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Road Network-Guided Fine-Grained Urban
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Lingbo Liu , Mengmeng Liu , Guanbin Li , Member, IEEE, Ziyi Wu, Junfan Lin ,
and Liang Lin , Senior Member, IEEE

Abstract— Accurate inference of fine-grained traffic flow from
coarse-grained one is an emerging yet crucial problem, which
can help greatly reduce the number of the required traffic
monitoring sensors for cost savings. In this work, we note that
traffic flow has a high correlation with road network, which
was either completely ignored or simply treated as an external
factor in previous works. To facilitate this problem, we propose a
novel road-aware traffic flow magnifier (RATFM) that explicitly
exploits the prior knowledge of road networks to fully learn
the road-aware spatial distribution of fine-grained traffic flow.
Specifically, a multidirectional 1-D convolutional layer is first
introduced to extract the semantic feature of the road network.
Subsequently, we incorporate the road network feature and
coarse-grained flow feature to regularize the short-range spatial
distribution modeling of road-relative traffic flow. Furthermore,
we take the road network feature as a query to capture the
long-range spatial distribution of traffic flow with a transformer
architecture. Benefiting from the road-aware inference mecha-
nism, our method can generate high-quality fine-grained traffic
flow maps. Extensive experiments on three real-world datasets
show that the proposed RATFM outperforms state-of-the-art
models under various scenarios. Our code and datasets are
released at https://github.com/luimoli/RATFM.

Index Terms— Coarse granularity, fine granularity, prior
knowledge, road network, traffic flow inference.

I. INTRODUCTION

IN THE past decades, a large number of people have poured
into the cities, and the number of vehicles has increased

sharply, which brings great challenges to urban transportation
management [1], [2]. In the construction of intelligent trans-
portation systems (ITSs), traffic flow monitoring is a crucial
component that provides significant information for traffic
congestion warnings and traffic state prediction. To obtain
citywide fine-grained traffic flow data (e.g., inflow, outflow,
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and volume), transportation departments usually deploy large
amounts of sensing devices (e.g., surveillance cameras and
induction loops) to cover each small geographical region.
However, it is a heavy economic burden to purchase these
devices. For instance, it was reported that the ITS project
of Hong Kong spent around 78 million $ on monitoring
equipment expenditure [3]. Moreover, as time goes by, a lot
of equipment will be depreciated and updated, which also
requires huge expenses. Under these circumstances, we desire
a novel technology that can greatly reduce the number of
deployed sensors while effectively maintaining the fine gran-
ularity of traffic flow information.

In this work, we focus on how to accurately generate
fine-grained data from coarse-grained data collected with a
small number of traffic sensors, which is termed fine-grained
urban traffic flow inference. Due to its great social benefits,
this problem has recently received increasing attention in
both industry and academic communities. In most preliminary
works [4], [5], [6], the city being studied is first divided into
a coarse grid map and a fine grid map on the basis of latitude
and longitude coordinates, as shown in Fig. 1(b) and (c). Note
that the traffic flow observed on the coarse grid map is termed
a coarse-grained traffic flow map. Likewise, the fine-grained
traffic flow map is observed on the fine grid map. Inspired
by the success of deep learning [7], [8], conventional methods
usually employ convolutional neural networks (CNNs) to learn
mapping functions between coarse-grained traffic flow maps
and fine-grained ones. Following [9] and [10], some external
factors (e.g., weather and timestamp) are incorporated to learn
the fine-grained traffic flow distribution.

Despite recent progress, fine-grained traffic flow infer-
ence remains a challenging task. First, different from image
super-resolution where low-resolution images still have obvi-
ous structures [11], [12], our coarse-grained traffic flow
maps are relatively rough, without any structural information,
as shown in Fig. 1(b). It is very difficult to directly trans-
form coarse-grained maps to fine-grained maps. Fortunately,
we observe that the urban road network has an obvious
structure that is perfectly aligned with the fine-grained traffic
flow distribution, as shown in Fig. 1(d), since most vehicles
drive on these traffic roads. In this case, the road network
can be regarded as an instructive prior knowledge for traffic
flow inference. Nevertheless, most previous methods [4], [5],
[6] were not aware of this knowledge. Second, how to model
the road network is still an open problem. We can see that
blank background dominates the road network map, while
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Fig. 1. Illustration of (b) coarse-grained traffic flow map, (c) fine-grained traffic flow map, and (d) road network map of the studied city (e.g., Chengdu,
China). We note that traffic flow has a high correlation with traffic road network, i.e., road regions usually have high traffic flow. Therefore, the road network
can be taken as prior knowledge to facilitate the fine-grained traffic flow inference. (a) ChengDu. (b) Coarse-grained map. (c) Fine-grained map. (d) Road
network.

those traffic roads are thin and long. We argue that it is
suboptimal to model the road network with 2-D convolutional
layers commonly used in image analysis since the square filters
would indulge in the dominant background and belittle those
traffic roads. Thus, a more effective method is desired to cap-
ture the road network distribution. Third, despite short-range
spatial dependencies were widely explored in [4], [5], and [6],
we argue that long-range spatial dependencies are also crucial
for traffic flow inference. For instance, two distant regions may
have similar or correlative traffic flow, if they belong to the
same traffic road, such as the regions A and B in Fig. 1(c).
Therefore, it is meaningful to capture the traffic flow long-
range dependencies, especially for traffic road regions.

