, China. A total of 811.8 million transaction
records were collected from Jul. 1st 2016 to Sept. 30th 2016,
with 8.82 million ridership per day. Each record contains
the information of passenger ID, entry/exit station and the
corresponding timestamps. In this time period, 288 metro
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stations were operated normally and they were connected
by 958 physical edges. For each station, we measured its
inflow and outflow of every 15 minutes by counting the
number of passengers entering or exiting the station. The
ridership data of the first two months and that of the last three
weeks are used for training and testing, while the ridership
data of the remaining days are used for validation.

HZMetro: This dataset was created with the transaction
records of the Hangzhou metro system collected in January
2019. With 80 operational stations and 248 physical edges, this
system has 2.35 million ridership per day. The time interval
of this dataset is also set to 15 minutes. Similar to SHMetro,
this dataset is divided into three parts, including a training set
(Jan. 1st - Jan. 18th), a validation set (Jan. 19th - Jan. 20th)
and a testing set (Jan. 21th - Jan. 25th).

2) Implementation Details: Since the physical graph has a
well-defined topology, we only introduce the details of the two
virtual graphs in this section. In SHMetro dataset, to reduce the
computational cost of GCN, for each station, we only select the
top ten stations with high similarity scores or correlation rates
to construct virtual graphs, thereby both the similarity graph
and correlation graph have 2880 edges. In HSMetro dataset,
as its station number is much smaller than that of SHMetro and
the computational cost is not heavy, we can build more virtual
edges to learn the complex patterns. Specifically, we determine
the virtual edges by setting the similarity/correlation thresholds
to 0.1/0.02, and the final similarity graph and correlation graph
have 2502 and 1094 edges respectively.

We implement our PVCGN with the popular deep learning
framework PyTorch [77]. The lengths of input and output
sequences are set to 4 simultaneously. The input data and the
ground-truth of output are normalized with Z-score Normal-
ization* before being fed into the network. The filter weights
of all layers are initialized by Glorot and Bengio [78]. The
batch size is set to 8 for SHMetro and 32 for HZmetro. The
feature dimensionality d is set to 256. The initial learning
rate is 0.001 and its decay ratio is 0.1. We apply Adam [79]
to optimize our PVCGN for 200 epochs by minimizing the
mean absolute error between the predicted results and the
corresponding ground-truths. On each benchmark, we train
the proposed PVCGN with the training set and determine the
model’s hyper-parameters with the validation set. Finally, the
well-trained model is evaluated on the testing set.

3) Evaluation Metrics: Following previous works [28],
[32], we evaluate the performance of methods with Root Mean
Square Error (RMSE), Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE), which are defined as:

1< . 2
RMSE = ;Z(Xi—Xi),

i=1

1 n
=2 1Xi = Xil,

i=1

1i |Xi — Xl
n X

i=1

MAE =
MAPE = (13)

4https://en.wikipedia.org/wiki/Standardfscore
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where n is the number of testing samples. X, and X, denote
the predicted ridership and the ground-truth ridership, respec-
tively. Notice that )f,- and X; have been transformed back
to the original scale with an inverted Z-score Normalization.
As mentioned in Section IV-A.2, our PVCGN is developed to
predict the metro ridership of next four time intervals. In the
following experiments, we would measure the errors of each
time intervals separately.

B. Comparison With State-of-the-Art Methods

In this section, we compare our PVCGN with nine basic and
advanced methods under various scenarios (e.g., the compar-
ison on the whole testing sets, comparison on rush hours and
comparison on high-ridership stations). These methods can be
classified into three categories, including: (i) three traditional
time series models, (ii) three general deep learning models
and (iii) five recently-proposed graph networks. The details of
these methods are described as following:

« Historical Average (HA): HA is a seasonal-based base-
line that forecasts the future ridership by averaging the
riderships of the corresponding historical periods. For
instance, the ridership at interval 9:00-9:15 on a specific
Monday is predicted as the average ridership of the
corresponding time intervals of the previous & Mondays.
The variate k is set to 4 on SHMetro and 2 on SHMetro.

« Random Forest (RF): RF is a machine learning tech-
nique for both regression and classification problems that
operates by constructing a multitude of decision trees.
Sklearn is used to implement this method. The number of
trees is set to 10 and the maximum depth is automatically
expanded until all leaves are pure or until all leaves
contain less than 2 samples.

o Gradient Boosting Decision Trees (GBDT): GBDT is
a weighted ensemble method that consists of a series of
weak estimators. We implement this method with Sklearn.
The number of boosting stages is set to 100 and the
maximum depth of each estimator is 4. Gradient descent
optimizer is applied to minimize the loss function.

o Multiple Layer Perceptron (MLP): This model con-
sists of two fully-connected layers with 256 and 2x4xs
neurons respectively, where s is the number of stations.
It takes as input the riderships of all stations of pre-
vious n time intervals and predicts the ridership of all
stations of the next m time intervals simultaneously. Its
hyper-parameters are the same as ours.

o Long Short-Term Memory (LSTM): This network is
a simple Seq2Seq model and its core module consists
of two fully-connected LSTM layers. The hidden size of
each LSTM layer is set to 256. Its hyper-parameters are
the same as ours.

o Gated Recurrent Unit (GRU): With the similar archi-
tecture of the previous model, this network replaces the
original LSTM layers with GRU layers. The hidden size
of GRU is also set to 256. Its hyper-parameters are the
same as ours.

