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ROSA: Robust Salient Object Detection
Against Adversarial Attacks
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Abstract—Recently, salient object detection has witnessed
remarkable improvement owing to the deep convolutional neu-
ral networks which can harvest powerful features for images.
In particular, the state-of-the-art salient object detection meth-
ods enjoy high accuracy and efficiency from fully convolutional
network (FCN)-based frameworks which are trained from end
to end and predict pixel-wise labels. However, such framework
suffers from adversarial attacks which confuse neural networks
via adding quasi-imperceptible noises to input images without
changing the ground truth annotated by human subjects. To
our knowledge, this paper is the first one that mounts successful
adversarial attacks on salient object detection models and verifies
that adversarial samples are effective on a wide range of existing
methods. Furthermore, this paper proposes a novel end-to-end
trainable framework to enhance the robustness for arbitrary
FCN-based salient object detection models against adversarial
attacks. The proposed framework adopts a novel idea that first
introduces some new generic noise to destroy adversarial pertur-
bations, and then learns to predict saliency maps for input images
with the introduced noise. Specifically, our proposed method con-
sists of a segment-wise shielding component, which preserves
boundaries and destroys delicate adversarial noise patterns and
a context-aware restoration component, which refines saliency
maps through global contrast modeling. The experimental results
suggest that our proposed framework improves the performance
significantly for state-of-the-art models on a series of datasets.

Index Terms—Adversarial attack, deep neural network, salient
object detection.

I. INTRODUCTION

SALIENT object detection aims at locating and segmenting
objects, which are most visually distinctive to human sub-

jects, in an image or a video frame. Designing a salient object
detection model for simulating this process not only improves
our understanding of the inner mechanism of human vision
and psychology, but also benefits many applications in the field
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of computer vision and graphics. For example, salient object
detection has been widely studied and applied to robotics [1];
context-aware image editing [2]; object segmentation [3], [4];
and person reidentification [5]. Since salient object detection
algorithms are usually adopted during the initialization or pre-
processing stage of a system, efficiency and robustness are
of considerable importance. Imagine, if the performance of
the preprocessing stage is seriously affected by corrupt input
images, succeeding stages might produce unpromising results,
which could be a catastrophe to the entire system.

For the last several years, significant successes have been
achieved in the computer vision community, as training deep
convolutional neural networks (CNNs) on large-scale datasets
becomes feasible. A deep CNN is composed of stacked con-
volution filters with learnable parameters. Since those filters
harvest information naturally from local neighborhoods in the
input image and their parameters are adaptively determined by
a training set, deep CNNs demonstrate a high fitting capac-
ity superior to traditional methods using handcrafted features.
These days, deep learning has been widely employed in image
classification, semantic segmentation, object localization, as
well as salient object detection.

Deep learning-based salient object detection models can be
roughly divided into two groups. One group adopts segment-
wise labeling while the other group predicts pixel-level results.
Segment-wise labeling methods first divide an image into
regions. Pixels in the same region most probably share sim-
ilar saliency values. CNN features for each region are then
extracted to evaluate its saliency. In contrast, pixel-wise meth-
ods usually embrace fully convolutional network (FCN) archi-
tectures, which take an entire image as input and yield a dense
saliency map directly. Such methods not only demonstrate
higher efficiency but also achieve state-of-the-art accuracy in
virtue of their end-to-end trainable property.

However, those FCN-driven approaches have weaknesses
that might degrade their performance in practice. First, being
end-to-end trainable allows gradients propagated easily from
supervision target to the input image, which puts the salient
object detection models at the risk of adversarial attacks.
Adversarial attacks generate adversarial samples that do not
change the ground truth assigned by human subjects but
increase the prediction error of neural models by making visu-
ally imperceptible changes to the image, as shown in Fig. 1.
Second, dense labeling models do not explicitly model contrast
among different image parts but implicitly estimate saliency in
a single FCN. Once input images are polluted by adversarial
noise, low-level features and high-level features that cannot
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(a) (b)

Fig. 1. Effectiveness of our proposed method. The leftmost column shows
the original images while the second column from the left displays the corre-
sponding adversarial samples. The L∞-norm of the adversarial perturbations
is set as 25 pixel values. Column (a) is the saliency maps of adversarial
samples, and is predicted by DSS [6]. Column (b) is the saliency maps of
adversarial samples, and is predicted by our proposed method with DSS as the
backbone network stream. The rightmost column is the ground truth saliency
maps. As can be seen in the above, the adversarial samples are almost visu-
ally the same as their original images. Besides, DSS incorporated with our
proposed method yields saliency maps of higher quality, in comparison to the
original DSS.

correct themselves will be affected as well. Third, current
largest training datasets of salient object detection contain
only several thousands of images, in comparison to some
image classification benchmark with millions of samples [7].
At the same time, the salient object categories included are
very limited. Thus, to some extent, existing models are fitting
bias within the data, for example, detecting objects frequently
appearing in training set rather than locating the most dis-
tinctive ones. Those approaches might rely on capturing too
much high-level semantics and could be sensitive to low-level
perturbations, such as adversarial noises.

Segment-wise labeling approaches enjoy higher robustness
as they model contrast explicitly and determine saliency score
depending on multiple regions, such as the considered segment
and its context. For different segments, gradients calculated by
the same target might conflict when propagating on the input
image, since different regions could share the same local or
global context. Nevertheless, it is inefficient to adopt sparse
labeling methods in practice, due to evaluating hundreds of
segments.

