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Abstract

Class-incremental/Continual image segmentation (CIS)
aims to train an image segmenter in stages, where the set
of available categories differs at each stage. To leverage
the built-in objectness of query-based transformers, which
mitigates catastrophic forgetting of mask proposals, current
methods often decouple mask generation from the contin-
ual learning process. This study, however, identifies two
key issues with decoupled frameworks: loss of plasticity
and heavy reliance on input data order. To address these,
we conduct an in-depth investigation of the built-in object-
ness and find that highly aggregated image features pro-
vide a shortcut for queries to generate masks through sim-
ple feature alignment. Based on this, we propose SimCIS,
a simple yet powerful baseline for CIS. Its core idea is
to directly select image features for query assignment, en-
suring “perfect alignment” to preserve objectness, while
simultaneously allowing queries to select new classes to
promote plasticity. To further combat catastrophic forget-
ting of categories, we introduce cross-stage consistency in
selection and an innovative “visual query”-based replay
mechanism. Experiments demonstrate that SimCIS consis-
tently outperforms state-of-the-art methods across various
segmentation tasks, settings, splits, and input data orders.
All models and codes will be made publicly available at
https://github.com/SooLab/SimCIS.

1. Introduction

Continual learning empowers models to progressively ac-
quire, learn, and assimilate new knowledge from an ever-
evolving environment. It serves as a fundamental task in
image classification [4, 8, 18, 20, 25, 31, 40, 42, 48, 49,
57, 58, 60, 64, 71, 72, 75] where models are required to
recognize new classes (plasticity) and preserve old class
knowledge (avoid catastrophic forgetting). Extending be-
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Figure 1. Boxplots of PQ metric for our SimCIS and previous
SOTA [38] on ADE20K. We train each model on randomly shuf-
fled continual data input orders and report average PQ for base
and novel classes. We observe that recent query-based transform-
ers suffer from a loss of plasticity (low average PQ) and heavy
reliance on the input data order (high variance).

yond classification, continual image segmentation adapts
this to the image segmentation, unlocking a myriad of
practical applications [50, 53]. However, it also confronts
more challenges: 1) Additional catastrophic forgetting
of mask prediction, beyond that of class prediction; 2)
Background semantic shift occurs when the current fore-
ground becomes background in subsequent stages, driven
by the need for image segmentation to predict the back-
ground class and the constraint of only having class annota-
tions from current stage. Recently, query-based transform-
ers [10, 17, 34, 35, 55, 56, 59, 63, 79] are introduced into
continual image segmentation, as their built-in objectness
has been shown to mitigate catastrophic forgetting in mask
generation. Leveraging this built-in objectness, many stud-
ies [7, 26, 38, 74] decouple mask segmentation from the
continual learning process by freezing the parameters asso-
ciated with mask proposal generation. However, we observe
two notable yet suboptimal behaviors in the aforementioned
methods.
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Figure 2. Clustering results from feature map. Pixel feature pro-
vides sufficient semantic priors (Person) even after finetuning.

* The advantage of objectness diminishes and even has
a detrimental effect on plasticity as the task sequence
shortens. In the shortest two-task setting, they typically
achieve performance comparable to or even slightly lower
than the baseline.

* The built-in objectness is fragile and lacks robustness,
showing heavy dependence on the split and order of in-
put data. As shown in Fig 1, in ten random trials, the
worst trial shows a significant performance drop on new
classes compared to the default setting.

Therefore, in this work, we aim to understand the built-in
objectness and achieve consistent improvements (especially
on plasticity) across different task lengths and varying data
input orders. This is crucial, as it is impractical to assume
fixed task lengths and data sequences in real-world scenar-
ios. The conclusion from a series of investigations is:

o @ The built-in objectness emerges from the alignment
between the query and the semantic priors within the
image feature, mediated by the decoder. As shown in
Fig 2, the clustering results indicate that image features
contain sufficient semantic priors where pixels belong-
ing to the same semantic are grouped together) even after
finetune. Meanwhile, the query continuously aligns with
specific regions of the feature map at each layer of the de-
coder as shown in Fig 3 (right). In summary, the highly
aggregated image feature provides a shortcut for queries
to generate masks by simply aligning themselves to se-
mantic priors in the image feature through the decoder.

e @ The built-in objectness diminishes over training
stages due to the query’s failure to align with the se-
mantic priors of the feature map. As shown in Fig 3
(left), since semantic priors vary at different stages due to
background semantic shift, causing the updated learnable
query to gradually misalign with the pixel feature from
old classes in previous stages, even after the decoder’s
post-alignment (observed in @).