« Attention Based Spatial-Temporal Graph
Convolutional Networks (ASTGCN [61]): In this
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network, a spatial-temporal attention mechanism
and a spatial-temporal convolution are developed to
simultaneously capture the spatial patterns and temporal
patterns from traffic data. Based on its official code,
we apply this model to metro ridership prediction.

« Spatial-temporal Graph to Sequence Model (STG2Seq
[63]): This method applies a hierarchical graph convo-
lutional structure to capture both spatial and temporal
correlations simultaneously. It consists of a short-term
encoder, a long-term encoder, and an attention-based
fusion module. Based on the official code, this method
is re-implemented for metro ridership prediction.

« Diffusion Convolutional Recurrent Neural Network
(DCRNN [28]): As a deep learning framework specially
designed for traffic forecasting, DCRNN captures the
spatial dependencies using bidirectional random walks
on graphs and learns the temporal dependencies with an
encoder-decoder architecture. We implement this method
based on its official code.

o Graph Convolutional Recurrent Neural Network
(GCRNN): The architecture and setting of this method
are very similar to these of DCRNN. The main difference
is that GCRNN replaces diffusion convolutional layers
with K = 3 order ChebNets [23] based on spectral graph
convolutions.

o Graph-WaveNet [62]: This method develops an adap-
tive dependency matrix to capture the hidden spatial
dependency and utilizes a stacked dilated 1D convolution
component to handle very long sequences. We implement
this method with its official code.

1) Comparison on the Whole Testing Sets: We first
compare the performance of all comparative methods on
the whole testing sets (including all time intervals and all
metro stations). Their performance on SHMetro and HZMetro
datasets are summarized in Table II and Table III, respec-
tively. We can see that the baseline HA obtains unacceptable
MAPE at all time intervals (about 31% on SHMetro and
20% on HZMetro). Compared with HA, RF and GBDT
can get better results at the first time interval. However,
with the increment of time, their MAPEs gradually become
worse and even larger than that of HA, since these two
traditional models have weak abilities to learn the ridership
distribution. By automatically learning deep features from
data, those general neural networks (e.g., MLP, LSTM and
GRU) can greatly improve the performance. For example,
LSTM obtains a MAPE 18.76% on SHMetro and 14.91%
on HZMetro when predicting the ridership at the first time
interval, while GRU obtains a MAPE 21.03% on SHMetro
and 17.20% on HZMetro for the prediction of the fourth time
interval. Thanks to the advanced graph learning, DCRNN and
GCRNN achieve competitive performance by reducing the
MAPE to 17.82% on SHMetro and to 14.00% on HZMetro.
However, these methods directly construct graphs based on
physical topologies. To fully capture the ridership complex
patterns, our PVCGN constructs physical/virtual graphs with
the information of physical topologies and human domain
knowledge, thereby achieving state-of-the-art performance.
For example, our PVCGN improves at least 1% in MAPE
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TABLE 11
QUANTITATIVE COMPARISON ON THE WHOLE SHMETRO DATASET. OUR PVCGN OUTPERFORMS EXISTING METHODS IN ALL METRICS

Time | Mewric | HA | RF | GBDT | MLP | LSTM | GRU | ASTGCN | STG2Seq | DCRNN | GCRNN | Graph-WaveNet | PVCGN
RMSE | 13697 | 66.63 | 6259 | 4871 | 5553 | 5204 | 6649 47.19 4602 | 46.09 4698 4497
I5min | MAE | 4826 | 3437 | 3272 | 2516 | 2668 | 2591 32.29 24.98 24.04 24.26 24.91 2329
MAPE | 31.55% | 24.09% | 23.40% | 19.44% | 18.76% | 18.87% | 21.90% | 2326% | 17.82% | 18.06% 20.05% 16.83%
RMSE | 136.81 | 8803 | 8232 | 5180 | 5737 | 3402 98.76 5058 49.90 50.12 5164 4783
30 min | MAE | 47.88 | 4137 | 3950 | 26.15 | 2725 | 26.39 39.28 26.17 2523 25.42 26.53 24.16
MAPE | 31.49% | 28.89% | 28.17% | 20.38% | 19.04% | 19.20% | 25.63% | 26.79% | 18.35% | 18.73% 20.38% 17.23%
RMSE | 13645 | 118.65 | 11395 | 57.06 | 6045 | 5697 | 133.8 52.68 5492 5487 5850 52.02
45min | MAE | 4726 | 5091 | 4914 | 2791 | 2808 | 27.17 46.59 26.75 26.76 26.92 28.78 2533
MAPE | 31.27% | 4134% | 40.76% | 22.20% | 19.61% | 19.84% | 29.45% | 2849% | 19.30% | 19.81% 21.99% 17.92%
RMSE | 13572 | 1435 | 1375 | 6333 | 6341 | 5991 | 15495 5681 5883 58.67 65.08 5527
60 min | MAE | 4640 | 59.15 | 5731 | 2092 | 2894 | 28.08 5133 28.22 28.01 28.18 30.90 26.29
MAPE | 30.80% | 5291% | 52.60% | 23.96% | 20.59% | 21.03% | 32.35% | 3430% | 20.44% | 21.07% 24.36% 18.69%
TABLE III