To enhance the robustness and maintain efficiency for exist-
ing dense labeling methods, this paper proposes a novel
framework robust saliency (ROSA) that can take any FCN
as a backbone. We first observe that adversarial noise itself
is fragile as it is computed accurately by backward propaga-
tion. Adversarial noise forms some subtle curve-like pattern
that may play an important role. Destructing such patterns
could reduce the attack effects. And then we notice that
CNNs are less sensitive to some generic noise than the adver-
sarial noises, since adversarial samples are aimed at neural
models. We also consider a priori that nearby pixels with sim-
ilar low-level features have similar saliency values. Thus, we
come up with a novel framework that first destroys adversarial
perturbations by introducing some new generic noise, and then
learns to adaptively predict saliency maps against the new

introduced noise. To destroy adversarial noises, we develop a
segment-wise shielding component placed before the backbone
network. Segment-wise shielding component divides an image
into small parts according to low-level similarity and shuffles
pixels in each part randomly. It introduces another generic
noise to destroy the structural pattern in adversarial samples
and, therefore, alleviates the attack effect. To refine results
affected by the newly introduced noise, we conceive another
component known as context-aware restoration placed after
the backbone network. The restoration component adjusts the
saliency score at some position according to similarities among
raw pixel values of the position and its context. The overall
system with a backbone network is fine-tuned end-to-end in
the training stage.

Our proposed framework demonstrates several strengths in
the following. First, the ROSA framework is not so suscep-
tible to adversarial attacks. Since the shielding component
has no learnable parameters, it does not support backward
propagating gradients onto the input image to generate adver-
sarial samples. Even when adversarial samples are found,
their adversarial noise can still be destroyed by the shield-
ing component during the testing stage. Second, the shielding
component shuffles pixels in the same segment and thus
does boundary less harm. Moreover, ROSA adopts an FCN-
based model as its backbone and the restoration component is
implemented by convolutional operator that supports parallel
computing. Both designs help maintain acceptable efficiency
for the entire system.

In short, our contributions have three-folds.
1) We, for the first time, launch adversarial attacks

on the state-of-the-art salient object detection models
successfully.

2) We propose a novel salient object detection framework
that first introduces some new noise to resist adversar-
ial perturbations, and then adaptively predicts saliency
maps for inputs with the new introduced noises. The
proposed framework is instantiated by an arbitrary FCN
backbone and two strongly coupled and complementary
components.

3) Experimental results verify that the implemented adver-
sarial attacks are effective for a wide range of existing
salient object detection models. Moreover, extensive
experiments demonstrate that the our proposed frame-
work is resistant to adversarial samples, and more robust
than existing defense baselines.

II. RELATED WORK

In this section, we brief several groups of previous work
related to our proposed approach, salient object detection,
adversarial attacks, and defenses against adversarial attacks.

A. Salient Object Detection

Algorithms for detecting salient objects can be separated
into two categories. One category is the conventional methods
that do not use neural networks but resort to prior knowledge
and handcrafted features [2], [8]–[17]. Ranking saliency [16]
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is a saliency detection algorithm based on graph-based mani-
fold ranking, which ranks the relevances of images elements to
foreground or background seeds. Another category driven by
deep CNNs can be categorized as two groups: 1) sparse label-
ing and 2) dense labeling. Sparse labeling methods [18], [19]
appeared in early years. Li and Yu [18], [20] trained a binary
classifier to estimate visual saliency for each superpixel with
multiscale learned CNN features. Wang et al. [21] developed
a local DNN estimating coarse saliency for object proposals
and a global DNN evaluating weights to combine different
proposals. Zhao et al. [22] employed a deep CNN to predict
visual saliency for single superpixel with local context and
global context. Qin et al. [23] introduced a single-layer cellu-
lar automata (SCA) which can exploit the intrinsic relevance
of similar image regions to detect salient objects, based on
extracted deep features. Since these methods take a region as
a unit of computation and contain two separate steps of feature
extraction and salient value inference, they are generally inef-
ficient and require a large amount of space for feature storage.
Inspired by the successful application of FCNs in pixel-level
semantic segmentation; recently, dense labeling approaches
have established the new state-of-the-art in salient object
detection [24]–[33]. Li and Yu [34] modeled visual saliency
by combining a fully convolutional stream with a segment-
wise spatial pooling stream. Wang et al. [35] employed FCNs
to refine coarse saliency maps based on prior knowledge in
a recurrent way. Hou et al. [6] adapted holistically nested
edge detector (HED) [36] architecture by introducing short
connections to the skip-layer structures.

B. Adversarial Attack

Existing adversarial attacks consist of several groups, one-
step gradient-based methods [37]; iterative methods [38]–[44];
optimization-based methods [45], [46]; and generative
networks [47], [48]-based methods. The fast gradient sign
method (FGSM) [37] computes one-step gradient to maximize
the loss L(·) between the model output and the ground truth,
within some L∞-norm bound ε. FGSM generates adversarial
sample as

x∗ = x+ ε · sign(�xL(f (x; θ), y)) (1)

where x∗, x, and y are the adversarial sample, original image,
and ground truth, respectively. f (·; θ) denotes some neu-
ral model with parameters θ . Iterative approaches [41], [44]
conduct FGSM multiple times with a small step length α as

x∗t+1 = clip
(
x∗t + α · sign(�xL(f (x; θ), y)), ε

)
(2)

where x∗t denotes an adversarial sample obtained at t-th time
step. x∗0 is initialized as x. clip(x, ε) keeps each element xi

of x within the range of [xi − ε, xi + ε]. Szegedy et al. [49]
solved a box-constrained optimization with L-BFGS to find
an adversarial sample. Dong et al. [38] proposed an iterative
algorithm that integrates a momentum term into the iterative
process to boost adversarial attacks. Cisse et al. [40] proposed
an approach called “Houdini” to attack structured prediction
problems (including human pose estimation and speech recog-
nition) whose final performance measure is a combinatorial

nondecomposable quantity. Dai et al. [50] proposed to fool
a family of graph neural networks by modifying the com-
binatorial structure of data. They developed a reinforcement
learning-based methods, variants of genetic algorithms, and
gradient-based methods to attack graph neural networks.
Adversarial attack on salient object detection remains a gap
before this paper.