Taking into consideration the above challenges, we propose
a novel road-aware traffic flow magnifierr (RATFM), which
fully exploits the prior knowledge of road network to learn the
distribution patterns of fine-grained traffic flow. Specifically,
our RATFM is composed of a road network modeling module,
a short-range road-aware inference module, a long-range road-
aware inference module, and an external factor modeling
module. First, we crawl the traffic network map of the studied
city from the Internet and introduce a unified multidirectional
1-D convolutional layer to effectively model traffic roads with
four groups of 1-D filters in various directions. Then, the road
network feature and the coarse-grained traffic flow feature are
incorporated and fed into stacked residual blocks [13] to better
model the short-range spatial distribution of road-relative
traffic flow. Moreover, we take the road network feature as
query priori and capture the long-range spatial distribution of
traffic flow using a global attention transformer [14]. Thanks
to the tailor-designed road-aware mechanism, our method is
capable to generate high-quality traffic flow maps with a
spatial fine-granularity. We conduct extensive experiments on
three real-world benchmarks, and the evaluation results show
that the proposed RATFM outperforms existing state-of-the-art
methods under various scenarios.

In summary, our major contributions to this article are
summarized in the following aspects.

1) We re-examined the problem of fine-grained traffic flow
inference from the perspective of urban road network
relevance and extend the existing pure data-driven rep-
resentation learning to knowledge-guided representation
learning. Specifically, we propose a novel RATFM,

which takes the road network as prior guidance to
effectively learn the fine-grained distribution of urban
traffic flow.

2) For road network modeling, a multidirectional 1-D con-
volutional layer is specially introduced to better capture
the distribution patterns of those spindly traffic roads
and alleviate the distraction of the background.

3) We introduce a transformer-based long-range inference
module, which takes the road network knowledge as a
query to jointly reason the traffic flow distribution of all
regions with fine granularity.

4) Extensive experiments on three real-world benchmarks
show the effectiveness of the proposed RATFM for
fine-grained urban traffic flow inference.

The rest of this article is organized as follows. First,
we review some related works of traffic flow analysis in
Section II. We then introduce the proposed RATFM in
Section III. To verify the effectiveness of RATFM, we perform
extensive experiments conducted in Section IV, and conclude
this article in Section V.

II. RELATED WORK

A. Traffic Flow Analysis

Traffic flow analysis is crucial for ITSs, since the analysis
results can provide important information for various down-
stream applications. Over the past decades, massive efforts
[15], [16], [17], [18], [19], [20] have been made to address
the traffic analysis problem. For instance, Han et al. [21]
developed a filter-discovery-match framework to learn incident
patterns from vehicle trajectories for traffic incident detection,
while Sun et al. [9] employed spatial graph convolution to
build a multiview graph convolutional network for crowd flow
prediction.

Recently, fine-grained traffic flow inference has become an
emerging problem, due to its huge potential for device cost
savings. In the literature, some deep learning-based methods
have been proposed for this task. For instance, Zong et al. [4]
utilized a super-resolution CNN (SRCNN) to learn the spa-
tial mapping between coarse-grained and fine-grained traffic
flow maps. Liang et al. [5] incorporated a deep residual
network and a distributional upsampling module to generate
fine-grained flow distributions. Ouyang et al. [6] employed
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a cascade pyramid network called UrbanPy to upsample the
coarse-grained inputs progressively. Zhou et al. [22] proposed
a deep neural network called UrbanODE, which incorpo-
rated neural ordinary differential equations [23] and pyramid
attention to learn spatial correlations of urban traffic flow in
surrounding regions. Yu et al. [24] extracted spatial features
from both local and global levels, and combined temporal
features to generate the fine-grained maps using time-specific
convolutional layers.

The most relevant work to ours is UrbanPy [6], which also
uses road network structures. However, there are two key
differences between our RATFM and UrbanPy in terms of
road network usage. Firstly, UrbanPy only uses the statis-
tic road density/number for each region, missing a lot of
crucial information on road network structures, e.g., road
direction and connectivity. By contrast, our RATFM learns
the road distribution patterns effectively from high-resolution
road network maps using a tailor-designed multidirectional
1-D convolutional layer. Secondly, UrbanPy directly takes the
concatenation of road density features and traffic flow features
for representation learning, which cannot well model the corre-
lation between road network and traffic flow. By contrast, our
RATFM introduces two short and long-range road-aware infer-
ence modules to effectively generate fine-grained traffic flow
maps. Thanks to these tailor-designed modules, our method
can fully exploit the prior knowledge of urban road networks
to facilitate the problem of fine-grained traffic flow inference.

B. Image Super-Resolution Reconstruction
Image super-resolution reconstruction [25] is a classical

problem that aims at generating high-resolution images from
low-resolution ones. Numerous deep learning-based models
have been proposed for this task. As a pioneering work,
Dong et al. [26] developed the first CNN-based method for
super-resolution, which is composed of three convolutional
layers to reconstruct high-resolution images. Tai et al. [27]
proposed a deep recursive residual network with 52 con-
volutional layers to learn the residual information between
low/high-resolution images. Zhang et al. [28] developed a
coarse-to-fine super-resolution recovery framework, which is
accomplished by the use of a correlative neighbor regression
(CNR)-based algorithm for detail synthesis and followed by
a nonlocal structural regression regularization algorithm for
quality enhancement. Recently, temporal information has also
been explored in this field. For instance, Liang et al. [29]
incorporated a deep CNN and a spatial–temporal feature
similarity calculation method to learn the nonlinear correlation
mapping between low-resolution and high-resolution video
frame patches. Despite progress, these methods of image
super-resolution reconstruction can not be directly applied to
the more challenging fine-grained traffic flow inference, where
coarse-grained traffic flow maps are too rough to maintain the
structural information. Based on this concern, we incorporate
the structural information of road networks to guide the
fine-grained traffic flow inference.