QUANTITATIVE COMPARISON ON THE WHOLE HZMETRO DATASET. OUR PVCGN OUTPERFORMS EXISTING METHODS IN ALL METRICS

Time | Mewric | HA | RF | GBDT | MLP | LSTM | GRU | ASTGCN | STG2Seq | DCRNN | GCRNN | Graph-WaveNet | PVCGN
RMSE | 64.19 | 5352 | 5150 | 4655 | 4530 | 4510 | 46.19 3952 4039 4024 40.78 37.76
I5min | MAE | 3637 | 3219 | 3088 | 2657 | 2576 | 2569 2734 238 2376 23.84 24.07 22.68
MAPE | 19.14% | 18.34% | 17.60% | 1626% | 1491% | 15.13% | 1505% | 17.09% | 14.00% | 14.08% 14.27% 13.70%
RMSE | 6410 | 6454 | 6194 | 4796 | 4552 | 45.26 46.16 40.72 257 41.95 4280 3934
30 min | MAE | 3637 | 3800 | 3648 | 27.44 | 2601 | 2593 2774 2472 25.22 25.14 25.48 2333
MAPE | 19.31% | 21.46% | 2049% | 17.10% | 15.10% | 15.35% | 1556% | 19.51% | 14.99% | 14.86% 15.23% 13.81%
RMSE | 6392 | 8006 | 7670 | 5066 | 46.30 | 46.13 4679 4336 4626 | 4553 4584 40.95
45min | MAE | 3623 | 4578 | 4412 | 2879 | 2638 | 26.36 28.20 25.98 26.97 26.82 27.15 24.22
MAPE | 19.57% | 2651% | 25.75% | 19.01% | 1540% | 15.79% | 1648% | 23.59% | 16.19% | 16.05% 17.34% 14.45%
RMSE | 6372 | 9420 | Ol21 | 5462 | 4753 | 4769 4970 46.05 4935 50.28 49.89 4261
60 min | MAE | 3599 | 5295 | 5110 | 3052 | 2676 | 2698 28.85 26.5 28.47 28.75 29.14 24.93
MAPE | 20.01% | 37.12% | 38.10% | 22.56% | 1634% | 17.20% | 17.75% | 27.93% | 18.16% | 17.89% 19.37% 15.49%
TABLE IV

QUANTITATIVE COMPARISON DURING RUSH HOURS ON SHMETRO DATASET. THE RUSH TIME REFERS TO 7:30-9:30 AND 17:30-19:30

Time | Mewic | HA | RF | GBDT | MLP | LSTM | GRU | ASTGCN | STG2Seq | DCRNN | GCRNN | Graph-WaveNet | PVCGN
RMSE | 255.63 | 10809 | 10049 | 6495 | 75.78 | 69.02 91.98 66.29 67.50 66.21 6841 65.04
I5min | MAE | 9623 | 5620 | 5336 | 3642 | 3949 | 37.27 47.94 38.05 37.92 37.94 39.17 36.46
MAPE | 46.74% | 20.06% | 19.20% | 1447% | 13.87% | 13.58% | 21.45% | 1490% | 13.93% | 14.07% 14.14% 13.16%
RMSE | 27074 | 16133 | 14934 | 69.97 | 7724 | 7219 | 15392 7245 73.07 73.63 78.98 68.85
30min | MAE | 99.18 | 7506 | 7213 | 3824 | 3997 | 37.73 62.41 40.13 40.16 40.26 4354 37.77
MAPE | 47.10% | 23.72% | 22.85% | 14.65% | 14.02% | 13.61% | 2803% | 1549% | 14.33% | 14.44% 14.79% 13.41%
RMSE | 26561 | 231.29 | 22253 | 7430 | 7905 | 7270 | 204.12 73.04 T9.42 79.88 87.66 73.85
45min | MAE | 9556 | 9857 | 9718 | 3958 | 3977 | 37.33 73.06 39.79 41.92 41.65 46.26 38.84
MAPE | 4539% | 29.61% | 28.97% | 1542% | 1445% | 14.04% | 3292% | 1564% | 1529% | 15.29% 15.95% 14.06%
RMSE | 24893 | 28402 | 27183 | 7572 | 7713 | 6971 | 22025 75.46 79.98 8137 90.19 THAT
60 min | MAE | 87.10 | 11513 | 11373 | 3953 | 3823 | 3568 74.38 39.67 41.23 41.27 46.35 38.12
MAPE | 42.48% | 36.00% | 35.54% | 1659% | 1527% | 14.81% | 3481% | 17.09% | 16.58% | 16.62% 17.66% 15.08%

at different time intervals on SHMetro dataset. On HZmetro,
PVCGN outperforms the existing best-performing models
DCRNN, GCRNN and Graph-WaveNet with a large margin in
all metrics. This comparison well demonstrates the superiority
of the proposed PVCGN.