C. Defense Against Adversarial Attacks

Some defense methods are proposed to protect attacked
target neural networks from potential adversarial sam-
ples [51]–[58]. Metzen et al. [52] augmented the attacked
target network by small subnetworks, which take the output
feature maps at some layers as inputs, and predict a probabil-
ity of the input containing adversarial noise. SafetyNet [53]
equips a CNN classifier with an RBF-SVM to detect adver-
sarial samples with discrete codes calculated from the final
RELU outputs. Images transformations, including bit quantiza-
tion, vectorization [59], JPEG compression, and total variance
minimization may remove or destroy adversarial perturba-
tions [54], before feeding an input image into the target
network. Xie et al. [55] proposed a simple method that ran-
domly resizes an input image and pads it with zeros, to destroy
the effect of adversarial attacks. Liao et al. [57] developed a
neural network-based denoiser that is trained with a loss func-
tion based on some high-level features of the attacked target
classifier. Many existing defense baselines struggle to remove
potential adversarial noises from input images, which is differ-
ent from our proposed idea that adaptively predicts saliency
maps for inputs with some new introduced generic noise to
resist adversarial attacks.

III. METHOD

This section first describes how we launch an adversar-
ial attack on the state-of-the-art visual saliency models, and
then detail how our proposed robust salient object detection
framework works.

A. Adversarial Samples for Salient Object Detection

Adversarial attack aims at synthesizing some perturbed
input that fools neural models without changing its ground
truth label. In this section, we introduce the pipeline to yield
an adversarial sample for a given salient object detection
model f , and it can be directly used to attack other detec-
tion models as most of the existing visual saliency models
have similar FCN-based network architectures and are usu-
ally initialized by the same pretrained image classification
model [60], [61]. Adversarial samples can be divided into two
categories. Targeted adversarial samples make the attacked
models produce specific results as predicted saliency maps
while nontargeted ones maximize the mean absolute error
(MAE) and/or minimize Fβ -measure. In this paper, only non-
targeted attacks are concerned and targeted samples may be
investigated in the future.

Inspired by [62], we implement an iterative gradient-based
pipeline to synthesize adversarial samples. To generate those
samples, it requires a neural network pretrained on salient
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Fig. 2. ROSA, robust salient object detection framework. To defend against adversarial samples, the proposed method exploits a novel idea that first
introduces some novel generic noise to destroy adversarial perturbations, and then learns to predict saliency maps for images with the introduced generic
noise. Such idea is different from those resorting to image smoothing or transformations before feeding input images into target networks. As shown in the
above, the segment-wise shielding component introduces some generic noise to perturb the adversarial noises. Then, an FCN-based backbone takes the noisy
image as input, and yields a coarse saliency map. Afterward, a context-aware restoration component utilizes a graph model to refine the coarse saliency map,
with a smoothed image providing pairwise pixel-level similarity. The smoothed image is obtained by applying bilateral filter on the input image. Lastly, a
pixel-wise binary cross-entropy loss function is calculated between the refined saliency map and the ground truth. The FCN-based backbone network and the
context-aware restoration component are end-to-end trained to adapt to the input images with the introduced noise. The proposed method can theoretically
incorporate arbitrary FCN-based backbone network.

object detection, some natural images and their correspond-
ing saliency maps densely labeled at pixel level. Let f (·, θ) be
the pretrained model with parameters θ . x, x∗, and y denote
a natural image, its corresponding adversarial sample, and
ground truth, respectively. Before synthesizing the adversarial
sample, x is subtracted by mean pixel values. After the gen-
eration, x∗ is enlarged to the range of [0, 255] and rounded
to RGB image. Each element yi of y belongs to {0, 1}, with
0 denoting nonsalient and 1 denoting salient. To ensure the
adversarial perturbation unnoticeable, parameter ε is set as
upper bound of L∞-norm such that ||x − x∗|| ≤ ε. The max-
imum number of iterations T limits the overall running time
cost. Once T iterations are finished or the L∞-norm bound is
reached, the generation stops and returns adversarial sample
obtained at the current time step.

In each iteration t, supposing that adversarial sample x∗t
from previous time step or initialization is prepared, we update
the adversarial sample as

x∗0 = x, x∗t+1 = x∗t + pt (3)

where pt denotes the adversarial perturbation computed at t-
th step. We formulate the goal making the predictions of all
pixels in x go wrong as ∀i, argmaxc{fi,c(x∗t + pt; θ)} �= yi.
Here, i denotes one of all n pixels in x and c denotes two
categories: salient and nonsalient. To determine pt, gradient
descent algorithm is applied as

p′t =
∑

i∈St

[�x∗t fi,1−yi

(
x∗t ; θ

)−�x∗t fi,yi

(
x∗t ; θ

)]
(4)

where St denotes the set of pixels that f still can classify cor-
rectly. Then, pt is obtained by normalization as α · p′t/||p′t||∞,
where α is a fixed step length. The pseudocode of the entire
generation pipeline is shown in Algorithm 1.