Inspired by @ and @, to ensure objectness is preserved

throughout the continual learning stages, we propose a lazy

Query Pre-Alignment (QPA) method, where query fea-

tures are selected from specific locations in the image fea-

ture map, rather than being learned from scratch, to “per-
fectly” pre-align query feature with semantic priors. Specif-
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Figure 3. Similarity between queries and feature map changes
across decoder layers and training stages (right). The query grad-
ually misaligns with the pixel feature (left).

ically, based on the current stage’s semantic classes, we se-
lect the most semantically significant locations in the image
feature, preserving objectness at each stage. However, ob-
jectness is still lost across stages due to varying semantic
classes in different stages.

To overcome cross-stage selection issues, a naive solu-
tion involves distillation on the feature map or query fea-
tures between stages. However, in turn, while it preserves
old priors from previous stages, it re-introduces incorrect
priors for current stages (where old priors label current se-
mantics as background), leading to a loss of plasticity. For-
tunately, thanks to our query pre-alignment method, we can
easily maintain old classes by keeping queries correspond-
ing to old class positions, while enabling the selection of re-
maining queries for new classes in the current stage. Thus,
we propose a Consistent Selection Loss (CSL) to ensure
that, for the same image, the most semantically significant
locations selected in the previous stage are revisited in the
current stage.

With QPA and CSL, objectness in the query-based trans-
former is fully utilized to generate mask proposals. How-
ever, for class prediction, catastrophic forgetting may still
occur. Previous methods typically rely on image replay
to mitigate catastrophic forgetting. In contrast, thanks to
our query pre-alignment, our query inherently contains cat-
egory semantics. By storing the query feature, we can sim-
ulate specific semantics without requiring the actual image
to contain the corresponding category. Therefore, we pro-
pose a novel Virtual Query (VQ) strategy to replay the
virtual queries corresponding to previous classes in the de-
coder layer to avoid catastrophic forgetting. Compared to
conventional image replay methods, our approach reduces
storage requirements by 10x, is independent of input data
order, and preserves dataset privacy.

In summary, our contributions are multi-fold:

* We provide a thorough analysis of the built-in objectness,
revealing the reasons behind its emergence and demise.

* By addressing the root cause, we can successfully lever-
age built-in objectness to mitigate catastrophic forgetting
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and background semantic shift through the introduction
of three simple yet novel modules—QPA, CSL, and VQ.

e Our model, SimCIS, consistently and significantly out-
performs state-of-the-art results on ADE20K in both con-
tinual panoptic and semantic segmentation.

* We introduce new dataset splits to evaluate the model’s
robustness to input order in continual learning. SimCIS
shows superior robustness over state-of-the-art methods,
thanks to the effective utilization of built-in objectness.

2. Related Work

Continual Learning is a longstanding field which pos-
sesses significant importance in addressing dynamic envi-
ronments, enhancing model adaptability, and improving re-
source efficiency. The objective of continuous learning is
to enable the model to efficiently acquire and adapt to new
tasks and data, while retaining previously learned knowl-
edge as it encounters additional information. The great-
est challenge of continual learning is catastrophic forget-
ting [24, 49, 65]. The early research are categorized into
three primary types: those that rely on regularization con-
straints [8, 9, 19, 20, 39, 41], those employing replay tech-
niques [46, 49, 60], and those based on dynamic struc-
tures [22,42,43,61, 71, 75]. Regularization-based methods
aim to reduce the interference of new tasks on old knowl-
edge by constraining the learning process of the model, en-
suring that the model parameters remain closely aligned
with previously learned representations when updated due
to task changes. Replay-based methods employ strategies
to store, replay [4, 33, 48, 67], or generate [46, 60, 66]
samples from old tasks to mitigate catastrophic forgetting.
Those methods based on dynamic structure [42, 43, 52] al-
locate distinct subsets of parameters to various subtasks by
facilitating the expansion of their network architecture.
Universal Image Segmentation. Before MaskFormer pro-
posed, traditional segmentation methods developed special-
ized architectures and models for each task to achieve top
performance [2, 12-15, 28, 30, 36, 62, 69, 73, 78]. Mask-
Former [16] is the first unified segmentation architecture
to achieve state-of-the-art performance across three image
segmentation tasks. Mask2Former [17] improves Mask-
Former by adapting multi-scale features and introducing
mask attention mechanism and achieve better performance.
Follow its success in segmentation, we use Mask2Former
as our baseline aims to extend its capability into the field of
continual learning.