2) Comparison on Rush Hours: In this section, we focus
on the ridership prediction of rush hours, since the accurate
prediction results are very crucial for the metro scheduling
during such time. In this work, the rush time is defined as
7:30-9:30 and 17:30-19:30. The performance of all methods
are summarized in Table IV and Table V. We can observe that
our PVCGN outperforms all comparative methods consistently
on both datasets. On SHMetro, our PVCGN obtains a MAPE
13.16% for the ridership prediction at the first time interval,

while the MAPE of DCRNN and GCRNN are 13.93% and
14.07%, respectively. Other deep learning methods (such as
MLP, LSTM and GRU) are relatively worse. For forecasting
the ridership at the fourth time interval, our PVCGN achieves
a MAPE 15.08%, outperforming DCRNN and GCRNN with
a relative improvement of at least 9.04%.

There exists a similar situation of performance comparison
on HZMetro. For example, obtaining a MAPE 9.72% for the
ridership at the first time interval, our PVCGN is undoubt-
edly better than DCRNN and GCRNN, the MAPE of which
are 10.37% and 10.36%, respectively. When predicting the
ridership at the fourth time interval, our PVCGN achieves a
very impressive MAPE 10.43%, while DCRNN and GCRNN
suffer from serious performance degradation. For instance,
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TABLE V
QUANTITATIVE COMPARISON DURING RUSH HOURS ON HZMETRO DATASET. THE RUSH TIME REFERS TO 7:30-9:30 AND 17:30-19:30
Time \ Metric \ HA \ RF \ GBDT \ MLP \ LSTM \ GRU \ ASTGCN \ STG2Seq \ DCRNN \ GCRNN \ Graph-WaveNet \ PVCGN
RMSE | 65.53 84.33 82.25 57.39 57.10 56.31 60.72 53.28 5417 55.51 56.98 49.79
15 min | MAE 40.63 52.07 51.60 35.77 35.27 35.23 36.82 35.03 35.08 35.68 37.19 32.63
MAPE | 11.51% | 15.24% | 15.02% | 10.96% | 9.99% | 10.12% 11.77% 10.73% 10.37% 10.36% 10.84% 9.72%
RMSE 67.89 108.25 103.38 62.25 59.03 58.81 58.30 56.26 58.27 57.34 59.71 51.63
30 min | MAE 42.08 65.97 63.94 37.58 36.45 36.59 35.48 36.96 37.48 37.31 38.94 33.30
MAPE | 11.58% | 17.56% | 16.95% | 10.80% | 10.07% | 10.10% 12.15% 10.95% 10.69% 10.54% 11.04% 9.52%
RMSE 67.33 123.34 126.36 61.85 58.48 58.13 57.23 58.17 61.83 59.54 59.83 51.45
45 min | MAE 41.63 74.91 75.46 37.09 35.72 35.59 34.59 37.10 37.95 37.58 38.75 32.73
MAPE | 12.22% | 19.58% | 19.36% | 11.30% | 10.55% | 10.36% 12.84% 11.72% 11.16% 11.16% 11.83% 9.88%
RMSE | 67.22 136.08 | 132.87 61.81 57.35 57.14 59.23 57.69 59.52 58.88 59.96 51.09
60 min | MAE 40.72 75.40 74.39 36.13 34.19 34.01 33.59 35.64 36.27 35.94 37.49 31.43
MAPE | 1321% | 20.81% | 20.54% | 12.16% | 11.23% | 11.08% 13.68% 12.25% 11.94% 11.93% 12.35% 10.43%
TABLE VI

QUANTITATIVE COMPARISON OF THE TOP 1/4 HIGH-RIDERSHIP STATIONS ON SHMETRO DATASET. WE RERANK ALL METRO STATIONS ON THE BASIS
OF THEIR RIDERSHIPS AND CHOOSE THE TOP 1/4 STATIONS FOR COMPARISON

Time [ Meric [ HA | RF | GBDT | MLP [ LSTM [ GRU [ ASTGCN | STG2Seq [ DCRNN | GCRNN | Graph-WaveNet | PVCGN
RMSE | 242.87 111.31 103.94 80.72 94.74 87.40 114.77 86.19 84.04 86.09 76.93 74.80
15 min | MAE 96.38 60.65 57.47 45.31 49.29 47.09 62.96 47.06 44.98 45.89 43.31 41.38
MAPE | 27.82% | 15.24% | 14.80% | 12.23% | 12.39% | 12.23% 17.20% 15.92% 13.76% 14.12% 11.68% 10.62%
RMSE | 242.68 152.10 141.45 86.46 98.02 91.25 174.70 93.58 88.52 89.89 84.23 79.43
30 min | MAE 95.83 75.66 72.31 47.58 50.52 48.27 78.83 49.6 46.80 47.50 46.32 43.05
MAPE | 28.08% | 20.25% | 20.08% | 13.62% | 13.19% | 13.32% 21.84% 18.06% 14.47% 14.82% 13.12% 11.46%
RMSE | 24222 208.91 201.11 96.13 103.88 96.89 236.82 95.28 97.75 96.81 96.35 87.32
45 min | MAE 94.84 95.56 93.02 51.63 52.54 50.19 95.53 50.8 49.84 50.08 50.76 45.67
MAPE | 28.11% | 34.72% | 3540% | 16.37% | 14.12% | 14.54% 27.08% 21.98% 16.32% 16.70% 15.50% 12.48%
RMSE | 24127 255.64 245.41 107.53 109.64 102.81 275.41 108.63 106.03 102.93 109.26 93.59
60 min | MAE 93.41 112.77 110.44 56.42 54.64 52.50 106.60 55.46 53.30 52.79 55.74 48.02
MAPE | 27.80% | 53.09% | 54.37% | 19.48% | 15.70% | 16.41% 31.06% 27.99% 17.89% 18.16% 18.27% 13.61%
TABLE VII