B. Robust Salient Object Detection Framework

In this section, we propose a novel salient object detec-
tion framework ROSA that demonstrates the high robustness

Algorithm 1 Adversarial Sample Generation
Require: natural image x;

corresponding saliency annotation y;
pre-trained visual saliency model f (·; θ);
pixels set S = {1, 2, . . . , n} of x;
maximum number of iterations T;
step length α; upper bound ε of L∞ norm;

x∗0 ← x, p← 0, t← 0, e← 0, S0 = S;
while t < T and e ≤ ε and |St| > 0 do

calculate p′t by Equation 4;
pt ← α · p′t/||p′t||∞;
p← p+ pt;
calculate x∗t+1 by Equation 3;
e← ||x∗t+1 − x||∞;
t← t + 1;
St ← {i|argmaxc{fi,c(x∗t ; θ)} = yi};

end while
x∗ ← x∗t + x;
x∗ ← round(x∗);
return x∗;

against adversarial attacks. As shown in Fig. 2, the ROSA
framework consists of a segment-wise shielding component,
an FCN-based backbone network, and a context-aware restora-
tion component. Virtually, the backbone can be chosen as an
arbitrary FCN-based visual saliency model that takes an entire
image as input and yields a densely labeled saliency map.
The FCN backbone enjoys high efficiency and accuracy but
displays sensitivity on adversarial samples. The shielding com-
ponent and the restoration component play an important role
in improving the robustness of the proposed framework.

A segment-wise shielding component destroys potential
adversarial noise patterns in an input image before sending
it to the backbone, by introducing some “shuffling” noise that
is easier to resist. The observation behind is that adversarial
noises are some delicate perturbations deliberately synthesized
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for CNNs, while CNN is not sensitive to and can adapt to
some other noise. To alleviate harms caused by the new noise,
the shielding component first divides the input image into
nonoverlapping regions, namely superpixels. We follow the
region decomposition method developed by [63]. Specifically,
k cluster centers in the joint space of color and pixel posi-
tion are initialized by sampling pixels at regular grid steps.
Then, we assign each pixel to the cluster center with min-
imum distance and update each cluster center as the mean
vector of pixels belonging to the cluster, in an iterative way.
The iteration ends when L2-norm error between new location
and previous location of each cluster center converges.

After the region decomposition, we permute all pixels
within the same superpixel randomly. Such shuffling operation
strongly destroy the adversarial perturbation while it limits the
introduced noise within each single superpixel. Thus, object
boundaries that those superpixels are adhere to are not spoiled
and the noisy saliency map output by the backbone network
has a chance to be restored. Some may suggest an option that
smooths each superpixel by averaging pixels inside. Recall
what we argue in Section I, existing FCN models overfit too
much high-level semantics in visual saliency data. The random
permutation makes capturing high-level semantics more diffi-
cult and enforces neural networks to harvest low-level contrast
among regions. It also plays a role in augmenting dataset and
reducing the overfitting issue.

A context-aware restoration component exploits low-level
similarity between each pixel and its context to refine the
saliency scores provided by the backbone network. As adver-
sarial perturbations aim at parameterized convolution filters,
the restoration component adopts a complete graph model
instead of CNN architecture. We measure similarity among
pixels in low-level color space and spatial position, since
previous high-level convolutional features have been pol-
luted. The restoration component adjusts saliency maps by
minimizing some energy function as

E
(
y∗

) =
∑

i

Eu
(
y∗i , yi

)+
∑

i<j

Ep

(
y∗i , y∗j

)
(5)

where y denotes the coarse saliency map and y∗ denotes the
resulted saliency map. The first unary energy term measures
the cost (inverse likelihood) of assigning i with y∗i . The second
term pairwise energy measures the cost of assigning i and j
with y∗i and y∗j at the same time. It encourages similar nearby
pixels to be labeled the same. The pairwise energy is defined
as (6) where p denotes the pixel position and x′i denotes the
pixel color. x′ is a smoothed image output by the bilateral
filter that takes the adversarial sample x∗ as input, as shown
in Fig. 2. ω1 and ω2 are tuned by training. θα , θβ , and θγ are
chosen as 160, 3, and 3, respectively. μ is a learnable label
compatibility function that penalizes assigning i and j with
different labels

Ep

(
y∗i , y∗j

)
= μ

(
y∗i , y∗j

){

ω1 exp

(

−|pi − pj|2
2θ2

α

− |x
′
i − x′j|2
2θ2

β

)

+ ω2 exp

(

−|pi − pj|2
2θ2

γ

)}

. (6)

We realize the component following some previous
work [64], [65] that solves (5) as densely connected condi-
tional random field with a recurrent neural network. The neural
network is implemented with and enjoys efficiency from 1×1
convolutional layers. Since the restoration component makes
use of global context to refine results, it is more difficult
to change the prediction by adversarial noises of some lim-
ited perturbation strength. In order to influence the prediction
results of pixels at certain specific locations, intricate changes
involving a larger range of feature vectors may be required,
which in turn results in larger pixel value perturbations.

C. Training Scheme

The following explains how we train the entire framework in
an end-to-end scheme. In the beginning, the FCN-based back-
bone of ROSA framework is initialized as some pretrained
visual saliency model while the parameters of context-aware
restoration component are set up according to [65]. Then, the
parameters of the backbone network and the restoration com-
ponent are fine-tuned together. As the segment-wise shielding
component contains no learnable parameters, gradients are
not passed backward through that component. To maintain
generalization ability against different kinds of adversarial per-
turbation, our training set does not include adversarial samples
but only natural images. These training samples are fed into
the segment-wise shielding component. As shown in Fig. 2,
a pixel-wise cross-entropy loss function is computed between
the ground truth saliency map and the output of the context-
aware restoration component. SGD algorithm is used to train
the proposed method. The learning rate of the context-aware
restoration component is set as 10−10 while that of other parts
is selected as 10−13. The momentum and weight decay are set
as 0.9 and 0.0005, respectively. For each backbone FCN in
this paper, fine-tuning with our proposed framework takes no
more than 5 epochs. We adopt early-stopping strategy and ter-
minate the training if the performance on validation set is not
improved after 2 consecutive epochs. If the proposed method
adopts DSS as its backbone, a forward pass on an image costs
about 0.8 s.

