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Abstract

Class-incremental/Continual image segmentation (CIS)
aims to train an image segmenter in stages, where the set
of available categories differs at each stage. To leverage
the built-in objectness of query-based transformers, which
mitigates catastrophic forgetting of mask proposals, current
methods often decouple mask generation from the contin-
ual learning process. This study, however, identifies two
key issues with decoupled frameworks: loss of plasticity
and heavy reliance on input data order. To address these,
we conduct an in-depth investigation of the built-in object-
ness and find that highly aggregated image features pro-
vide a shortcut for queries to generate masks through sim-
ple feature alignment. Based on this, we propose SimCIS,
a simple yet powerful baseline for CIS. Its core idea is
to directly select image features for query assignment, en-
suring “perfect alignment” to preserve objectness, while
simultaneously allowing queries to select new classes to
promote plasticity. To further combat catastrophic forget-
ting of categories, we introduce cross-stage consistency in
selection and an innovative “visual query”-based replay
mechanism. Experiments demonstrate that SimCIS consis-
tently outperforms state-of-the-art methods across various
segmentation tasks, settings, splits, and input data orders.
All models and codes will be made publicly available at
https://github.com/SooLab/SimCIS.

1. Introduction

Continual learning empowers models to progressively ac-

quire, learn, and assimilate new knowledge from an ever-

evolving environment. It serves as a fundamental task in

image classification [4, 8, 18, 20, 25, 31, 40, 42, 48, 49,

57, 58, 60, 64, 71, 72, 75] where models are required to

recognize new classes (plasticity) and preserve old class

knowledge (avoid catastrophic forgetting). Extending be-
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Figure 1. Boxplots of PQ metric for our SimCIS and previous

SOTA [38] on ADE20K. We train each model on randomly shuf-

fled continual data input orders and report average PQ for base

and novel classes. We observe that recent query-based transform-

ers suffer from a loss of plasticity (low average PQ) and heavy

reliance on the input data order (high variance).

yond classification, continual image segmentation adapts

this to the image segmentation, unlocking a myriad of

practical applications [50, 53]. However, it also confronts

more challenges: 1) Additional catastrophic forgetting
of mask prediction, beyond that of class prediction; 2)

Background semantic shift occurs when the current fore-

ground becomes background in subsequent stages, driven

by the need for image segmentation to predict the back-

ground class and the constraint of only having class annota-

tions from current stage. Recently, query-based transform-

ers [10, 17, 34, 35, 55, 56, 59, 63, 79] are introduced into

continual image segmentation, as their built-in objectness
has been shown to mitigate catastrophic forgetting in mask

generation. Leveraging this built-in objectness, many stud-

ies [7, 26, 38, 74] decouple mask segmentation from the

continual learning process by freezing the parameters asso-

ciated with mask proposal generation. However, we observe

two notable yet suboptimal behaviors in the aforementioned

methods.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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After FTImage Step1

Figure 2. Clustering results from feature map. Pixel feature pro-

vides sufficient semantic priors (Person) even after finetuning.

• The advantage of objectness diminishes and even has

a detrimental effect on plasticity as the task sequence

shortens. In the shortest two-task setting, they typically

achieve performance comparable to or even slightly lower

than the baseline.

• The built-in objectness is fragile and lacks robustness,

showing heavy dependence on the split and order of in-

put data. As shown in Fig 1, in ten random trials, the

worst trial shows a significant performance drop on new

classes compared to the default setting.

Therefore, in this work, we aim to understand the built-in

objectness and achieve consistent improvements (especially

on plasticity) across different task lengths and varying data

input orders. This is crucial, as it is impractical to assume

fixed task lengths and data sequences in real-world scenar-

ios. The conclusion from a series of investigations is:

• � The built-in objectness emerges from the alignment
between the query and the semantic priors within the
image feature, mediated by the decoder. As shown in

Fig 2, the clustering results indicate that image features

contain sufficient semantic priors where pixels belong-

ing to the same semantic are grouped together) even after

finetune. Meanwhile, the query continuously aligns with

specific regions of the feature map at each layer of the de-

coder as shown in Fig 3 (right). In summary, the highly

aggregated image feature provides a shortcut for queries

to generate masks by simply aligning themselves to se-

mantic priors in the image feature through the decoder.