C. Transformer Architecture
Transformer [30] is an advanced neural network block that

aggregates information from the entire input sequence with

TABLE I
SOME NOTATIONS FOR FINE-GRAINED TRAFFIC FLOW INFERENCE

an attention mechanism [31]. Specifically, the transformer is
composed of self-attention layers, a point-wise feed-forward
layer, and layer normalization. The main advantage of the
transformer is its global computation and perfect memory
mechanism, which makes it more suitable than recurrent neural
networks on long sequences. Nowadays, the transformer is
widely studied in various tasks, including natural language
processing [32], [33], computer vision [34], [35], and data
mining [36]. Inspired by the success of these works, we apply
a transformer to learn the long-range spatial distribution
of fine-grained traffic flow. However, unlike previous works
whose decoders take position information as a query, our
method adopts the road network prior as a query, making
our network better learn the fine-grained flow in road regions.
To the best of our knowledge, our work is the first attempt
to employ attention-based transformer to address fine-grained
traffic flow inference.

III. METHODOLOGY

In this section, we propose a novel RATFM, which can
generate fine-grained traffic flow maps accurately under the
guidance of road network information. As shown in Fig. 2,
our RATFM consists of four components, including: 1) a road
network modeling module; 2) a short-range road-aware infer-
ence module; 3) a long-range road-aware inference module;
and 4) an external factor modeling module.

Before introducing the details of RATFM, we define some
notations of fine-grained traffic flow inference. In this work,
we do not adopt the graph-structure strategy [9] for urban
region partition, because graph-based traffic flow maps are
not aligned with the Euclidean-based road network map.
Following previous works [6], [37], we partition the studied
city into a regular grid map based on the coordinates of
latitude and longitude, as shown in Fig. 1. It is worth noting
that the granularity of flow maps is related to the partition
setting. More specifically, coarse-grained maps are observed
upon a small number of grids, each of which denotes a
large geographic area in the real world. Therefore, the res-
olution of coarse-grained maps is set to a tuple Ic×Jc with
small values. For convenience, the citywide coarse-grained
traffic flow map at time interval t is represented as X t =

[x (1,1)
t , . . . , x (i, j)

t , . . . , x (Ic,Jc)
t ] ∈ RIc×Jc×S , where x (i, j)

t ∈ RS

records the S traffic flow states (e.g., vehicle volume, inflow,
and outflow) of the grid (i, j).

Intuitively, the granularity of fine-grained traffic flow maps
should be more refined than that of coarse-grained traffic
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Fig. 2. Architecture of the proposed RATFM for fine-grained urban traffic flow inference. Specifically, our framework is composed of a road network modeling
module, a short-range road-aware inference module, a long-range road-aware inference module, and an external factor modeling module. The coarse-grained
map X t ∈ RIc×Jc×S is first resized to the resolution I f ×J f and then fed into our network. Fe ∈ RI f ×J f ×1 is the extracted feature of the external factor Et .
The learnable representation of the input road network is denoted as Fr ∈ RI f ×J f ×C , where C is the number of channels. Fs ∈ RI f ×J f ×C is the short-range
road-aware feature, while (I f /2) × (J f /2) × C is the short-range road-aware feature and it would be resized to the resolution I f ×J f .

flow maps. To this end, each grid of coarse-grained maps is
further divided into N × N grids with a small geographic
acreage. In this case, the resolution of fine-grained maps is
I f ×J f = N Ic×N Jc. Given a coarse-grained traffic flow map
X t , our goal is to generate a fine-grained traffic flow map
Yt = [y(1,1)

t , . . . , y(i, j)
t , . . . , y(I f ,J f )

t ] ∈ RI f ×J f ×S .

A. Road Network Modeling Module

As mentioned above, the distribution of fine-grained traffic
flow usually has remarkable relevance to urban road net-
works. In this section, we describe how to construct the
road network map of the studied city and extract the deep
semantic feature of the road network, which is used as prior
knowledge to guide the fine-grained traffic flow inference in
Sections III-C and III-D.

1) Road Network Generation: In this work, we crawl
the traffic road information of the studied city from Open-
StreetMap (OSM [38]). On this website, 27 types of roads
are recorded and we can obtain the detailed category of each
road. To better fit the traffic flow distribution, we retain those
primary traffic roads on which vehicles tend to drive, such
as highways, secondary roads, and trunks, and discard some
infrequently or impossibly traveled roads like paths, railways,
cycleways, etc. With Arcmap as an auxiliary tool,1 these
retained traffic roads are then rendered to construct a road
network map. Note that the width and shape of roads may
vary in this generated map. For example, those roads with
higher traffic levels usually appear as wider lines, while those
large-scale roundabouts may appear as circles, as shown in
Fig. 1(d).