IV. EXPERIMENT

In this section, we conduct three groups of experiments.
First, we launch adversarial attacks on existing visual saliency
models and investigate how they are affected. Then, we inte-
grate our proposed framework with current models to present
how the proposed framework enhances the robustness for those
models. Lastly, we verify the effectiveness of each component
in the ROSA framework.

A. Dataset

In this paper, we conduct experiments on MSRA-B
dataset [66], HKU-IS dataset [18], DUT-OMRON dataset [9],
and ECSSD dataset [67]. The MSRA-B dataset contains a train
set of 2500 images, a validation set of 500 images, and a
test set of 2000 images. The HKU-IS dataset includes 2500
images, 500 images, and 1447 images in train set, valida-
tion set, and test set, respectively. We follow the released data
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split in the MSRA-B and HKU-IS dataset. For DUT-OMRON
dataset, we randomly separate all the 5168 images into a train
set of 2500 images, a validation set of 500 images, and a test
set of 2168 images. For ECSSD dataset, all 1000 images are
taken as testing samples.

B. Evaluation

We select MAE, precision, recall, Fβ -measure, and PR
curves as evaluation metrics. MAE measures pixel-level dif-
ference between the saliency map S and ground truth G as

MAE = 1

W × H

W∑

i=1

H∑

j=1

|Si,j − Gi,j| (7)

where W and H denote the width and height of the saliency
map, respectively. To compute Fβ -measure, we binarize each
saliency map with an image-dependent threshold proposed by
Achanta et al. [63]. The threshold T is calculated as

T = 2

W × H

W∑

i=1

H∑

j=1

Si,j (8)

where W and H denote the width and height of the saliency
map S. Pixels with saliency value larger than T form the pre-
dicted salient region. Precision is the ratio of ground truth
salient pixels in the predicted salient area while recall is the
ratio of predicted salient pixels in the ground truth salient area.
Fβ -measure is defined as [63]

Fβ =
(
1+ β2

)× Precision× Recall

β × Precision+ Recall
(9)

where β2 is set as 0.3 to emphasize the precision. To draw
PR curves, a list of equally spaced thresholds are sampled.
For each threshold value, each predicted saliency map in the
benchmark is quantized into a binary mask. Precision and
recall are calculated with each binary mask and its ground
truth annotation. The precision and the recall corresponding
to each threshold are computed by, respectively, taking aver-
age of precision and recall for all binary masks. Then, we
obtain a list of (precision, recall) pairs and plot it as a PR
curve.

C. Effectiveness of Adversarial Attack

We demonstrate the performance of eight state-of-the-
art visual saliency models: 1) DSS [6]; 2) DCL [34];
3) RFCN [35]; 4) Amulet [28]; 5) UCF [29]; 6) MC [22];
7) LEGS [21]; and 8) MDF [18] on natural images and adver-
sarial samples which are synthesized with a pretrained DSS
model. For efficiency, the above neural models are trained
on the train set of MSRA-B and tested on the test set of
HKU-IS. The upper bound of L∞-norm ε is chosen as 20.
Qualitative results can be found in Fig. 5, where each sample
consists of two rows. The upper are natural image and its pre-
dicted saliency maps while the lower are adversarial samples
and their corresponding results. The second column from the
left are the ground truth saliency maps denoted as GT, DSS,
DCL, RFCN, Amulet, and UCF. Predicted saliency maps on
adversarial samples change significantly, compared with that

TABLE I
Fβ -MEASURE AND MAE ON NATURAL AND ADVERSARIAL EXAMPLES

Fig. 3. Effectiveness of adversarial attack on PR curves. As shown in the
above figures, the PR curve of DSS on adversarial samples drops the most
seriously. The PR curves of DCL, RFCN, Amulet, and UCF also degrade to
some extent, which suggests that adversarial samples yielded by some FCN
network are transferable to attack other FCN variants. For MC, LEGS, and
MDF, their PR curves tested on natural images and adversarial samples are
relatively close to each other, which indicates that the sparse labeling-based
methods are insensitive to adversarial noises.

on natural images. For MC, LEGS, and MDF, predictions on
adversarial samples and that on original images are visually
approximate.

As shown in Table I, Fβ -measure of DSS and DCL drop
30%–36% when exposed to the adversarial samples. The
adversarial attack reduces Fβ -measure of RFCN, Amulet, and
UCF by 6%–12% while it only lowers Fβ of MC, LEGS,
and MDF by 0.7%–1.1%. As shown in Table I, MAE of DSS
and DCL are increased by 0.176 and 0.1338, respectively, on
the adversarial samples while that of RFCN, Amulet, and UCF
are raised by around 0.04. MAE of MC, LEGS, and MDF
change less than 0.01. These results indicate that DSS suffers
most from the adversarial attack for the adversarial samples
are synthesized using a DSS model. DCL, RFCN, Amulet,
and UCF are affected to different extent, which may depend
on the similarity between their architectures and the pretrained
model used to launch attacks.