QUANTITATIVE COMPARISON OF THE TOP 1/4 HIGH-RIDERSHIP STATIONS ON HZMETRO DATASET. WE RERANK ALL METRO STATIONS ON THE BASIS
OF THEIR RIDERSHIPS AND CHOOSE THE TOP 1/4 STATIONS FOR COMPARISON

Time [ Meric [ HA | RF | GBDT | MLP [ LSTM [ GRU [ ASTGCN | STG2Seq [ DCRNN | GCRNN | Graph-WaveNet | PVCGN
RMSE 111.26 82.98 79.23 77.07 75.19 74.57 75.10 65.41 66.18 65.29 65.87 60.56
15 min | MAE 70.30 54.73 52.28 45.95 45.28 44.81 48.78 40.97 41.22 40.93 40.72 38.29
MAPE | 1636% | 14.47% | 13.80% | 11.68% | 11.49% | 11.45% 12.42% 10.88% 10.72% 10.59% 10.39% 9.97%
RMSE 111.01 99.84 95.27 79.30 75.48 74.75 74.99 66.94 69.36 67.29 68.92 63.77
30 min | MAE 70.19 64.59 62.02 47.80 45.86 45.24 49.32 43.02 43.92 43.07 43.21 39.93
MAPE | 16.52% | 17.49% | 16.80% | 12.31% | 11.73% | 11.80% 12.80% 11.90% 11.51% 11.42% 11.40% 10.34%
RMSE | 110.64 125.47 119.12 82.86 76.80 76.12 75.49 71.95 75.16 72.42 72.96 65.99
45 min | MAE 69.86 79.09 75.98 50.36 46.62 46.17 49.76 45.68 46.99 45.93 45.71 41.75
MAPE | 1693% | 22.69% | 21.97% | 14.43% | 12.09% | 12.42% 13.59% 13.90% 12.74% 12.46% 13.32% 11.28%
RMSE 110.34 148.45 145.35 89.47 79.27 79.11 79.80 78.33 79.79 80.34 79.70 69.25
60 min | MAE 69.44 92.23 89.36 53.96 47.48 47.60 50.55 48.11 49.50 49.40 49.77 43.16
MAPE | 17.64% | 33.21% | 32.26% | 20.03% | 13.41% | 14.25% 14.99% 16.97% 15.00% 14.74% 16.56% 12.54%

their MAPE rapidly increase to 11.94% and to 11.93%, respec-
tively. In summary, the extensive experiments on SHMetro and
HZMetro dataset show the effectiveness and robustness of our
method during rush hours.

3) Comparison on High-Ridership Stations: Except for
the prediction during rush hours, we also pay attention to
the prediction of some stations with high ridership, since the
demand of such stations should be prioritized in real-world
metro systems. In this section, we first rerank all metro stations
based on their historical ridership of training set and conduct
choose comparison on the top 1/4 high-ridership stations. The
performance on SHMetro is summarized in Table VI and
we can observe that our PVGCN ranks the first place in

performance among all comparative methods. When forecast-
ing the ridership during the next 15 minutes, PVGCN achieves
an RMSE 74.80 and a MAPE 10.62%. By contrast, the best
RMSE and MAPE of other methods are 80.72 and 12.23%.
As the prediction time increases to 60 minutes, our PVGCN
can still obtain the best result (e.g., 13.61% in MAPE), while
the MAPE of GCRNN significantly increases to 18.16%.

As shown in Table VII, our PVGCN also achieves impres-
sive performance on HZMetro dataset. For the ridership pre-
diction at the first time interval, the RMSE and MAPE of our
PVCGN are 60.56 and 9.97%, while the RMSE and MAPE
of the existing best-performing method GCRNN are 65.29
and 10.59%. When forecasting the ridership at the fourth time
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TABLE VIII

RUNNING TIME (SECONDS) OF DIFFERENT METHODS. ALL METHODS
CAN ACHIEVE PRACTICAL EFFICIENCIES

Model | SHMetro | HZMetro
LSTM 0.00057 0.00050

GRU 0.00047 0.00050
DCRNN 0.0121 0.0156
GCRNN 0.0102 0.0126
PVCGN 0.2298 0.0503

interval, our PVCGN has minor performance degradation. For
example, its RMSE and MAPE respectively increase to 69.25
and 12.54%. In the same situation, the RMSE and MAPE
of GCRNN increase to 80.34 and 14.74%. Therefore, we can
conclude that our PVCGN is not only effective but also robust
for the prediction on high-ridership stations.

4) Efficiency Comparison: Finally, we compare the infer-
ence efficiencies of five deep learning methods. Note that all
methods are run on the same NVIDIA Titan-X GPU and their
running time are summarized in Table VIII. It can be seen that
LSTM and GRU are the most efficient models, while GCRNN
and GCRNN cost 0.0121 ~ 0.0156 seconds for each inference.
With three graphs, our PVCGN can still achieve practical effi-
ciencies. Specifically, PVCGN only requires 0.2298 seconds
on SHMetro and 0.0503 seconds on HZMetro to forecast the
citywide metro ridership in the next hour. In summary, all
methods can run in real time and the inference efficiency is
not the bottleneck of this task.