For further processing, the rendered road network map is
organized into a gray-scale image, where the value at each
pixel indicates the existence and intensity of traffic roads at the
corresponding geographic area. In general, road-related pixels
usually have high values, while the other pixels always have a

1https://desktop.arcgis.com/zh-cn/arcmap/

value of zero. Note that the original resolution of the road
network map is much higher than that of the fine-grained
traffic flow maps. To facilitate the representation extraction,
the road network map is downsampled to 2I f × 2J f with
bilinear interpolation. Such a resized road map is denoted as
Mr ∈ R2I f ×2J f .

Nevertheless, we find that Mr still suffers from some
flaws. For instance, compared with the downtown roads, some
suburban highways and trunks have less traffic flow but higher
intensity values on the road network map, as shown in Fig. 1.
To eliminate this issue, we assign adaptive weight to each road
on the basis of historical flow. Specifically, we first generate
a weight map Mw ∈ R2I f ×2J f by computing the average of
historical coarse-grained flow maps and resizing the average
map to 2I f × 2J f with nearest-neighbor interpolation. The
final road network map Mr ∈ R2I f ×2J f is calculated as

Mr = Mr ⊗ Mw (1)

where ⊗ denotes an element-wise multiplication.
2) Road Network Representation Learning: We then trans-

fer the generated road network map into a high-dimensional
representation with a CNN. In image processing field [37],
[39], [40], [41], convolutional operators usually use square
kernels (e.g., 3 × 3) as main components to model natural
objects with clear boundaries and shapes. However, traffic
roads are thin and long on the map, significantly different from
natural objects. It is suboptimal to model traffic roads with
square kernels, since the road-related pixels are sparse and
many background pixels are involved. Fortunately, we observe
that 1-D filters are more aligned with road shapes. Inspired by
this finding, we develop a multidirectional 1-D CNN with 1-
D filters to effectively learn the feature representations for the
urban road network.

As shown in Fig. 3, the proposed multidirectional 1-D
convolutional layer contains four groups of 1-D filters, which
are utilized to model the traffic roads of different directions,
including horizontal, vertical, forward diagonal, and backward
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Fig. 3. Illustration of the proposed multidirectional 1-D convolutional layer.
In this layer, four groups of 1-D convolutional filters are utilized to model
the traffic roads of different directions, including horizontal, vertical, forward
diagonal, and backward diagonal ones.

diagonal ones. For convenience, the input of 1-D convolution
is denoted as F ∈ RH×W×C , where H and W are height and
width, C is the number of channels. Note that each direction
is composed of (C/4) filters. More specifically, the 1-D filters
of the direction d is denoted as Kd ∈ RC×(2R+1)×(C/4), where
R is the radius of kernels. By definition, the output feature
F̂d ∈ RH×W×(C/4) of the direction d is computed by

F̂d [h, w, c] =

R∑
i=−R

C−1∑
j=0

Fd
[
h + i · I h

d , w + i · I w
d , j

]
·Kd

[
j, i + R, c

]
where F̂d [h, w, c] is the responded value at location (h, w) for
the cth filter. Id = (I h

d , I w
d ) is the direction indicator vector

and set to (0, 1), (1, 0), (1, 1), (1,−1) for horizontal, vertical,
forward diagonal, and backward diagonal convolution, respec-
tively. Finally, the outputs of all directions are concatenated
to generate a comprehensive feature F̂ ∈ RH×W×C , which
can better capture the information of linelike roads of various
directions.

Based on the multidirectional 1-D convolutional layers,
we develop a unified road network representation learning
branch, whose architecture is shown in the blue block of
Fig. 2. First, the weighted road map Mr is fed into a common
convolutional layer for initial feature extraction. We then
employ a 1-D convolutional layer and two 1-D residual blocks
[13] to generate a road-aware feature. As shown in Fig. 4(a),
our 1-D residual block contains two 1-D convolutional layers
followed by two batch normalization and a rectified linear unit
(ReLU) function. To enlarge the receptive field, the kernel
size of the proposed 1-D convolutional layers is set to a big
value (e.g., 9) in our work. Finally, we adjust the resolution
of the output feature using a 2 × 2 max-pooling layer. For
convenience, the final road network feature is denoted as
Fr ∈ RI f ×J f ×C . It is worth noting that each neuron on Fr

primarily captures the distribution patterns of those traffic
roads with predefined directions in its receptive field, while
also capturing the distribution patterns of those irregularly
shaped traffic roads to a certain extent. This is consistent with
the actual distribution of urban traffic road networks, where
most roads are horizontal/vertical or backward, and few roads
are irregularly shaped.

Fig. 4. Illustration of our 1-D residual block and common residual block.
“+” denotes an element-wise addition operator. (a) 1-D residual block.
(b) Common residual block.

B. External Factor Modeling Module

As mentioned in previous works [6], [15], [37], [41], traffic
flow is usually affected by various external factors, such as
meteorological factors and time factors. Hence we develop an
external factor modeling module to model the influence of
those factors, whose semantic feature would be incorporated
to estimate the fine-grained traffic flow.

In this work, we collect various meteorological factors
(i.e., weather condition, temperature, and wind speed) from
the public website Wunderground.2 Specifically, the weather
condition is categorized into 10+ categories (e.g., sunny and
rainy) and each category is digitized as an ordinal value,
while temperature and wind speed are scaled into the range
[0, 1] with a min–max linear normalization. Meanwhile, some
time factors, i.e., day of the week and time of the day, are
also collected and transformed into ordinal values. Finally,
all digitized factors are concatenated to generate an external
factor vector Et . As shown in Fig. 2, the external factor
vector Et is then fed into a multilayer perceptron, which
is implemented with two dense layers followed by ReLU
functions. Specifically, these dense layers have 128 and one
output neuron, respectively. The output of the second dense
layer is then copied I f ·J f times because the external factors
are shared for all regions. Thus, the final external factor feature
can be represented as Fe ∈ RI f ×J f ×1.