• � The built-in objectness diminishes over training
stages due to the query’s failure to align with the se-
mantic priors of the feature map. As shown in Fig 3

(left), since semantic priors vary at different stages due to

background semantic shift, causing the updated learnable

query to gradually misalign with the pixel feature from

old classes in previous stages, even after the decoder’s

post-alignment (observed in �).

Inspired by � and �, to ensure objectness is preserved

throughout the continual learning stages, we propose a lazy
Query Pre-Alignment (QPA) method, where query fea-

tures are selected from specific locations in the image fea-

ture map, rather than being learned from scratch, to “per-
fectly” pre-align query feature with semantic priors. Specif-

Figure 3. Similarity between queries and feature map changes

across decoder layers and training stages (right). The query grad-

ually misaligns with the pixel feature (left).

ically, based on the current stage’s semantic classes, we se-

lect the most semantically significant locations in the image

feature, preserving objectness at each stage. However, ob-

jectness is still lost across stages due to varying semantic

classes in different stages.

To overcome cross-stage selection issues, a naive solu-

tion involves distillation on the feature map or query fea-

tures between stages. However, in turn, while it preserves

old priors from previous stages, it re-introduces incorrect

priors for current stages (where old priors label current se-

mantics as background), leading to a loss of plasticity. For-

tunately, thanks to our query pre-alignment method, we can

easily maintain old classes by keeping queries correspond-

ing to old class positions, while enabling the selection of re-

maining queries for new classes in the current stage. Thus,

we propose a Consistent Selection Loss (CSL) to ensure

that, for the same image, the most semantically significant

locations selected in the previous stage are revisited in the

current stage.

With QPA and CSL, objectness in the query-based trans-

former is fully utilized to generate mask proposals. How-

ever, for class prediction, catastrophic forgetting may still

occur. Previous methods typically rely on image replay

to mitigate catastrophic forgetting. In contrast, thanks to

our query pre-alignment, our query inherently contains cat-

egory semantics. By storing the query feature, we can sim-

ulate specific semantics without requiring the actual image

to contain the corresponding category. Therefore, we pro-

pose a novel Virtual Query (VQ) strategy to replay the

virtual queries corresponding to previous classes in the de-

coder layer to avoid catastrophic forgetting. Compared to

conventional image replay methods, our approach reduces

storage requirements by 10x, is independent of input data

order, and preserves dataset privacy.

In summary, our contributions are multi-fold:

• We provide a thorough analysis of the built-in objectness,

revealing the reasons behind its emergence and demise.

• By addressing the root cause, we can successfully lever-

age built-in objectness to mitigate catastrophic forgetting
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and background semantic shift through the introduction

of three simple yet novel modules—QPA, CSL, and VQ.

• Our model, SimCIS, consistently and significantly out-

performs state-of-the-art results on ADE20K in both con-

tinual panoptic and semantic segmentation.

• We introduce new dataset splits to evaluate the model’s

robustness to input order in continual learning. SimCIS

shows superior robustness over state-of-the-art methods,

thanks to the effective utilization of built-in objectness.

2. Related Work
Continual Learning is a longstanding field which pos-

sesses significant importance in addressing dynamic envi-

ronments, enhancing model adaptability, and improving re-

source efficiency. The objective of continuous learning is

to enable the model to efficiently acquire and adapt to new

tasks and data, while retaining previously learned knowl-

edge as it encounters additional information. The great-

est challenge of continual learning is catastrophic forget-

ting [24, 49, 65]. The early research are categorized into

three primary types: those that rely on regularization con-

straints [8, 9, 19, 20, 39, 41], those employing replay tech-

niques [46, 49, 60], and those based on dynamic struc-

tures [22, 42, 43, 61, 71, 75]. Regularization-based methods

aim to reduce the interference of new tasks on old knowl-

edge by constraining the learning process of the model, en-

suring that the model parameters remain closely aligned

with previously learned representations when updated due

to task changes. Replay-based methods employ strategies

to store, replay [4, 33, 48, 67], or generate [46, 60, 66]

samples from old tasks to mitigate catastrophic forgetting.

Those methods based on dynamic structure [42, 43, 52] al-

locate distinct subsets of parameters to various subtasks by

facilitating the expansion of their network architecture.