Continual Segmentation is the application of continual
learning within the field of image segmentation. The chal-
lenge of continual segmentation tasks lies in the ability
to identify new categories while generating high-quality
masks for each category. This dual requirement underscores
the complexity of maintaining accurate segmentation per-
formance while adapting to an evolving set of class labels.

Methods for continual segmentation are also categorized
into three types as previously mentioned: regularization-
based [5, 6, 21, 44, 45, 47, 54, 68, 74, 77], replay-based [7,
11,23, 76, 81], and dynamic structure-based [1, 26, 27, 38,
70]. Among these methods, those query-based architectures
demonstrate notable performance. CoMFormer [6] is the
first query-based method in the field of continuous panop-
tic segmentation, employing distillation and pseudo label to
combat catastrophic forgetting. CoMasTRe [26] is inspired
by the methods of CoMFormer and, while maintaining the
use of distillation loss, decouples mask and class predic-
tions in continuous segmentation tasks. ECLIPSE [38]
adapts the strategy of VPT [37], freezing the majority of
model parameters and providing a set of trainable queries
for fine-tuning across different tasks. BalConpas [11] at-
tempts to combat catastrophic forgetting by employing a
method that combines feature-based distillation and a re-
play sample set, aiming to learn new classes without nega-
tively impacting previously acquired knowledge.

3. Preliminary
3.1. Problem Setting

Following the same continual learning setting in [6] , we
train our model over 7" steps. At each step t, the model
M has access only to a subset D' = {z!, y'} of the en-
tire dataset D7, where xt € RE*H*W denotes the image
at the current step and ¢! represents the corresponding an-
notations (where it can only contain annotations for classes
C"). This setup, where each stage involves learning different
classes, makes the model highly susceptible to catastrophic
forgetting as it tends to lose previously acquired knowledge
at each training step. Meanwhile, as the same image may
appear across different learning steps with entirely different
annotations, we also face the issue of so-called background
shift [5]. Given these challenges, our objective is to design a
model M such that, at any stage ¢, the model M not only
effectively learns from D! but also preserve the previous
class knowledge from D':*—1,

3.2. Mask2Former

We leverage Mask2former [17] as our meta-architecture for
image segmentation. Mask2Former is a transformer-based
model, which predicts a set of binary masks instead of per-
pixel classification, for universal segmentation tasks. It pri-
marily consists of three components: 1) An image encoder
as backbone fpackbone to extract image embeddings. 2) A
pixel decoder fpir to embed image embeddings to multi-
scale pixel features, which we denote as F":

F={Fanuw |V hw)eQ}, FeRPHXW (1)

where [ denotes the multi-scale layer, D represents the hid-
den dimension, JF; ., refers to the feature point at po-
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Figure 4. The Overall Architecture of our SimCIS: a lazy Query Pre-Alignment (Sec 4.1) with a Consistent Selection loss (Sec 4.2) to
ensure built-in objectness inner and across stages, and Virtual Query (Sec 4.3) to avoid catastrophic forgetting in class prediction.

sition (h,w) on the I-th layer and ) represents the spa-
tial set of multi-scale features. 3) A transformer decoder
Jaecoder takes N learnable queries Qn = {q1,92,...,qn} €
RN*P with positional encodings ep,s € RY*P to first con-
duct cross-attention and then self-attention with F as fol-
lows:

Q?\f = FFN(SA(CA(QN + 6p057 F)))7 (2)

where CA(, ) denotes the cross-attention, SA(-) represents
self-attention, and @'y denotes the updated query feature.
The final prediction for each query is Zn = {(c;, m;)},,
where ¢; € RE and m; € R¥*W represent the predicted
class and mask for g;, respectively.