Fig. 3 demonstrates the comparison of PR curves with
respect to these above-mentioned salient object detection mod-
els tested on natural images and adversarial samples. N-adv
denotes some neural network N tested on adversarial samples.
The results tested on adversarial samples are plotted using
blue solid curves while those tested on original images are
draw with orange dashed curves. As shown in Fig. 3, the PR
curves of DSS and DCL are significantly higher than DSS-adv
and DCL-adv. It indicates that DSS and DCL suffer the most
from adversarial samples. Because the adversarial samples are
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Fig. 4. Effectiveness of adversarial attack on precision, recall, and Fβ -
measure. N-adv denotes the result of neural network N tested on adversarial
samples. As shown in the above bar diagrams, the precision, recall, and Fβ
of DSS-adv and DCL-adv decline by a wide margin, in comparison to DSS
and DCL, respectively. For RFCN, Amulet, and UCF, their precision, recall,
and Fβ tested on adversarial samples also decrease to some degree. For
sparse labeling methods (MC, LEGS, and MDF), their performances against
adversarial attacks is almost unchanged.

synthesized using exactly the same DSS model. DCL also
severely affected by the adversarial attacks, possibly because
it has similar network structure with DSS. The PR curves
of RFCN-adv, Amulet-adv, and UCF-adv also decline by a
considerable margin, respectively, in comparison to RFCN,
Amulet, and UCF. That is to say, the adversarial samples gen-
erated by some FCN-based model are transferable to degrade
other FCN-based methods to different extent. Even attack-
ers are unaware of the target neural network, they still have
chances to launch successful attacks using some arbitrary FCN
model. It reveals that existing visual saliency models based
on dense labeling are threatened by adversarial attacks. For
MC, LEGS, and MDF, their PR curves on natural images
and adversarial samples almost completely overlap. It suggests
that sparse labeling methods are quite robust against existing
gradient-based attacks, since gradients propagated from differ-
ent segments to the same image position very possibly conflict
with each other.

Fig. 4 are the bar diagrams of existing visual saliency meth-
ods tested on natural images and adversarial samples. P, R, and
F denote precision, recall, and Fβ -measure, respectively, in the
color of blue, green, and yellow. The results shown in Fig. 4
draws similar conclusions with Fig. 3. Precision, recall, and Fβ

of DSS and DCL decrease the most seriously against adver-
sarial attacks. For RFCN, Amulet, and UCF, their precision,
recall, and Fβ are also harmed by adversarial samples to some
degree. Segment-based models such MC, LEGS, and MDF are
more robust and present negligible degeneration.

D. Robustness of the Robust Salient Object Detection
Framework

To demonstrate the robustness of ROSA, we present exten-
sive experiments on four datasets (HKU-IS, ECSSD, DUT-
OMRON, and MSRA-B), with three state-of-the-art saliency
models (DSS, DCL, and RFCN) as baselines. All models
in the section are trained on a dataset that includes train-
ing sets of HKU-IS, DUT-OMRON, and MSRAB. Adversarial

samples are synthesized with a DSS model pretrained on the
above-mentioned dataset. The L∞-norm upper bound ε of
the adversarial noise is chosen as 25. We also compare our
proposed method with several existing defending algorithms,
which are developed for robust image classification and can
be transferred to other tasks. Smooth denotes a spatial smooth
filter in [68]. JPEG [54], [69] denotes applying JPEG compres-
sion on input images before feeding them into target networks.
The quality of the compressed image is set to 75 according
to [54]. Quant [70] denotes bit reduction that quantizes 8-bit
RGB images into pixel values with less bits. We reduce images
to 3 bits following [54]. TVM [54] denotes total variation
minimization that aims at reducing difference between adja-
cent pixels. TVM is implemented using [71]. Tables II–IV are
the numeric results with a baseline model as DSS, DCL, and
RFCN, respectively. D-adv denotes experiments on the adver-
sarial samples of dataset D. N+M denotes the neural network
N equipped with the defense method M.

As Table II shows, DSS+ours outperforms DSS* by
71.9%–86.2% with respect to Fβ -measure on adversarial sam-
ples. DSS* displays seriously degraded Fβ lower than 1.0%
because the adversarial samples are synthesized with the same
DSS model. For fair comparison, we also attack DSS+ours
with samples produced by its own DSS backbone, which is
denoted as DSS+ours*. DSS+ours* still significantly sur-
passes DSS* by 71.86%–86.05% Fβ . The difference of the
performance between DSS+ours* and DSS+ours is quite
small and less than 0.78% Fβ . Note that on natural images,
DSS+ours* and DSS+ours have exactly the same numeri-
cal results, since their difference lies in using DSS models
of different weights to synthesize adversarial samples. For
simplicity, the cell corresponding to DSS+ours tested on orig-
inal images leave a blank. Compared with existing defense
baselines, DSS+ours exceeds the second best DSS+TVM
by 6.08% Fβ and 0.0337 MAE on the adversarial samples
of HKU-IS dataset. On ECSSD-adv dataset, our proposed
method outperforms TVM by 2.92% Fβ and 0.0327 MAE.
DSS+ours surpasses the second best DSS+TVM by 6.05%
Fβ and 0.0206 MAE on DUT-OMRON-adv dataset. On the
adversarial samples of MSRA-B, the proposed framework also
obtains higher Fβ and smaller MAE than other defense meth-
ods. As for natural images, the performances of different
models are close to each other, because of no threats caused
by adversarial noises. Existing defense approaches act as small
variations on input images and result in slight degeneration on
performance. In most cases, the proposed framework achieves
the best Fβ -measure and MAE on clean input images, which
suggests that our method improve the backbone model on both
adversarial samples and natural images.