Universal Image Segmentation. Before MaskFormer pro-

posed, traditional segmentation methods developed special-

ized architectures and models for each task to achieve top

performance [2, 12–15, 28, 30, 36, 62, 69, 73, 78]. Mask-

Former [16] is the first unified segmentation architecture

to achieve state-of-the-art performance across three image

segmentation tasks. Mask2Former [17] improves Mask-

Former by adapting multi-scale features and introducing

mask attention mechanism and achieve better performance.

Follow its success in segmentation, we use Mask2Former

as our baseline aims to extend its capability into the field of

continual learning.

Continual Segmentation is the application of continual

learning within the field of image segmentation. The chal-

lenge of continual segmentation tasks lies in the ability

to identify new categories while generating high-quality

masks for each category. This dual requirement underscores

the complexity of maintaining accurate segmentation per-

formance while adapting to an evolving set of class labels.

Methods for continual segmentation are also categorized

into three types as previously mentioned: regularization-

based [5, 6, 21, 44, 45, 47, 54, 68, 74, 77], replay-based [7,

11, 23, 76, 81], and dynamic structure-based [1, 26, 27, 38,

70]. Among these methods, those query-based architectures

demonstrate notable performance. CoMFormer [6] is the

first query-based method in the field of continuous panop-

tic segmentation, employing distillation and pseudo label to

combat catastrophic forgetting. CoMasTRe [26] is inspired

by the methods of CoMFormer and, while maintaining the

use of distillation loss, decouples mask and class predic-

tions in continuous segmentation tasks. ECLIPSE [38]

adapts the strategy of VPT [37], freezing the majority of

model parameters and providing a set of trainable queries

for fine-tuning across different tasks. BalConpas [11] at-

tempts to combat catastrophic forgetting by employing a

method that combines feature-based distillation and a re-

play sample set, aiming to learn new classes without nega-

tively impacting previously acquired knowledge.

3. Preliminary
3.1. Problem Setting

Following the same continual learning setting in [6] , we

train our model over T steps. At each step t, the model

Mt has access only to a subset Dt = {xt,yt} of the en-

tire dataset D1:T , where xt ∈ R
C×H×W denotes the image

at the current step and yt represents the corresponding an-

notations (where it can only contain annotations for classes

Ct). This setup, where each stage involves learning different

classes, makes the model highly susceptible to catastrophic

forgetting as it tends to lose previously acquired knowledge

at each training step. Meanwhile, as the same image may

appear across different learning steps with entirely different

annotations, we also face the issue of so-called background

shift [5]. Given these challenges, our objective is to design a

model M such that, at any stage t, the model Mt not only

effectively learns from Dt but also preserve the previous

class knowledge from D1:t−1.

3.2. Mask2Former

We leverage Mask2former [17] as our meta-architecture for

image segmentation. Mask2Former is a transformer-based

model, which predicts a set of binary masks instead of per-

pixel classification, for universal segmentation tasks. It pri-

marily consists of three components: 1) An image encoder

as backbone fbackbone to extract image embeddings. 2) A

pixel decoder fpixel to embed image embeddings to multi-

scale pixel features, which we denote as F :

F = {F(l,h,w) | ∀(l, h, w) ∈ Ω}, F ∈ R
D×Hl×Wl , (1)

where l denotes the multi-scale layer, D represents the hid-

den dimension, F(l,h,w) refers to the feature point at po-
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Figure 4. The Overall Architecture of our SimCIS: a lazy Query Pre-Alignment (Sec 4.1) with a Consistent Selection loss (Sec 4.2) to

ensure built-in objectness inner and across stages, and Virtual Query (Sec 4.3) to avoid catastrophic forgetting in class prediction.

sition (h,w) on the l-th layer and Ω represents the spa-

tial set of multi-scale features. 3) A transformer decoder

fdecoder takes N learnable queries QN = {q1, q2, . . . , qN} ∈
R

N×D with positional encodings epos ∈ R
N×D to first con-

duct cross-attention and then self-attention with F as fol-

lows:

Q′
N = FFN(SA(CA(QN + epos, F ))), (2)

where CA(, ) denotes the cross-attention, SA(·) represents

self-attention, and Q′
N denotes the updated query feature.

The final prediction for each query is ZN = {(ci,mi)}Ni=1,

where ci ∈ R
C and mi ∈ R

H×W represent the predicted

class and mask for qi, respectively.