4. Method

In this section, we introduce the overall architecture of our
proposed SimCIS model for continual image segmentation.
As shown in Fig 4, SimCIS contains three modules: 1)
Lazy Query Pre-alignment (Sec 4.1), 2) Consistent Selec-
tion Loss (Sec 4.2) and Virtual Query (Sec 4.3).

4.1. Lazy Query Pre-alignment

To preserve the objectness across continual learning stages,
we propose to pre-align the object query )y with seman-
tic priors in the pixel feature F(; , ,,) by directly initializing
query feature with the most semantically significant pixel
feature. To determine the semantic score of each pixel fea-
ture, we learn a prototype for each category and select pixel
features as initial features by calculating the similarity be-
tween the pixel feature and each prototype.

Specifically, for each training step ¢, we maintain a set
of trainable prototypes {p’|i € C'}, p' € RP for each

class in C*. By concatenating the prototypes of the past
step, Pt=1 with those of the current classes, we obtain the
current prototype set P* as follows,

P = concat(P' !, {p’|i € C'}). 3)

Then for each feature point on F', we compute its similar-
ity with P? to select the best feature points. The selection
process is as follows:

7' = topK ({max S(f(tl.’h’w),Pt) [ V(I h,w) € Q} ,N)
(C))

Qv =& ={F" " ieT"™"}, Q)

where Z = {(I;, hi,w;)}Y, € € represents the spatial
positions of the selected feature points, £} represents the
feature points from F™ selected by Z" and S(,) denotes
the similarity calculation by dot product. The topK(X,Y)
function returns the indices of the Y largest values in X
and N is the number of object query Qn . We select N
feature points with the highest similarity with the prototype
to initialize ) . To supervise our selection process, we use
a classification loss during training and update P? through
backpropagation [51]. Additionally, we apply stop gradient
on @) to ensure that the information in F' is not disrupted
during training, keeping the objectness information stable
across different stages.

4.2. Consistent Selection Loss

To ensure selection Z is stable for the same image across
stages, we propose a consistent selection loss. Specifically,
when training our model M? at current stage, we can easily
obtain feature points & ' = {F} | i € Z'"'} . Then,
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to maintain consistency in object selection across different
steps, we calculate the similarity between selected feature
points with P*~!, after that, we use the Kullback-Leibler
(KL) divergence loss [32] to compute the loss:

1z

1 —1 t— S(gtt:llvptil)
Lesi = W ; S(Efilypf 1)10g

S Py

(6)
In this way, we successfully maintain the most semantically
significant locations from the previous stage, ensuring that
the selection of )y remains stable across stages.

4.3. Virtual Query

To overcome catastrophic forgetting in class prediction, we
propose the virtual query to bypass the limitations of previ-
ous methods that rely on data order. Virtual Query replays
the previous query feature in the decoder layer to simulate
semantics. Specifically, our innovative virtual query strat-
egy can be divided into three steps: Firstly, we use the re-
sults of bipartite matching to select object queries and build
our VQ bank. Then we analyze the pseudo-distribution
to focus on rare categories in the current stage. Finally,
we sample VQs in the new stage according to the pseudo-
distribution and concatenate them into the object query Q)
for input into the decoder.

(1) Query Storage. During training, we maintain a queue
of length h for each class, forming our virtual query bank

Bvq - {b?7bg7--'7b|hcl:T‘}u (7)

where b/ represents a queue of length A for class i where b
is the queue for class 7. Queries matched through bipartite
matching [3] from the decoder’s final layer output, Zn (de-
fined in Sec 3.2), are stored in the appropriate class queues
based on their bipartite matching results with ground truth
Y.