C. Component Analysis

1) Effectiveness of Different Graphs: The distinctive char-
acteristic of our work is that we incorporate a physical graph
and two virtual graphs into Gated Recurrent Units (GRU) to
collaboratively capture the complex flow patterns. To verify
the effectiveness of each graph, we implement five variants of
PVCGN, which are described as follows:

o P-Net: This variant only utilizes the physical graph to
implement the ridership prediction network;

o P+S-Net: This variant is developed with the physical
graph and the virtual similarity graph;

o P+C-Net: Similar with P+S GRU, this variant is built
with the physical graph and the correlation graph;

o S+C-Net: Different with above variants that contain the
physical graph, this variant is constructed only with the
virtual similarity/correlation graphs;

e P4+S+C-Net: This network is the full model of the
proposed PVCGN. It contains the physical graph and the
two virtual graphs simultaneously.

The performance of all variants are summarized in Table IX.
To predict the ridership at the next time interval (15 minutes),
the baseline P-Net obtains a MAPE 19.04% on SHMetro and
14.84% on HZMetro, ranking last among all the variants.
By aggregating the physical graph and any one of the proposed
virtual graphs, the variants P4S-Net and P+4-C-Net achieve
obvious performance improvements over all evaluation met-
rics. For instance, P+S-Net decreases the RMSE to from 50.45
to 47.38 on SHMetro and from 41.80 to 38.89 on HZMetro,
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while P4C-Net reduces the RMSE to 46.18 and 39.46. More-
over, we observe that the variant S+C-Net can also achieve
very competitive performance, even though it does not contain
the physical graph. On SHMetro dataset, S+C-Net obtains an
RMSE 46.52, outperforming P-Net with a relative improve-
ment of 7.8%. On HZMetro dataset, S+C-Net also achieves a
similar improvement by decreasing the RMSE to 39.92. These
phenomenons indicate that the proposed virtual graphs are
reasoning. Finally, the variant P4-S+C-Net can obtain the best
performance by incorporating the physical graph and all virtual
graphs into networks. Specifically, P4-S+C-Net gets the lowest
RMSE (44.97 on SHMetro, 37.73 on HZMetro) and the lowest
MAPE (16.83% on SHMetro, 13.72% on HZMetro). This
significant improvement is mainly attributed to the enhanced
spatial-temporal representation learned by the collaborative
physical/virtual graph networks. These comparisons demon-
strate the effectiveness of these tailor-designed graphs for the
single time interval prediction.

Moreover, we find that these collaborative graphs are also
effective for the ridership prediction of continuous time inter-
vals. As shown in the bottom nine rows of Table IX, all
variants suffer from performance degradation to some extent,
as the number of time intervals increases from 2 to 4.
For instance, the RMSE is rapidly increased to 73.06 on
SHMetro and 56.32 on HZMetro, when the baseline P-Net
is applied to forecast the ridership at the fourth time interval
(60 minutes) of the future. By contrast, P+S-Net and P+C-Net
achieve much lower RMSE (about 60 on SHMetro and 44 on
HZMetro), since the proposed virtual graphs can prompt these
variants to learn the complex flow patterns. Incorporating all
physical/virtual graphs, P+S+C-Net can further improve the
performance with an RMSE 55.27 on SHMetro and 42.51 on
HZMetro, which shows that these graphs are complementary.

2) Influences of Local and Global Feature: As described
in Section III-C, a Graph Convolution Gated Recurrent Unit
(GC-GRU) is developed for local feature learning, while a
Fully-Connected Gated Recurrent Unit (FC-GRU) is applied
to learn the global feature. In this section, we train two variants
to explore the influence of each type of feature for metro
ridership prediction. The first variant only contains GC-GRU,
and the second variant consists of GC-GRU and FC-GRU.
The results of these variants are summarized in Table X. We
can observe that the performance of the first variant is very
competitive. For example, when predicting the ridership of
the next 15 minutes, the first variant obtains an RMSE 45.64
on SHMetro and 38.46 on HZMetro. For the prediction of the
fourth time interval, with a MAE 26.50 on SHMetro and 25.36
on HZMetro, this variant is slightly worse than the full model
of PVCGN. This competitive performance is attributed to the
fact that we can effectively learn the semantic local feature
with the customized physical/virtual graphs. By fusing the
local/global features of GC-GRU/FC-GRU, the second variant
can boost the performance to a certain degree. For example,
when predicting the ridership of the second time interval,
the RMSE is decreased from 48.79 to 47.83 on SHMetro.
Through these experiments, we can conclude that the local
feature plays a dominant role and the global feature provides
ancillary information for ridership prediction.
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TABLE IX

PERFORMANCE OF DIFFERENT VARIANTS OF OUR PVCGN. THE PHYSICAL GRAPH, SIMILARITY
GRAPH AND CORRELATION GRAPH IS ABBREVIATED AS “P”, “S” AND “C” RESPECTIVELY