In the case of DCL shown in Table III, our proposed meth-
ods presents the highest Fβ and the smallest MAE on both
original images and adversarial samples of all four bench-
marks. For example, DCL+ours outperforms DCL+TVM by
3.35% Fβ and DCL+Quant by 0.0112 MAE on HKU-IS-
adv. Fβ and MAE of DCL+ours are superior to those of
DCL by 1.65% and 0.0033 on HKU-IS dataset. On MSRA-
B-adv dataset, our proposed defense framework surpasses the
second best TVM by 2.24% and Smooth by 0.013. On the
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Fig. 5. Effectiveness of adversarial attack. The leftmost column is the input images in which the upper one is a natural image and the lower one is the
corresponding adversarial samples. The second column from the left is the ground truth saliency maps in which the lower position leave vacant because natural
images and their adversarial samples share the same ground truth. As shown in the above examples, saliency maps predicted by FCN-based salient object
detection models, including DSS, DCL, RFCN, Amulet, and UCF are deteriorated by input images with adversarial perturbations. Segment-based models,
such as MC, LEGS, and MDF, produce more consistent results between natural images and adversarial samples.

Fig. 6. Robustness of ROSA. The leftmost column is the original natural images. The second column from the left is the corresponding adversarial samples.
The rightmost column is the ground truth. N+ours denotes some neural model N incorporated with our proposed method ROSA. All salient object detection
models in the above are tested on adversarial samples. As shown in the above examples, our proposed framework enhances the prediction accuracy of three
backbone network DSS, DCL, and RFCN.

natural images of MSRA-B, DCL+ours also obtains better
Fβ and MAE than the second best DCL+Smooth and DCL by
1.33% and 0.0042, respectively. In the case of RFCN shown in
Table IV, the proposed defense framework achieves the best
Fβ and MAE on the adversarial samples of all four bench-
marks. For example, RFCN+ours outperforms the second best
RFCN+TVM by 4.09% Fβ and RFCN+Quant by 0.0318
MAE on ECSSD-adv dataset. RFCN+ours surpasses the sec-
ond best RFCN+TVM by 4.54% and RFCN+Quant by 0.0341
MAE on MSRA-B-adv dataset. As for natural images, our
proposed method RFCN+ours achieves competitive or better
results than RFCN.

Fig. 7 demonstrates the PR curves of existing defense base-
lines and the proposed method with three backbone networks,
DSS, DCL, and RFCN, respectively. Solid curves denote the
proposed defense framework while dashed ones denote exist-
ing defense algorithms. Note that in the leftmost subfigure
of Fig. 7, DSS+ROSA* denotes attacking DSS+ROSA via

adversarial samples that are generated using the backbone of
DSS+ROSA itself. As shown in Fig. 7, the proposed defense
framework displays better PR curves than the second best
TVM with DSS as backbone. On the case of DCL and RFCN,
the PR curves of our proposed method are also higher than
the second best Quant by a considerable margin. The exist-
ing defense algorithms perform significantly worse with DSS
than DCL and RFCN, since the adversarial samples are synthe-
sized using a DSS model. In short, our proposed framework
not only significantly enhances the robustness of backbone
against adversarial attacks but also demonstrates comparable
or better performance on natural images. Fig. 6 presents some
qualitative comparisons on the robustness of ROSA.

E. Ablation Study

This section verifies the effectiveness of each part in the
proposed ROSA framework. We integrate each component of
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TABLE II
ROBUSTNESS OF ROSA WITH DSS

TABLE III
ROBUSTNESS OF ROSA WITH DCL

TABLE IV
ROBUSTNESS OF ROSA WITH RFCN

ROSA with DSS, DCL, and RFCN, respectively. For simplic-
ity, the above models are trained on MSRA-B train set and
tested on HKU-IS test set. SWS denotes segment-wise shield-
ing component and CAR denotes context-aware restoration

component. To validate the effect of CAR/SWS, we compare
*+SWS/*+CAR with *+ROSA. According to Table V, even
though *+CAR exceed *+ROSA by 5.22%, 3.5%, and 2.75%
Fβ on natural images, *+ROSA outperforms *+CAR by
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Fig. 7. Quantitative analysis on the robustness of ROSA in terms of PR curve. It shows the PR curves of existing defense methods and our proposed framework
with DSS, DCL, and RFCN, respectively. Solid curves denote our proposed method while dashed curves denote other defense algorithms. DSS+ROSA* denotes
DSS+ROSA tested on the adversarial samples synthesized by the DSS backbone of DSS+ROSA itself. As shown in the above figures, our proposed method
achieves higher PR curves than other defense baselines with DSS, DCL, and RFCN.

TABLE V
ABLATION STUDY OF ROSA

28.32%, 21.29%, and 5.85% against adversarial attacks, which
indicates the effectiveness of SWS. MAE results in Table V
also draw a similar conclusion. Even though MAE of *+CAR
are 0.0113, 0.0079, and 0.0054 less than that of *+ROSA
on natural images, *+ROSA lowers MAE by 0.1486, 0.1046,
and 0.0216 on adversarial samples by a larger margin. As for
components *+SWS, *+ROSA surpasses *+SWS by 2.89%,
6.67%, and 8.98% Fβ on original samples and 3.09%, 7.26%,
and 9.38% Fβ on adversarial samples. Besides, *+ROSA
reduces MAE by 0.0119, 0.0273, and 0.0313 on natural images
and 0.0119, 0.0307, and 0.0316 on adversarial samples in com-
parison to *+SWS, which authenticates the effectiveness of
CAR. We claim that SWS and CAR are two strongly coupled
components. For example, DCL obtains 56.84% Fβ against
adversarial samples as shown in Table I while DCL+CAR
achieves 60.17% Fβ . CAR improves DCL by 3.33% Fβ .
However, DCL+ours (SWS+CAR) outperforms DCL+SWS
by 7.26% Fβ more than 3.33%. That is to say, with SWS com-
ponent, the effectiveness of CAR is more significant. The cases
of DSS and RFCN draw the same conclusion. Thus, SWS
and CAR are not a separate process but two complementary
steps of one core idea, adaptively predicting saliency for inputs
with the new introduced noise to resist adversarial attacks.
In short, CAR component can refine saliency maps predicted
by models with SWS component. These two components
are complementary and contribute to the robustness of our
proposed method.