T, = Bipartite(Zy, y),

Byq < Enqueue (QN(iq),bguy)), ®)
Vi=(iq,iy) €Ty

where N denotes the number of queries. The set Z; con-

sists of tuples, where each tuple ¢ = (i, i, ) represents the

correspondence between query and ground truth. Here, i,

denotes the query index, and 4, denotes the ground truth in-

dex. 7’ represents the class label of the i*" ground truth.

(2) Pseudo-Distribution Statistics. In each continual
learning step, the category distribution of images changes
at each stage. To ensure the decoder retains the category
information for all old classes, we use the pre-trained last-
stage model M*~1’s outputs on current stage’s dataset D’
to simulate the distribution of real classes which helps mit-
igate the forgetting of rare classes in the current stage. We
use this pseudo-distribution statistics by calculating

m AR
w= ((Z m:)/aj) : ©)

i=1 =1
where o; is the pseudo number of class ¢ in the current stage
and m = |c!*~1| represents the number of categories from
the previous stages.
(3) VQ Utilization. Based on the pseudo-distribution statis-
tics, in each iteration, we sample j virtual queries @); =
{vqi,...,vq;} for each batch based on w. These queries
are then concatenated with Q as

QN“’j = {qh'“ y4dN,Vq1, avqj}7 (10)

and fed into the decoder. As shown in Fig 4, within the
decoder, we design a skip attention strategy for the VQs.
Specifically, since the objects represented by the VQs do not
appear in the image, to prevent the VQs from influencing
@ during the self-attention and cross-attention processes,
we allow the VQs to bypass the attention layers and directly
affect the FEN layers as follows:

Qv+ ; = FFN(concat[CA(SA(QN + €pos, F)), Qj])-
(11
Finally, the virtual query only computes Ly, to address the
model’s category forgetting.

S. Experiments
5.1. Experimental Setup

Dataset and Evaluation Metric. Following previous
works [0, 11, 38], we compare our SimCIS with other ap-
proaches using the ADE20K dataset [80] to evaluate its ef-
fectiveness. The images in the dataset include annotations
for 150 classes, which are ranked by their total pixel ratios
in the whole dataset. Among these 150 classes, 50 amor-
phous background classes are labeled as “stuff” classes,
while 100 discrete object classes are labeled as “thing”
classes. Following[6], we use Panoptic Quality (PQ) as
the performance metric for continual panoptic segmenta-
tion and mean Inter-over-Union (mloU) for continual se-
mantic segmentation. After incremental learning steps, we
report results for base classes (C'), new classes (C*7), all
classes (C*T), and an average of all visible classes at each
step (avg), respectively.

Continual Learning Protocol. Following existing contin-
ual segmentation methods [5-7, 11, 21, 26, 38], we evaluate
our method on different continual learning settings. In par-
ticular, our incremental learning tasks are represented in the
form of A-B, where A denotes the number of base classes
partitioned from the dataset, and B denotes the number of
new classes. For both continual panoptic (CPS) and seman-
tic segmentation (CSS), we conduct tasks of 100 - 5, 100 -
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Method 100-5 (11 tasks) 100-10 (6 tasks) 100-50 (2 tasks)

1-100 101-150  all  avg | 1-100 101-150 all  avg | 1-100 101-150 all  avg
FT 0.0 22 07 47| 00 4.8 1.6 89 | 00 324 108 2638
MiB [5] 23 0.0 15 134 638 02 46 191|233 149 205 317
PLOP [21] 3.1 119 247 313 | 377 233 329 378 | 424 237 362 395
SSUL [7] 302 79 228 279 | 316 119 250 303 | 359 181 300 338
CoMFormer [6] | 344 159 282 340 | 360  17.1 297 353 | 411 277 367 388
BalConpas [11] | 36.1 ~ 203 308 358 | 407 228 347 388 | 428 257  37.1 400

ECLIPSE [38] | 4L.1 166 329 - | 414 188 339 - | 417 235 356 -
Our SimCIS | 421 219 354 387 | 422 301 381 405 | 447 308 400 427

joint | 436 342 404 - | 436 342 404 - | 436 342 404 -

Table 1. Continual Panoptic Segmentation results on ADE20K dataset in PQ. All methods use the same network of Mask2Former [17]
with ResNet-50 [29] backbone. joint means an oracle setting training all classes offline at once.