C. Short-Range Road-Aware Inference Module

Generally, the traffic flow at a fine-grained region is usually
relevant to that of the corresponding coarse-grained region,
thus capturing the short-range spatial dependencies is crucial
[4], [6], [42]. In this work, we find that the fine-grained traffic
flow is also affected by the road network structure. Intuitively,
road-related regions usually have high flow volume, while
background regions have low flow volume. Based on these
observations, we develop a short-range road-aware inference
module, which employs local convolutional operations to
model the short-range spatial dependencies of fine-grained
traffic flow under the guidance of the traffic road network.

Specifically, the coarse-grained traffic flow map X t is first
resized to I f ×J f with bilinear interpolation. The upsampled
coarse map and the external factor feature Fe are concatenated
and fed into a 9 × 9 convolutional layer for heterogeneous
information fusion. The fused feature is then fed into five
common residual blocks to learn the local spatial dependencies
of traffic flow. As shown in Fig. 4(b), each residual block
is composed of two 3 × 3 convolutional layers, two Batch

2https://www.wunderground.com/
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Normalization, and a ReLU function. The output of the fifth
residual block is denoted as Fi ∈ RI f ×J f ×C . Then, we intro-
duce the traffic road network as prior knowledge to guide the
inference network to focus on road-related regions. Here the
intermediate feature Fi and the road network feature Fr are
concatenated and fused with a convolutional layer. The output
of this convolutional layer contains the information of the road
network and is fed into 11 residual blocks to effectively learn
the fine-grained traffic flow of road-related regions. The output
of the last residual block is further embedded to generate
the final short-range traffic flow feature Fs ∈ RI f ×J f ×C with
two convolutional layers. By introducing the road network
information, our feature Fs is capable to better learn the local
spatial distribution of fine-grained traffic flow.

D. Long-Range Road-Aware Inference Module

In addition to short-range dependencies, we observe
that long-range spatial dependencies are also helpful for
fine-grained traffic flow inference. For instance, two regions
of the same road usually have a high correlation in terms of
traffic flow, even if they are far apart in distance. However,
previous CNN-based methods fail to effectively capture the
long-range dependencies, since the effective receptive field of
CNN occupies only a fraction of its full theoretical receptive
field [43]. Therefore, in this section, we develop a long-range
road-aware inference module, which employs an advanced
transformer [14], [30] equipped with road prior to fully model
the flow relations between all spatial regions.

By definition, a transformer is composed of an encoder and
a decoder. As shown in Fig. 2, we first adopt the standard
encoder to generate an initial global feature. Specifically,
to reduce the computational cost, the short-range feature Fs

is first downsampled to (I f /2) × (J f /2) with a 2 × 2 max-
pooling layer. The downsampled feature, denoted as F2↓

s ,
is then reshaped to (I f J f /4) × C and fed into the transformer
encoder that mainly contains a self-attention unit and a feed-
forward network. The formulation of our encoder can be
simply expressed as

Qe = F2↓

s ∗Wq
e , Ke = F2↓

s ∗Wk
e , Ve = F2↓

s ∗Wv
e

Ae = F2↓

s + softmax
(

Qe Ke
√

C

)
Ve

Fe
l = Ae + Fe(Ae) (2)

where the parameter Qe, Ke, Ve ∈ RC×C are used to transform
F2↓

s into query Qe, key Ke, and value Ve ∈ R(I f J f /4)×C . Ae is
the attention output and Fe denotes the encoder feed-forward
network implemented with position-wise fully connective lay-
ers. Finally, we obtain a global flow-aware feature Fe

l ∈

R(I f J f /4)×C , where Fe
l [i] is the long-range feature of the i th

region and it contains the traffic flow information from other
regions on the basis of flow similarity.

In the transformer decoder, we adopt the road network
feature Fr as a query prior to generating a global road-
aware feature. Specifically, Fr is also downsampled with a
2 × 2 max-pooling layer and reshaped to (I f J f /4) × C . The
processed road feature is first fed into a self-attention unit
for the query priori embedding, whose output is denoted as

Fq
r ∈ R(I f J f /4)×C . We then perform the long-range road-aware

inference with the following formulation:

Qd = Fq
r ∗Wq

d , Kd = Fe
l ∗Wk

d , Vd = Fe
l ∗Wq

d

Ad = Fq
r + softmax

(
Qd Kd
√

C

)
Vd

Fl = Ad + Fd(Ad) (3)

where the decoder query Qd ∈ R(I f J f /4)×C is generated from
road network priori, the key Kd , and value Vd ∈ R(I f J f /4)×C

are generated from the flow-aware feature Fe
l . Fd is the

decoder feedforward network. Fl ∈ R(I f J f /4)×C is our long-
range road-aware feature. Note that Fl[i] is the long-range
feature of the i th region, which contains the traffic flow
information from other regions on the basis of both road
network distribution and flow similarity.