Fig. 8. Ablation study of ROSA. The above compares the entire proposed
framework with its separated components, segment-wise shielding component
denoted as SWS, and context-aware restoration component denoted as CAR.
The upper row are PR curves with DSS, DCL, and RFCN while the lower
one are bar diagrams of precision, recall, and Fβ . As shown in the above
figures, the performance of the entire proposed framework is superior to those
of its internal components. It suggests that the internal components in our
proposed method acts as different roles to complement and enhance each
other significantly.

Fig. 8 compares the entire proposed framework with its
internal components with DSS, DCL, and RFCN, on PR
curves and bar diagrams of precision–recall–Fβ . The upper
row are PR curves while the lower one are bar diagrams.
Among these PR curves, the blue solid ones denote the entire
proposed method while the orange/yellow dashed ones denote
the internal components SWS and CAR. In the bar dia-
grams, P, R, and F denote precision, recall, and Fβ in the
color of blue, green, and yellow, respectively. In Fig. 8, the
entire proposed framework displays higher PR curves than its
internal components with three different backbone networks.
Besides, the precision, recall, and Fβ of the entire proposed
method also surpass those of *+SWS and *+CAR. In detail,
*+CAR perform the worst with DSS and DCL, while *+SWS
is close to *+CAR with RFCN. It indicates that CAR com-
ponent almost cannot resist adversarial attacks without SWS
component. Note that *+ROSA achieves the best and out-
perform *+SWS with different backbones. It suggests that
CAR component can further improve *+SWS by a significant
margin.
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Fig. 9. Qualitative comparison among adversarial attacks of different strengths. ε denotes the L∞-norm upper bound of adversarial perturbations. As shown
in the above, larger ε achieves stronger attack and results in worse performance of a pretrained DSS model. But the curve-like patterns of adversarial noises
are more easily observed. No matter what ε is set in the range of [0, 30], the proposed method denoted as DSS+ours presents stable and fine saliency maps.

(a) (b)

Fig. 10. Investigation of attack strength. Epsilon denotes the L∞-norm upper
bound of adversarial perturbations. F-measure denotes the evaluation metric,
Fβ -measure. (a) F-measure–Epsilon curve. (b) MAE–Epsilon curve.

F. Investigation of Attack Strength

In this section, we investigate how a hyper-parameter, the
upper bound of L∞-norm (denoted as ε), affects the strength
of the proposed adversarial attack. We also study how our
proposed defense method performs against adversarial attacks
of different strengths. For efficiency, 500 images are randomly
selected from the test set of MSRA-B dataset. These 500
images are named MSRA-B500. A list of ε is sampled in
the range of [0, 30]. For each ε, a set of adversarial samples
is synthesized for the entire MSRA-B500. These adversarial
samples are computed using some pretrained DSS model as
target network. Each set of adversarial samples is tested by
another trained DSS model, and our proposed method with
DSS, respectively. Fβ -measure and MAE are calculated for
each set of adversarial samples. We plot these results as F-
measure–Epsilon curves and MAE–Epsilon curves in Fig. 10.
As Fig. 10 shows, the blue curve denotes the performance
of DSS while the red one represents the proposed method
(denoted as DSS+ROSA). As ε increases, the Fβ of DSS
drops dramatically. It suggests that the strength of an adver-
sarial attack grows with the increase of its L∞-norm upper
bound. Notice that as ε rises, the performance of our proposed
method only degrades slightly and then becomes stable. It
indicates that the proposed defense framework is robust to
adversarial samples of different strengths. Fig. 9 demonstrates
a qualitative comparison among adversarial attacks of differ-
ent strengths. Setting ε as 30 achieves the strongest attack

and DSS incorrectly predicts the reverse of the ground truth
as salient regions. However, the adversarial noise is percepti-
ble and curve-like patterns can be observed in the top right
of the adversarial sample. For ε = 20, the adversarial pertur-
bations are hard to spot and the DSS model is still seriously
affected. Thus, we suggest that choosing ε around 20 helps
launch a strong and quasi-imperceptible adversarial attack on
salient object detection models.

V. CONCLUSION

In this paper, we, for the first time, achieve successful
attacks on state-of-the-art visual saliency methods. We experi-
mentally confirm that existing FCN-based models are sensitive
to adversarial perturbation. In addition, this paper proposed a
novel salient object detection framework that first brings some
new generic noise to input images, and then adaptively detects
salient objects for the inputs with the new noise. The proposed
framework is instantiated by an arbitrary FCN-based backbone
network, a segment-wise shielding component and a context-
aware restoration component. Experimental results suggest
that these two components are strongly coupled and signifi-
cantly complement each other. Besides, extensive comparisons
show that the entire framework can effectively strengthen the
robustness of FCN-based saliency models, superior to the
existing defense baselines. We believe that developing an accu-
rate, fast, and robust model will be a new trend in salient object
detection.
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