Method 50-10 (11 tasks) 50-20 (6 tasks) 50-50 (3 tasks)
1-50  51-150 all | 1-50  51-150 all | 1-50  51-150  all
FT 0.0 17 L1 | 00 4.4 29 | 00 120 8.1
MiB [5] 349 77 168 | 388 109 202 | 424 155 244
PLOP [21] 399 150 233 | 439 162 254 | 458 187 277
CoMFormer [6] | 385 156 232 | 427 172 257 | 450 193 279
ECLIPSE [38] | 459 173 268 | 464 196 286 | 460 207 292
BalConpas [11] | 446 248 314 | 492 282 352 | 512 265 347
OurSimCIS | 488 300 363 | 516 319 385 | 521 307 379
joint | 511 351 404 | 511 351 404 | 511 351 404

Table 2. Continual Panoptic Segmentation results on ADE20K dataset in PQ. All methods use Mask2Former [17] with ResNet-50 [29].

10, and 100 - 50. Additionally, we conduct tasks of 50 - 10,
50 - 20, and 50 - 50 for panoptic segmentation.
Implementation Details. We adapt an pre-trained ResNet-
50 [29] backbone for CPS and an pre-trained ResNet-101
for CSS. Following previous work [11], the input image res-
olution for the CPS tasks is set to 640 x 640, while for the
CSS tasks, it is set to 512 x 512. For the number of virtual
queries [V, it be set up to 80. For more detailes, please refer
to the Appendix.

5.2. Quantitative Results

Tab 1, Tab 2 and Tab 3 present the performance of Sim-
CIS and other approaches on the continual panoptic seg-
mentation and semantic segmentation benchmark. In these
tables, “FT” refers to fine-tuning the base model without
employing continual learning methods, while “joint” indi-
cates training the base model using all available data. They
represent the lower and upper-performance bounds for con-
tinual learning methods, respectively.

Continual Panoptic Segmentation. Tab 1 and Tab 2
present the performance of SimCIS and other approaches
under different continual panoptic segmentation settings.
(1) Compared to regularization-based methods MiB [5],
PLOP [21], and CoMFormer [6], SimCIS achieves superior

results on both new and base classes. Notably, compared
to CoMFormer, the best-performing among them, SimCIS
improves PQ by 4+-6.0% on new classes and +7.7% on base
classes in the 100 - 5 task, maintaining a consistent lead in
the 100 - 10 and 100 - 50 tasks. Especially in the 100 - 10
task, it surpasses CoMFormer by +6.2% PQ on base and
+13.0% PQ on new classes. When using 50 base classes,
SimCIS significantly outperforms these methods, demon-
strating its superiority. (2) Compared with the method also
using built-in objectness, SimCIS achieves better perfor-
mance on new classes without freezing the model param-
eters. In the 100 - 5, 100 - 10, and 100 - 50 tasks, SimCIS
outperforms ECLIPSE [38] by +5.3% PQ, +11.3% PQ,
and +7.6% PQ, respectively. In the tasks with 50 classes as
base classes, SIimCIS outperforms ECLIPSE [38] by over
+10% PQ on new classes, demonstrating the stability of
our approach. (3) BalConpas [11] is a continual learning
method based on the Mask2Former [17] architecture. In the
100 - 10 and 100 - 50 tasks, SimCIS outperforms BalCon-
pas [11] by more than +5.0% PQ on new classes. In the
longer step sequence of the 100 - 5 task, SimCIS surpasses
BalConpas [11] by +6.0% PQ on base classes. In the 50 -
20 and 50 - 50 tasks, SimCIS maintains strong performance,
averaging +4% PQ higher than BalConpas [11] on new
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Model 100-5 (11 tasks) 100-10 (6 tasks) 100-50 (2 tasks)

1-100 101-150  all  avg \ 1-100 101-150  all  avg \ 1-100 101-150  all  avg
FT 0.0 0.3 0.1 56 0.0 0.1 00 9.1 0.0 32 1.1 263