Then, Fl is reshaped back to (I f /2) × (J f /2) × C and
resized back to the original resolution I f × J f with bilinear
interpolation. To simultaneously incorporate short-range and
long-range information, the feature Fs and the processed Fl

are fused with an element-wise addition operator. Finally,
the fused feature is fed into a 1 × 1 convolutional layer to
estimate our fine-grained traffic flow map Ŷ t ∈ RI f ×J f ×S for
the time interval t .

IV. EXPERIMENTS

In this section, we first introduce the settings of our exper-
iments (e.g., dataset construction, implementation details, and
evaluation metrics). We then compare the proposed RATFM
with eight representative approaches under various scenarios,
including the comparisons on the whole testing sets, in heavy
traffic regions, and over different time periods. Finally, we per-
form an internal analysis to verify the effectiveness of each
component of our method.

A. Experiments Settings

1) Dataset Construction: To the best of our knowledge,
there are few public benchmarks (e.g., TaxiBJ [5]) for
fine-grained traffic flow inference. To promote the develop-
ment of this field, we construct two large-scale datasets,
i.e., XiAn and ChengDu, by collecting a mass of vehicle
trajectories and external factor data from two real-world
cities.3 Note that our datasets are more challenging because
of the focus on inflow/outflow, where the fine-grained flow
is much different from the coarse-grained flow and the total
inflow/outflow of N × N fine-grained regions is not equal to
the inflow/outflow of the corresponding coarse-grained region.
By contrast, TaxiBJ focuses on the volume-based flow, where
the distribution of fine-grained flow is similar to that of
coarse-grained flow and the total volume of N × N fine-
grained regions is equal to the volume of the corresponding
coarse-grained region. In this work, we conduct experiments
on all the above datasets, whose overviews are summarized in
Table II. The HappyValley dataset [5] is not adopted in our
work, since Happy Valley is a theme park without obvious
traffic roads. Moreover, this dataset has not been released.

3https://gaia.didichuxing.com
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TABLE II
OVERVIEW OF THE XIAN, CHENGDU, AND TAXIBJ-P1 DATASETS

FOR FINE-GRAINED TRAFFIC FLOW INFERENCE

Fig. 5. Visualization of the urban map, coarse-grained traffic flow map,
fine-grained flow map, and road network map for the XiAn dataset (top row)
and the TaxiBJ dataset (bottom row).

a) XiAn: This dataset was built based on the vehicle flow
of Xi’an, China. An area of 20 square kilometers within the
second ring road is taken as our studied area. This area is
split into 16 × 16 grids for the coarse-grained map, while the
fine-grained map is composed of 64 × 64 grids. A total of
1221 million records were collected from October 1st, 2016 to
November 30th, 2016. Each record contains the information
of vehicle ID, geographic coordinate, and the corresponding
timestamp. For each grid, we measured its inflow and outflow
every 15 min by counting the number of vehicles entering or
exiting the grid. The data of the first month and that of the
last two weeks are used for training and testing, respectively,
while the data of the remaining days are used for validation.
Some traffic flow maps and the road network of our XiAn
dataset are shown in the first row of Fig. 5.

b) ChengDu: This dataset was created based on the
32 million vehicle trajectory records of Chengdu, China, which
were collected from October 1st, 2016 to October 31st, 2016.
The resolutions of coarse-grained and fine-grained maps are
set to 16 × 16 and 64 × 64, respectively. Each time interval
is 15 min. Moreover, this dataset is divided into a training set
(10/01–10/21), a validation set (10/22–10/24), and a testing set
(10/25–10/31). Some traffic flow maps and the road network
of ChengDu are shown in Fig. 1.

c) TaxiBJ: This dataset was released by Liang et al. [5]
and it was constructed with a large number of taxi

trajectories in Beijing, China. Specifically, the studied area
was divided into 32 × 32 grids for coarse-grained maps and
128 × 128 grids for fine-grained maps. For each grid, the taxi
volume was measured every 30 min, thus the channel number
of its traffic flow maps is 1. The external factors of this dataset
are processed by Liang et al. [5] using their own strategies.
According to the time of data collection, this dataset was
divided into four parts, including P1 (7/1/2013-10/31/2013),
P2 (2/1/2014-6/30/2014), P3 (3/1/2015-6/30/2015), and P4
(11/1/2015-3/31/2016). Moreover, each part was divided into
a training set, a validation set, and a testing set by a ratio
of 2:1:1. Some traffic flow maps and the road network of
TaxiBJ are shown in the second row of Fig. 5. In the following
sections, we would conduct extensive evaluations on TaxiBJ-
P1, while conducting standard evaluations on other parts, since
these parts have similar traffic flow distributions.

2) Implementation Details: In this work, the proposed
RATFM is implemented with the popular deep learning frame-
work PyTorch [44]. Most of our hyperparameter settings are
the same as the default settings in UrbanFM [5]. Specifically,
the channel number C is set to 128 uniformly, while the radius
R of 1-D convolutional layers is set to 4. The filter weights
of all layers are initialized by Xavier [45]. The learning rate
is initialized to 2e-4 and the decay ratio is 0.5. The batch
size is set to 8 for XiAn, 4 for ChengDu, and 4 for TaxiBJ.
Note that, in the long-range road-aware inference module,
we adopt 4 × 4 max-pooling layers for TaxiBJ to reduce the
computational cost, since the resolution of TaxiBJ is much
higher than that of the XiAn and ChengDu datasets. Adam
[46] is utilized to optimize our network by minimizing the
mean square error between the estimated fine-grained maps
and the corresponding ground-truths. On each benchmark,
we train the proposed RATFM with the training set, and use
the validation set to decide which epoch model to save. Finally,
the well-trained model is evaluated on the testing set.