4. Method
In this section, we introduce the overall architecture of our

proposed SimCIS model for continual image segmentation.

As shown in Fig 4, SimCIS contains three modules: 1)

Lazy Query Pre-alignment (Sec 4.1), 2) Consistent Selec-

tion Loss (Sec 4.2) and Virtual Query (Sec 4.3).

4.1. Lazy Query Pre-alignment

To preserve the objectness across continual learning stages,

we propose to pre-align the object query QN with seman-

tic priors in the pixel feature F(l,h,w) by directly initializing

query feature with the most semantically significant pixel

feature. To determine the semantic score of each pixel fea-

ture, we learn a prototype for each category and select pixel

features as initial features by calculating the similarity be-

tween the pixel feature and each prototype.

Specifically, for each training step t, we maintain a set

of trainable prototypes {pi | i ∈ Ct}, pi ∈ R
D for each

class in Ct. By concatenating the prototypes of the past

step, Pt−1, with those of the current classes, we obtain the

current prototype set Pt as follows,

Pt = concat(Pt−1, {pi | i ∈ Ct}). (3)

Then for each feature point on F , we compute its similar-

ity with Pt to select the best feature points. The selection

process is as follows:

It = topK
({

max S(F t
(l,h,w),Pt) | ∀(l, h, w) ∈ Ω

}
, N

)
,

(4)

QN = En=t
m=t =

{Fm=t
i | i ∈ In=t

}
, (5)

where I = {(li, hi, wi)}Ni=0 ∈ Ω represents the spatial

positions of the selected feature points, En
m represents the

feature points from Fm selected by In and S(, ) denotes

the similarity calculation by dot product. The topK(X,Y )
function returns the indices of the Y largest values in X
and N is the number of object query QN . We select N
feature points with the highest similarity with the prototype

to initialize QN . To supervise our selection process, we use

a classification loss during training and update Pt through

backpropagation [51]. Additionally, we apply stop gradient

on QN to ensure that the information in F is not disrupted

during training, keeping the objectness information stable

across different stages.

4.2. Consistent Selection Loss

To ensure selection I is stable for the same image across

stages, we propose a consistent selection loss. Specifically,

when training our model Mt at current stage, we can easily

obtain feature points Et−1
t = {F t

i | i ∈ It−1} . Then,
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to maintain consistency in object selection across different

steps, we calculate the similarity between selected feature

points with Pt−1, after that, we use the Kullback-Leibler

(KL) divergence loss [32] to compute the loss:

Lcsl =
1

|It−1|
|It−1|∑
i=1

S(Et−1
t−1 ,Pt−1) log

S(Et−1
t−1 ,Pt−1)

S(Et−1
t ,Pt−1)

.

(6)

In this way, we successfully maintain the most semantically

significant locations from the previous stage, ensuring that

the selection of QN remains stable across stages.

4.3. Virtual Query

To overcome catastrophic forgetting in class prediction, we

propose the virtual query to bypass the limitations of previ-

ous methods that rely on data order. Virtual Query replays

the previous query feature in the decoder layer to simulate

semantics. Specifically, our innovative virtual query strat-

egy can be divided into three steps: Firstly, we use the re-

sults of bipartite matching to select object queries and build

our VQ bank. Then we analyze the pseudo-distribution

to focus on rare categories in the current stage. Finally,

we sample VQs in the new stage according to the pseudo-

distribution and concatenate them into the object query QN

for input into the decoder.

(1) Query Storage. During training, we maintain a queue

of length h for each class, forming our virtual query bank

Bvq = {bh1 , bh2 , . . . , bh|c1:T |}, (7)

where bhi represents a queue of length h for class i where bhi
is the queue for class i. Queries matched through bipartite

matching [3] from the decoder’s final layer output, ZN (de-

fined in Sec 3.2), are stored in the appropriate class queues

based on their bipartite matching results with ground truth

y. ⎧⎪⎨
⎪⎩

Ib = Bipartite(ZN ,y),

Bvq ← Enqueue
∀i=(iq,iy)∈Ib

(QN (iq), bŷ(iy)),
(8)

where N denotes the number of queries. The set Ib con-

sists of tuples, where each tuple i = (iq, iy) represents the

correspondence between query and ground truth. Here, iq
denotes the query index, and iy denotes the ground truth in-

dex. ŷi represents the class label of the ith ground truth.