Time Metric SHMetro HZMetro
P [ P+S | P+C [ S+C [ P+S+C P [ P+S [ P+C | S+C [ P+S+C
RMSE 50.45 47.38 46.18 46.52 44.97 41.80 38.89 39.46 39.92 37.73
15 min | MAE 25.89 24.16 23.88 23.74 23.29 24.81 23.23 23.34 23.84 22.69
MAPE | 19.04% | 17.13% | 17.12% | 16.94% | 16.83% 14.84% | 13.93% | 14.08% | 14.38% | 13.72%
RMSE 58.09 50.86 50.29 50.18 47.83 45.31 40.63 41.26 41.59 39.38
30 min | MAE 28.13 25.28 25.13 24.74 24.16 26.63 24.22 24.22 24.59 23.35
MAPE | 20.19% | 17.72% | 17.73% | 17.32% | 17.23% 15.50% | 14.49% | 14.36% | 14.60% | 13.83%
RMSE 65.81 55.98 55.54 54.45 52.02 50.26 42.63 43.96 44.81 40.88
45 min | MAE 30.51 26.90 26.68 26.01 25.33 29.02 25.31 2542 2591 24.23
MAPE | 21.65% | 18.66% | 18.44% | 18.03% | 17.92% 16.76% | 1535% | 15.26% | 15.23% | 14.48%
RMSE 73.06 60.08 60.59 58.93 55.27 56.32 44.46 44.93 45.49 42.51
60 min | MAE 32.55 27.92 27.94 27.14 26.29 31.41 26.16 26.13 26.54 24.90
MAPE | 23.43% | 19.56% | 19.30% | 18.87% | 18.69% 18.33% | 1631% | 16.32% | 16.69% | 15.48%

TABLE X TABLE XI

EFFECT OF LOCAL FEATURE AND GLOBAL FEATURE. IN OUR PVCGN,
A GRAPH CONVOLUTION GRU Is USED TO LEARN LOCAL FEATURE
AND A FULLY-CONNECTED GRU Is USED TO LEARN
GLOBAL FEATURE

Time Metric [ SHMetro HZMetro
| Tocal [ Local + Global |[ Local | Local + Global
RMSE 45.64 44.97 38.46 37.76
15 min | MAE 23.51 23.29 23.00 22.68
MAPE | 17.23% 16.83% 13.86% 13.70%
RMSE 48.79 47.83 39.65 39.34
30 min | MAE 24.48 24.16 23.78 23.33
MAPE 17.59% 17.23% 14.30% 13.81%
RMSE 52.70 52.02 41.45 40.95
45 min | MAE 25.58 25.33 24.60 24.22
MAPE 18.16% 17.92% 14.88% 14.45%
RMSE 56.56 55.27 43.11 42.61
60 min | MAE 26.50 26.29 25.36 24.93
MAPE | 18.64% 18.69% 16.06% 15.49%

3) Stability Verification: Following [17], [64], we also
examine the stability of the proposed PVCGN. Except for the
formal model fully-evaluated in Section IV-B, we implement
another four models of PVCGN, because some random factors
(e.g., parameter initialization, sample shuffle) may affect the
final results. Due to the space limitation, the detailed perfor-
mance of these extra models is shown in our supplementary
material. The mean and standard deviation of all implemented
models are summarized in Table XI. We can observe that the
mean performance is very close to that of the formal model and
the deviation is very small on both benchmarks. Moreover, the
worst model of our PVCGN still outperforms other compared
methods. This experiment shows that PVCGN is stable.

V. APPLY TO ONLINE ORIGIN-DESTINATION PREDICTION

In this section, we employ the proposed PVCGN to forecast
the online metro origin-destination (OD) ridership on the
SHMetro dataset. Compared with taxi OD demand predic-
tion [16], metro OD ridership prediction is more challenging,
because the complete OD distribution can not be obtained
immediately in online metro systems [72]. For example,
as shown in Fig.4, there were 385 passengers entered at
the i-th station in the past 15 minutes and 244 of them
have arrived at their destinations by now. The destinations of
remaining passengers are unaware. Thus we can only construct
an incomplete OD vector X,I—' for station i based on the

MEAN AND STANDARD DEVIATION OF FIVE IMPLEMENTED MODELS OF
PVCGN ON THE WHOLE TESTING SETS

Time Metric SHMetro HZMetro
RMSE 45.094+0.22 37.83+0.24
15 min | MAE 23.2740.05 22.7440.08
MAPE | 17.054£0.38% | 13.5340.29%
RMSE 48.161+0.24 40.05+0.43
30 min | MAE 24.1940.06 23.6640.20
MAPE | 17.21£0.12% | 13.8740.28%
RMSE 51.9040.20 41.8240.56
45 min | MAE 25.3040.05 24.6610.25
MAPE | 18.044+0.23% | 14.5540.38%
RMSE 55.461+0.56 42.65+0.38
60 min | MAE 26.284+0.09 25.134+0.16
MAPE | 18.69+0.10% | 15.46+0.65%