3) Evaluation Metrics: In this work, we evaluate the per-
formance of different methods using root mean square error
(RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE), which are defined as follows:

RMSE =

√√√√1
n

n∑
i=1

(
Ŷi − Yi

)2
(4)

MAE =
1
n

n∑
i=1

∥∥Ŷi − Yi
∥∥ (5)

MAPE =
1
n

n∑
i=1

∑∥∥Ŷi − Yi
∥∥∑

∥Yi∥
(6)

where n is the total number of samples, Ŷi , and Yi denote the
i th estimated flow map and the corresponding ground-truth
map, respectively. Note that our MAPE is different from the
position-wise MAPE adopted in [5], which is sensitive and
unstable for those regions with low flow volume. To eliminate
this issue, we use citywide MAPE, where the sum of flow
errors of all regions is divided by the sum of the ground-truth
flow of all regions.
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TABLE III
PERFORMANCE OF DIFFERENT METHODS ON THE WHOLE

TESTING SETS OF XIAN AND CHENGDU

B. Comparison With State-of-the-Art Methods

In this section, we compare the proposed RATFM with
eleven previous models, including the statistics historical aver-
age (HA), six representative methods for image processing
(e.g., very-deep super-resolution (VDSR) [47], efficient sub-
pixel CNN (ESPCN) [48], SRCNN [49], super-resolution
residual network (SRResNet) [50], deep statistical downscal-
ing (DeepSD) [51], and image processing transformer (IPT)
[52]), and four current methods for fine-grained traffic flow
inference (e.g., UrbanFM [5], UrbanPy [6], UrbanODE [22],
and CUFAR [24]). The details of these methods are described
in our supplementary material.

Note that some previous methods [5], [6], [22], [24] contain
an optional N 2-Normalization operation. Specifically, these
methods usually have three steps: 1) generate the coarse-to-fine
mapping weights for each fine-grained region; 2) normalize
the coarse-to-fine mapping weights among N × N fine-
grained region; and 3) apply the element-wise multiplication of
coarse-grained traffic flow maps and the normalized mapping
weights to obtain fine-grained traffic flow maps. However,
the N 2 structural constraint only holds on the volume-based
datasets but does not hold on inflow/outflow-based datasets.
Therefore, we reimplement these above methods using all
steps for TaxiBJ, while using steps 1 and 3 for the XiAn
and ChengDu datasets. By contrast, our method does not use
the N 2-Normalization technique at all, i.e., directly using the
long/short-range features to generate the fine-grained traffic
flow maps. Moreover, those super-resolution-based meth-
ods [47], [48], [49], [50], [51], [52] also do not use the
N 2-Normalization operation, i.e., they directly output the fine-
grained maps.

1) Comparison on the Whole Testing Sets: In this section,
we compare the performances of all methods on the whole
testing sets, i.e., all regions and all time periods. The results on
the XiAn and ChengDu datasets are summarized in Table III.
We can observe that the baseline HA obtains unaccept-
able performance, especially on our challenging XiAn and
ChengDu dataset, because this model ignores the dynamics
of traffic flow completely. Compared with HA, those deep
learning-based approaches perform better due to the superi-
ority of deep representation learning. For instance, SRCNN
obtains a MAPE 35.36% on XiAn, while ESPCN gets a MAPE
36.68% on ChengDu. The MAPE of the transformer-based
IPT is 30.79% on XiAn and 26.80% on ChengDu. Despite
progress, these common super-resolution methods still cannot

TABLE IV
PERFORMANCE OF DIFFERENT METHODS ON THE WHOLE TESTING SETS

OF TAXIBJ-P1. THE RESULTS IN BRACKETS ARE QUOTED FROM
PREVIOUS WORKS [5], [6], [22], [24]

TABLE V
PERFORMANCE OF DIFFERENT METHODS ON THE WHOLE TESTING SETS

OF TAXIBJ P2-P4. THE RESULTS OF THOSE COMPARED METHODS
ARE DIRECTLY QUOTED FROM [5], [6], [24]. NOTE THAT MAPE

ISN’T COMPARED HERE, SINCE ITS DEFINITION IN OUR WORK
IS SLIGHTLY DIFFERENT FROM THAT OF OTHER WORKS

achieve satisfactory results. With some architecture designed
for fine-grained traffic flow modeling, some recent models
(e.g., UrbanFM, CUFAR, and UrbanPy) can achieve compet-
itive performance. For example, UrbanPy obtains a MAPE of
22.03% on XiAn and 19.49% on ChengDu. However, these
methods simply use the data-driven strategy to roughly learn
a mapping from coarse-grained data to fine-grained data, and
this task still has a lot of room for improvement. To fully
capture the traffic flow distribution patterns, our RATFM
incorporates the road network as prior knowledge to learn
semantic representation effectively, thereby achieving state-of-
the-art performance on all datasets. For instance, our RATFM
obtains the best MAPE 21.48% on the XiAn dataset, and
decreases the MAPE to 18.65% on the ChengDu dataset.