MiB [5] 36.0 5.7 26.0 - 31.8 14.1 259 - 37.9 27.9 34.6 -
PLOP [21] 39.1 7.8 28.8 353 | 405 14.1 31.6 366 | 419 14.9 329 374

SSUL [7] 42.9 17.8 34.6 - 42.9 17.7 34.5 - 42.8 17.5 344 -

EWEF [68] 414 13.4 32.1 - 41.5 16.3 332 - 41.2 21.3 34.6 -
CoMFormer [6] 39.5 13.6 309 365 | 406 15.6 323 374 | 395 26.2 384 412

ECLIPSE [38] 433 16.3 342 - 43.4 17.4 34.6 - 45.0 21.7 37.1 -
BalConpas [11] 42.1 17.2 33.8 413 | 473 242 38.6 43.6 | 499 30.1 433 474
CoMasTRe [26] 40.8 15.8 326 38.6 | 423 18.4 344 384 | 457 26.0 39.2 41.6
Our SimCIS 46.7 22.8 38.7 474 | 497 274 423 492 | 549 36.0 48.6 52.0

Joint ‘ 57.1 39.1 51.2 - ‘ 57.1 39.1 51.2 - ‘ 57.1 39.1 51.2 -

Table 3. Continual Semantic Segmentation results on the ADE20K dataset, measured by mloU.

Panoptic 100-5 (11 tasks) Semantic 100-5 (11 tasks)

Psd

QPA ‘ CSL ‘ VQ‘

1-100  101-150  all ‘ 1-100  101-150 all
v 316 21.3 282 15.6 8.5 132
v v 30.7 223 27.9 374 16.7 305
v v v 35.7 24.0 31.8 432 17.0 345
v v v 35.1 233 312 425 19.5 34.8
v v v v 42.1 21.9 354 46.7 22.8 38.7

Table 4. Ablation Study on Proposed Components. Psd: pseudo
label, QPA: lazy query pre-alignment, CSL: consistent selection
loss, and VQ: virtual query.

classes. In the longer step sequence of the 50 - 10 task, Sim-
CIS exceeds BalConpas [11] by +4.2% PQ on base classes.
It is noteworthy that in the 100 - 50 task, SimCIS almost
matches the performance of the “joint”, with base classes
performance even exceeding that of the “joint”.

Continual Semantic Segmentation. As shown in Tab 3,
we further compare SimCIS with state-of-the-art works in
continual semantic segmentation. (1) Across three tasks,
SimCIS surpasses prior approaches by at least +4% mloU
on base classes. For new classes, it outperforms SSUL [7]
by +5.0% and +9.7% mloU in the 100 - 5 and 100 - 10
tasks, respectively. In the 100 - 50 task, SimCIS surpasses
MiB [5], which achieves 27.9% mloU, by +8.1% mloU.
(2) Among Mask2Former [ 17]-based methods, SimCIS also
achieves the best results. In the 100 - 5 task, it outperforms
ECLIPSE [38] on base classes by +3.4% mloU and Bal-
Conpas [11] on new classes by +5.6% mloU. In the 100 -
10 task, SimCIS achieves the performance of new classes
exceeding all other architectures by at least +3.0% mloU
while maintaining high performance on base classes.

5.3. Qualitative Comparison.

Comparison with Previous SOTAs. We compare SimCIS
with BalConpas [11] in the 100 - 5 continual panoptic seg-
mentation task of the ADE20K dataset, and the visual re-
sults are illustrated in Fig 5. In the first, second, and fifth
examples, BalConpas [11] encounters forgetting on base

classes such as path, bus, and building. Additionally, in
the third example, BalConpas incorrectly classifies the mi-
crowave and bag as cabinet and box, respectively. Benefit-
ing from the VQ, our SimCIS has a significant advantage
in preserving class information, allowing it to perform well
in these examples. Furthermore, BalConpas [11] fails to
provide segmentation masks for the bus and refrigerator in-
stances in the second and third examples. In contrast, our
proposed the keep built-in objectness strategy effectively
preserves object information within the encoder, enabling
SimCIS to accurately segment object instances.
Comparison in Different Steps. To further illustrate the
effectiveness of our method, we select certain visual exam-
ples from the continual learning steps of the 100 - 5 task. In
the two examples shown in Fig 6, our method is able to cor-
rect errors during the continual learning steps, such as the
microwave and bag in the first image, as well as the sink,
vase, and stair in the second image. SimCIS refines itself
during the continual learning process, ultimately achieving
accurate classification and segmentation of object instances
based on our proposed flexible VQ.