finished orders. Moreover, since the OD distribution is very
sparse, we only consider the ridership from station i to the
top ten stations where its passengers are most likely to reach,
as well as the total ridership to the remaining stations. Thus
the length of OD vectors is 11. Specifically, X{J (j) is the
ridership to the j-th most relevant station, while X ,I -(11) is
the ridership to the remaining stations. for convenience, the
incomplete OD ridership of all stations at time interval ¢ is
denoted as X! = (x/-', x!-%, ..., Xx!-"V) e R"*N_Given a
historical sequence of incomplete OD ridership, our goal is to
forecast a future sequence of complete OD ridership:

oC  vC oC
Xr+l’Xt+2""’Xt+m
I I I
= PVCGN(X[7n+1, Xl‘fl’l+2’ R ] X[)
vC _ (vC_1 $C2 >C_N 11xN v C_i
where X, | = (X, 7, X, 4,.... X7 ) eR and X,

is the predicted complete OD ridership of station i. The
sequences’ lengths n and m are set to 4. As in the previous
section, RMSE, MAE and MAPE are the evaluation metrics.
When evaluating MAPE, we follow [14] to further filter some
OD pairs with ground-truth ridership less than ten, since
MAPE is sensitive to the small ridership and we also do not
care about such low-ridership scenarios.

We compare our PVCGN with a baseline (i.e., Historical
Average, HA) and four deep learning-based methods for
online OD ridership prediction. As shown in Table XII, our
PVCGN achieves superior performance at all time intervals
and outperforms other methods with a substantial margin.
Especially at the fourth interval, PVCGN decreases the MAPE
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TABLE XII
QUANTITATIVE COMPARISON FOR ONLINE ORIGIN-DESTINATION RIDERSHIP PREDICTION ON THE WHOLE TESTING SET OF SHMETRO

Time [ Metric [ HA [ LSTM [ GRU [ DCRNN [ GCRNN [ PVCGN
RMSE 29.17 24.67 23.06 16.26 16.29 15.54
15 min | MAE 5.76 5.47 5.30 4.69 4.69 4.54
MAPE | 34.63% | 25.50% | 25.37% 24.56% 24.56% 23.63%
RMSE 29.1 24.49 23.44 17.88 17.66 16.51
30 min | MAE 5.68 5.47 5.37 4.83 4.79 4.63
MAPE | 3457% | 25.57% | 25.54% 24.88% 24.78% 23.87%
RMSE 28.98 24.53 23.66 19.26 19.08 17.7
45 min | MAE 5.59 5.47 542 4.93 491 4.77
MAPE | 34.48% | 25.55% | 25.71% 25.28% 25.13% 24.20%
RMSE | 2875 24.71 2375 20.88 20.6 18.61
60 min | MAE 5.48 5.49 542 5.10 5.08 4.87
MAPE | 3440% | 25.57% | 25.67% 25.78% 25.66% 24.52%
5 A a1 In future works, we would pay more attention to the online
‘\\ K origin-destination ridership prediction and several improve-
a7 10N S0 ments should be considered. First, the data of unfinished
\ . . .
42 Y /! 29 orders can also provide some useful information and we
35 ,'| B | - | e | + | L k 24 attempt to estimate the potential OD distribution of unfinished
. .. \ . . . .
I,’ Entered  Unfinished  Finished orders. Second, the metro ridership evolves periodically. For
; Orders Orders Orders instance, the ridership at 9:00 of every weekday is usually
61 |/ \| 31 similar. Therefore, we should also utilize the periodic distri-
Complete OD Incomplete OD bution of OD ridership to facilitate representation learning.

Fig. 4. Illustration of the incomplete origin-destination (OD) distribution.
In online metro systems, the complete OD distribution can not be obtained
immediately. Suppose there were 385 passengers entered at the i-th station in
the past 15 minutes and 244 of them have arrived at their destinations by now.
The destinations of remaining passengers are unaware. In this case, we can
only construct an incomplete OD vector from the finished orders.

to 24.52% and has a relative improvement of 28.7%, compared
with the baseline HA. This is because our PVCGN can also
learn the OD patterns effectively from our physical and virtual
graphs. This experiment shows the universality of our PVCGN
for online OD ridership prediction.

VI. CONCLUSION

In this work, we propose a unified Physical-Virtual Collabo-
ration Graph Network to address the station-level metro rider-
ship prediction. Unlike previous works that either ignored the
topological information of a metro system or directly modeled
on physical topology, we model the studied metro system as a
physical graph and two virtual similarity/correlation graphs to
fully capture the ridership evolution patterns. Specifically, the
physical graph is built on the basis of the metro realistic topol-
ogy. The similarity graph and correlation graph are constructed
with virtual topologies under the guidance of the historical
passenger flow similarity and correlation among different
stations. We incorporate these graphs into a Graph Convolution
Gated Recurrent Unit (GC-GRU) to learn spatial-temporal
representation and apply a Fully-Connected Gated Recurrent
Unit (FC-GRU) to capture the global evolution tendency.
Finally, these GRUs are utilized to develop a Seq2Seq model
for forecasting the ridership of each station. To verify the
effectiveness of our method, we construct two real-world
benchmarks with mass transaction records of Shanghai metro
and Hangzhou metro and the extensive experiments on these
benchmarks show the superiority of the proposed PVCGN.

Last but not least, some external factors (such as weather and
holiday events) may greatly affect the ridership evolution and
we should incorporate these factors to dynamically forecast
the ridership.
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