(2) Pseudo-Distribution Statistics. In each continual

learning step, the category distribution of images changes

at each stage. To ensure the decoder retains the category

information for all old classes, we use the pre-trained last-

stage model Mt−1’s outputs on current stage’s dataset Dt

to simulate the distribution of real classes which helps mit-

igate the forgetting of rare classes in the current stage. We

use this pseudo-distribution statistics by calculating

ω =

⎧⎨
⎩
(
(

m∑
i=1

σi)/σj

) 1
2

⎫⎬
⎭

m

j=1

, (9)

where σi is the pseudo number of class i in the current stage

and m = |c1:t−1| represents the number of categories from

the previous stages.

(3) VQ Utilization. Based on the pseudo-distribution statis-

tics, in each iteration, we sample j virtual queries Qj =
{vq1, . . . , vqj} for each batch based on ω. These queries

are then concatenated with QN as

QN+j = {q1, · · · , qN , vq1, · · · , vqj}, (10)

and fed into the decoder. As shown in Fig 4, within the

decoder, we design a skip attention strategy for the VQs.

Specifically, since the objects represented by the VQs do not

appear in the image, to prevent the VQs from influencing

QN during the self-attention and cross-attention processes,

we allow the VQs to bypass the attention layers and directly

affect the FFN layers as follows:

Q′
N+j = FFN(concat[CA(SA(QN + epos, F )), Qj ]).

(11)

Finally, the virtual query only computes Lclass to address the

model’s category forgetting.

5. Experiments
5.1. Experimental Setup

Dataset and Evaluation Metric. Following previous

works [6, 11, 38], we compare our SimCIS with other ap-

proaches using the ADE20K dataset [80] to evaluate its ef-

fectiveness. The images in the dataset include annotations

for 150 classes, which are ranked by their total pixel ratios

in the whole dataset. Among these 150 classes, 50 amor-

phous background classes are labeled as “stuff” classes,

while 100 discrete object classes are labeled as “thing”

classes. Following[6], we use Panoptic Quality (PQ) as

the performance metric for continual panoptic segmenta-

tion and mean Inter-over-Union (mIoU) for continual se-

mantic segmentation. After incremental learning steps, we

report results for base classes (C1), new classes (C2:T ), all

classes (C1:T ), and an average of all visible classes at each

step (avg), respectively.

Continual Learning Protocol. Following existing contin-

ual segmentation methods [5–7, 11, 21, 26, 38], we evaluate

our method on different continual learning settings. In par-

ticular, our incremental learning tasks are represented in the

form of A-B, where A denotes the number of base classes

partitioned from the dataset, and B denotes the number of

new classes. For both continual panoptic (CPS) and seman-

tic segmentation (CSS), we conduct tasks of 100 - 5, 100 -
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Method
100-5 (11 tasks) 100-10 (6 tasks) 100-50 (2 tasks)

1-100 101-150 all avg 1-100 101-150 all avg 1-100 101-150 all avg

FT 0.0 2.2 0.7 4.7 0.0 4.8 1.6 8.9 0.0 32.4 10.8 26.8

MiB [5] 2.3 0.0 1.5 13.4 6.8 0.2 4.6 19.1 23.3 14.9 20.5 31.7

PLOP [21] 31.1 11.9 24.7 31.3 37.7 23.3 32.9 37.8 42.4 23.7 36.2 39.5

SSUL [7] 30.2 7.9 22.8 27.9 31.6 11.9 25.0 30.3 35.9 18.1 30.0 33.8

CoMFormer [6] 34.4 15.9 28.2 34.0 36.0 17.1 29.7 35.3 41.1 27.7 36.7 38.8

BalConpas [11] 36.1 20.3 30.8 35.8 40.7 22.8 34.7 38.8 42.8 25.7 37.1 40.0

ECLIPSE [38] 41.1 16.6 32.9 - 41.4 18.8 33.9 - 41.7 23.5 35.6 -

Our SimCIS 42.1 21.9 35.4 38.7 42.2 30.1 38.1 40.5 44.7 30.8 40.0 42.7

joint 43.6 34.2 40.4 - 43.6 34.2 40.4 - 43.6 34.2 40.4 -

Table 1. Continual Panoptic Segmentation results on ADE20K dataset in PQ. All methods use the same network of Mask2Former [17]

with ResNet-50 [29] backbone. joint means an oracle setting training all classes offline at once.