5.4. Ablation Study

In this section, we report the results of the ablation experi-
ments to validate the effectiveness of each component and
configuration in our SimCIS. We select the 100 - 5 task in
CPS and CSS to report the performance of SimCIS.

Main Components. As shown in Tab 4, each compo-
nent contributes to the overall performance. We take
Mask2Former [17] with pseudo label as our baseline perfor-
mance. The second row of the table shows the performance
of QPA with an increase of +18.2% mloU on base classes
and an increase of +8.2% mloU on new classes. With the
help of CSL (the third row), the CSL strategy achieves in-
creases of +8.2% PQ and +5.8% mloU for base classes,
respectively.

Effectiveness of VQ. As shown in Tab 5, compared to the
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Ours Balconpas

Ground Truth

Figure 5. Qualitative comparisons between SimCIS and BalConpas [11] on the ADE20K 100-5 continual panoptic segmentation scenario.
Our SimCIS demonstrates significant results, highlighting the effectiveness of our strategies.

Figure 6. Qualitative examples in continual learning.

Reply Num Disk 100-5 (11 tasks)
Type Samples | Memory | base | all |
0 (*20 0.0MB | 35.7 31.8
75 (%20 34MB | 389 334
Image 150 (#20) 6.1MB 38.9 34.0
300 (+20) | 11.8MB | 38.5 33.7
600 (*20) | 21.9MB | 39.2 34.3
0 (*150) 0.0MB | 35.7 31.8
20 (*150) 1.5SMB | 40.6 34.6
Virtual Query | 40 (*150) 3.0MB | 40.4 34.1
80 (*150) 59MB | 42.1 35.4
160 (*150) | 12.0MB | 40.9 | 34.2

Table 5. Effect of Replay Type and Storage Requirements.

conventional image replay method, our VQ strategy demon-
strates significant improvements in both storage efficiency
and performance. Firstly, when using 300 samples for the
image replay and 80 samples for VQ, we achieve a +1.4%
increase in PQ across all classes while using almost the
same disk memory. When comparing the optimal cases for
both storage methods, our VQ strategy outperforms the con-
ventional image replay method by +1.1% PQ, while utiliz-

100-10 (6 tasks)
1-100 101-150 all

38.9(39.4) 27.8(26.8) 352
327(32.1) 22.3(23.8) 293
40.3(40.2) 254(25.7) 353

Joint | 436 (342)  (404)

Method

BalConpas [11]
ECLIPSE [38]
Ours

Table 6. Continual Panoptic Segmentation with random order.
We also report the performance evaluated in the original class or-
der in (-). For detailed experiments, please refer to the Appendix.

ing only 27% of the storage space.

Robust to Input Data Order. As shown in Tab 6, our
model has great robustness in random data order. We have
a +0.1% PQ increase compared to BalConpas and a +6.0%
PQ increase against ECLIPSE across all classes.

6. Conclusion

In this work, we present a novel class-incremental im-
age segmentation (CIS) method called SimCIS, which ad-
dresses the challenges of catastrophic forgetting and back-
ground shift. We first explore the emergence and diminish-
ing of built-in objectness in query-based transformers and
then propose two novel modules: lazy query pre-alignment
and consistent selection loss, to ensure both intra-stage and
cross-stage built-in objectness. Additionally, we introduce
virtual queries to mitigate catastrophic forgetting in class
prediction. Comparisons with previous state-of-the-art CIS
methods and our ablation study demonstrate the superior-
ity of each individual component in our model, highlight-
ing its effectiveness in overcoming the challenges of incre-
mental learning. Acknowledgment: This work was sup-
ported by the National Natural Science Foundation of China
(No0.62206174).
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