Method
50-10 (11 tasks) 50-20 (6 tasks) 50-50 (3 tasks)

1-50 51-150 all 1-50 51-150 all 1-50 51-150 all

FT 0.0 1.7 1.1 0.0 4.4 2.9 0.0 12.0 8.1

MiB [5] 34.9 7.7 16.8 38.8 10.9 20.2 42.4 15.5 24.4

PLOP [21] 39.9 15.0 23.3 43.9 16.2 25.4 45.8 18.7 27.7

CoMFormer [6] 38.5 15.6 23.2 42.7 17.2 25.7 45.0 19.3 27.9

ECLIPSE [38] 45.9 17.3 26.8 46.4 19.6 28.6 46.0 20.7 29.2

BalConpas [11] 44.6 24.8 31.4 49.2 28.2 35.2 51.2 26.5 34.7

Our SimCIS 48.8 30.0 36.3 51.6 31.9 38.5 52.1 30.7 37.9

joint 51.1 35.1 40.4 51.1 35.1 40.4 51.1 35.1 40.4

Table 2. Continual Panoptic Segmentation results on ADE20K dataset in PQ. All methods use Mask2Former [17] with ResNet-50 [29].

10, and 100 - 50. Additionally, we conduct tasks of 50 - 10,

50 - 20, and 50 - 50 for panoptic segmentation.

Implementation Details. We adapt an pre-trained ResNet-

50 [29] backbone for CPS and an pre-trained ResNet-101

for CSS. Following previous work [11], the input image res-

olution for the CPS tasks is set to 640 × 640, while for the

CSS tasks, it is set to 512× 512. For the number of virtual

queries N , it be set up to 80. For more detailes, please refer

to the Appendix.

5.2. Quantitative Results

Tab 1, Tab 2 and Tab 3 present the performance of Sim-

CIS and other approaches on the continual panoptic seg-

mentation and semantic segmentation benchmark. In these

tables, “FT” refers to fine-tuning the base model without

employing continual learning methods, while “joint” indi-

cates training the base model using all available data. They

represent the lower and upper-performance bounds for con-

tinual learning methods, respectively.

Continual Panoptic Segmentation. Tab 1 and Tab 2

present the performance of SimCIS and other approaches

under different continual panoptic segmentation settings.

(1) Compared to regularization-based methods MiB [5],

PLOP [21], and CoMFormer [6], SimCIS achieves superior

results on both new and base classes. Notably, compared

to CoMFormer, the best-performing among them, SimCIS

improves PQ by +6.0% on new classes and +7.7% on base

classes in the 100 - 5 task, maintaining a consistent lead in

the 100 - 10 and 100 - 50 tasks. Especially in the 100 - 10
task, it surpasses CoMFormer by +6.2% PQ on base and

+13.0% PQ on new classes. When using 50 base classes,

SimCIS significantly outperforms these methods, demon-

strating its superiority. (2) Compared with the method also

using built-in objectness, SimCIS achieves better perfor-

mance on new classes without freezing the model param-

eters. In the 100 - 5 , 100 - 10 , and 100 - 50 tasks, SimCIS

outperforms ECLIPSE [38] by +5.3% PQ, +11.3% PQ,

and +7.6% PQ, respectively. In the tasks with 50 classes as

base classes, SimCIS outperforms ECLIPSE [38] by over

+10% PQ on new classes, demonstrating the stability of

our approach. (3) BalConpas [11] is a continual learning

method based on the Mask2Former [17] architecture. In the

100 - 10 and 100 - 50 tasks, SimCIS outperforms BalCon-

pas [11] by more than +5.0% PQ on new classes. In the

longer step sequence of the 100 - 5 task, SimCIS surpasses

BalConpas [11] by +6.0% PQ on base classes. In the 50 -

20 and 50 - 50 tasks, SimCIS maintains strong performance,

averaging +4% PQ higher than BalConpas [11] on new
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Model
100-5 (11 tasks) 100-10 (6 tasks) 100-50 (2 tasks)

1-100 101-150 all avg 1-100 101-150 all avg 1-100 101-150 all avg

FT 0.0 0.3 0.1 5.6 0.0 0.1 0.0 9.1 0.0 3.2 1.1 26.3

MiB [5] 36.0 5.7 26.0 - 31.8 14.1 25.9 - 37.9 27.9 34.6 -

PLOP [21] 39.1 7.8 28.8 35.3 40.5 14.1 31.6 36.6 41.9 14.9 32.9 37.4

SSUL [7] 42.9 17.8 34.6 - 42.9 17.7 34.5 - 42.8 17.5 34.4 -

EWF [68] 41.4 13.4 32.1 - 41.5 16.3 33.2 - 41.2 21.3 34.6 -

CoMFormer [6] 39.5 13.6 30.9 36.5 40.6 15.6 32.3 37.4 39.5 26.2 38.4 41.2

ECLIPSE [38] 43.3 16.3 34.2 - 43.4 17.4 34.6 - 45.0 21.7 37.1 -

BalConpas [11] 42.1 17.2 33.8 41.3 47.3 24.2 38.6 43.6 49.9 30.1 43.3 47.4

CoMasTRe [26] 40.8 15.8 32.6 38.6 42.3 18.4 34.4 38.4 45.7 26.0 39.2 41.6

Our SimCIS 46.7 22.8 38.7 47.4 49.7 27.4 42.3 49.2 54.9 36.0 48.6 52.0

Joint 57.1 39.1 51.2 - 57.1 39.1 51.2 - 57.1 39.1 51.2 -

Table 3. Continual Semantic Segmentation results on the ADE20K dataset, measured by mIoU.

Psd QPA CSL VQ
Panoptic 100-5 (11 tasks) Semantic 100-5 (11 tasks)

1-100 101-150 all 1-100 101-150 all

� 31.6 21.3 28.2 15.6 8.5 13.2

� � 30.7 22.3 27.9 37.4 16.7 30.5

� � � 35.7 24.0 31.8 43.2 17.0 34.5

� � � 35.1 23.3 31.2 42.5 19.5 34.8

� � � � 42.1 21.9 35.4 46.7 22.8 38.7

Table 4. Ablation Study on Proposed Components. Psd: pseudo

label, QPA: lazy query pre-alignment, CSL: consistent selection

loss, and VQ: virtual query.

classes. In the longer step sequence of the 50 - 10 task, Sim-

CIS exceeds BalConpas [11] by +4.2% PQ on base classes.

It is noteworthy that in the 100 - 50 task, SimCIS almost

matches the performance of the “joint”, with base classes

performance even exceeding that of the “joint”.

Continual Semantic Segmentation. As shown in Tab 3,

we further compare SimCIS with state-of-the-art works in

continual semantic segmentation. (1) Across three tasks,

SimCIS surpasses prior approaches by at least +4% mIoU

on base classes. For new classes, it outperforms SSUL [7]

by +5.0% and +9.7% mIoU in the 100 - 5 and 100 - 10
tasks, respectively. In the 100 - 50 task, SimCIS surpasses

MiB [5], which achieves 27.9% mIoU, by +8.1% mIoU.

(2) Among Mask2Former [17]-based methods, SimCIS also

achieves the best results. In the 100 - 5 task, it outperforms

ECLIPSE [38] on base classes by +3.4% mIoU and Bal-

Conpas [11] on new classes by +5.6% mIoU. In the 100 -

10 task, SimCIS achieves the performance of new classes

exceeding all other architectures by at least +3.0% mIoU

while maintaining high performance on base classes.

5.3. Qualitative Comparison.

Comparison with Previous SOTAs. We compare SimCIS

with BalConpas [11] in the 100 - 5 continual panoptic seg-

mentation task of the ADE20K dataset, and the visual re-

sults are illustrated in Fig 5. In the first, second, and fifth

examples, BalConpas [11] encounters forgetting on base

classes such as path, bus, and building. Additionally, in

the third example, BalConpas incorrectly classifies the mi-

crowave and bag as cabinet and box, respectively. Benefit-

ing from the VQ, our SimCIS has a significant advantage

in preserving class information, allowing it to perform well

in these examples. Furthermore, BalConpas [11] fails to

provide segmentation masks for the bus and refrigerator in-

stances in the second and third examples. In contrast, our

proposed the keep built-in objectness strategy effectively

preserves object information within the encoder, enabling

SimCIS to accurately segment object instances.

Comparison in Different Steps. To further illustrate the

effectiveness of our method, we select certain visual exam-

ples from the continual learning steps of the 100 - 5 task. In

the two examples shown in Fig 6, our method is able to cor-

rect errors during the continual learning steps, such as the

microwave and bag in the first image, as well as the sink,

vase, and stair in the second image. SimCIS refines itself

during the continual learning process, ultimately achieving

accurate classification and segmentation of object instances

based on our proposed flexible VQ.

5.4. Ablation Study

In this section, we report the results of the ablation experi-

ments to validate the effectiveness of each component and

configuration in our SimCIS. We select the 100 - 5 task in

CPS and CSS to report the performance of SimCIS.

Main Components. As shown in Tab 4, each compo-

nent contributes to the overall performance. We take

Mask2Former [17] with pseudo label as our baseline perfor-

mance. The second row of the table shows the performance

of QPA with an increase of +18.2% mIoU on base classes

and an increase of +8.2% mIoU on new classes. With the

help of CSL (the third row), the CSL strategy achieves in-

creases of +8.2% PQ and +5.8% mIoU for base classes,

respectively.

Effectiveness of VQ. As shown in Tab 5, compared to the

4601



G
ro

un
d 

Tr
ut

h
B

al
co

np
as

O
ur

s

Figure 5. Qualitative comparisons between SimCIS and BalConpas [11] on the ADE20K 100-5 continual panoptic segmentation scenario.

Our SimCIS demonstrates significant results, highlighting the effectiveness of our strategies.

Step1 Step5 Step10 GT

Step3 Step6 Step11 GT

Figure 6. Qualitative examples in continual learning.

Reply Num Disk 100-5 (11 tasks)

Type Samples Memory base all

Image

0 (*20) 0.0MB 35.7 31.8

75 (*20) 3.4MB 38.9 33.4

150 (*20) 6.1MB 38.9 34.0

300 (*20) 11.8MB 38.5 33.7

600 (*20) 21.9MB 39.2 34.3

Virtual Query

0 (*150) 0.0MB 35.7 31.8

20 (*150) 1.5MB 40.6 34.6

40 (*150) 3.0MB 40.4 34.1

80 (*150) 5.9MB 42.1 35.4
160 (*150) 12.0MB 40.9 34.2

Table 5. Effect of Replay Type and Storage Requirements.

conventional image replay method, our VQ strategy demon-

strates significant improvements in both storage efficiency

and performance. Firstly, when using 300 samples for the

image replay and 80 samples for VQ, we achieve a +1.4%

increase in PQ across all classes while using almost the

same disk memory. When comparing the optimal cases for

both storage methods, our VQ strategy outperforms the con-

ventional image replay method by +1.1% PQ, while utiliz-

Method
100-10 (6 tasks)

1-100 101-150 all

BalConpas [11] 38.9(39.4) 27.8(26.8) 35.2

ECLIPSE [38] 32.7(32.1) 22.3(23.8) 29.3

Ours 40.3(40.2) 25.4(25.7) 35.3

Joint (43.6) (34.2) (40.4)

Table 6. Continual Panoptic Segmentation with random order.

We also report the performance evaluated in the original class or-

der in (·). For detailed experiments, please refer to the Appendix.

ing only 27% of the storage space.

Robust to Input Data Order. As shown in Tab 6, our

model has great robustness in random data order. We have

a +0.1% PQ increase compared to BalConpas and a +6.0%

PQ increase against ECLIPSE across all classes.

6. Conclusion
In this work, we present a novel class-incremental im-

age segmentation (CIS) method called SimCIS, which ad-

dresses the challenges of catastrophic forgetting and back-

ground shift. We first explore the emergence and diminish-

ing of built-in objectness in query-based transformers and

then propose two novel modules: lazy query pre-alignment

and consistent selection loss, to ensure both intra-stage and

cross-stage built-in objectness. Additionally, we introduce

virtual queries to mitigate catastrophic forgetting in class

prediction. Comparisons with previous state-of-the-art CIS

methods and our ablation study demonstrate the superior-

ity of each individual component in our model, highlight-

ing its effectiveness in overcoming the challenges of incre-

mental learning. Acknowledgment: This work was sup-

ported by the National Natural Science Foundation of China

(No.62206174).
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