The performance of different methods on TaxiBJ is sum-
marized in Tables IV and V. It is worth noting that we
reimplement all compared methods on TaxiBJ-P1 for extensive
evaluations. On the other parts of the TaxiBJ dataset, the
results of compared methods are directly quoted from [5], [6],
and [24] for standard evaluations. It can be observed that our
method consistently outperforms all previous methods on all
metrics on TaxiBJ-P1, and it can also achieve highly compet-
itive results on the TaxiBJ P2-P4 datasets. These comparisons
well demonstrate the effectiveness of the proposed method for
fine-grained traffic flow inference.

2) Comparison on Heavy Traffic Regions: As mentioned
above, the distribution of urban traffic flow is uneven in space.
In general, most of the traffic flow is distributed in road areas.
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Fig. 6. MAPE of different deep learning-based methods in heavy traffic regions. Our RATFM achieves the state-of-the-art MAPE consistently on the XiAn,
ChengDu, and TaxiBJ-P1 datasets. (a) Comparison on XiAn. (b) Comparison on ChengDu. (c) Comparison on TaxiBJ-P1.

Fig. 7. MAPE of different methods for weekday, weekend, day, and night on the XiAn dataset.

Therefore, in this section, we focus on the fine-grained traffic
flow inference in heavy traffic regions, because the traffic
states of these regions are crucial for urban transportation man-
agement. Specifically, we first conduct a statistical analysis on
fine-grained traffic flow maps of the training set and select the
top 20% grids with the highest flow as target regions. We then
perform in-depth evaluations in these selected regions.

Fig. 6 summarizes the performances of all deep
learning-based methods in heavy traffic regions. We can
observe that the proposed RATFM can achieve the state-of-the-
art MAPE consistently on the XiAn, ChengDu, and TaxiBJ-P1
datasets. Specifically, our RATFM obtains a MAPE 15.99% in
heavy traffic regions of XiAn and has a relative improvement
of 3.7%, compared with the competitor UrbanPy. On the
ChengDu dataset, our RATFM obtains a MAPE 13.50%, while
the MAPE of UrbanPy is 14.02%. On the TaxiBJ-P1 dataset,
our method also outperforms other models with an impressive
MAPE of 12.09%. Such impressive performance is attributed
to that we introduce the road network prior and guide our
network to better infer the fine-grained traffic distribution. The
comparisons well demonstrate the stability of the proposed
method in heavy traffic regions.

3) Comparison on Different Time Periods: To verify the
robustness of our method, we further compare the proposed
RATFM with other approaches over different time periods.
Note that the detailed time information of TaxiBJ-P1 is
not provided, thus we mainly conduct experiments on the
ChengDu and XiAn datasets in this section.

a) Weekday and weekend: Following previous works
[37], [41], we first compare the inference results on weekdays

and weekends, respectively, since the traffic patterns of week-
days are different from that of weekends to some extent. For
instance, commuters (e.g., office workers and students) are the
main force of traffic travels on weekdays and they tend to go
to fixed places, while people usually go to various places on
weekends. In this work, the weekday performance is repre-
sented with the mean MAPE from Monday to Friday, while
the weekend performance is the mean MAPE of Saturday
and Sunday. The performances of different approaches on
weekday and weekend are summarized in Figs. 7 and 8.
We can observe that the proposed RATFM outperforms all
comparison methods on both the XiAn and ChengDu datasets.
Specifically, on XiAn, our RATFM obtains a MAPE 21.74%
for weekdays and 20.46% for weekends, while the best MAPE
of previous methods is 22.40% for weekdays and 21.10%
for weekends. Moreover, our RATFM achieves a MAPE
18.66% for weekdays and 18.61% for weekends on ChengDu.
Compared with the typical UrbanFM, our method has relative
improvements of 8.3% and 9.4% for the corresponding time
periods, respectively. These comparisons show that our method
can well capture the fine-grained traffic flow distribution
regardless of traffic patterns.

b) Day and night: We then evaluate the fine-grained
traffic flow inference during the days and nights, respectively,
since travel patterns may be much different at these two
periods. In our work, the daytime is defined as 06:00–18:00,
while the nighttime is defined as 18:00–06:00 till the next
day. In Figs. 7 and 8, we show the performance (MAPE) of
different methods for both the days and nights. Specifically,
on the XiAn dataset, our RATFM obtains a MAPE 18.00%
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Fig. 8. MAPE of different methods for weekday, weekend, day, and night on the ChengDu dataset.

Fig. 9. MAPE of different methods during rush hours on XiAn and ChengDu
datasets. (a) Comparison on XiAn. (b) Comparison on ChengDu.

for days and 24.75% for nights, while that of the previous
best-performing method UrbanPy are 19.51% and 25.41%,
respectively. On the ChendDu dataset, our RATFM can further
decrease the MAPE from 16.50% to 15.69% for day and from
22.47% to 21.60% for nights. One interesting phenomenon is
that the day MAPE is much lower than the night MAPE. This
is because most of the day travelers are office workers and
students, whose mobility patterns are more regular. In general,
whether for day or night, our method outperforms all compar-
ison methods on both the XiAn and ChengDu datasets.

c) Rush hours: Finally, we focus on the urban traf-
fic flow inference during rush hours, which are defined as
7:30–9:30 and 17:30–19:30 in this work. The performance
of ten deep learning-based methods is presented in Fig. 9.
We can observe that the proposed RATFM outperforms all
comparison methods on both XiAn and ChengDu. Specifically,
on the XiAn dataset, our method obtains a MAPE 18.20%
for rush hours, while the MAPE of UrbanFM and UrbanPy
are 20.19% and 18.93%, respectively. There exists a similar
situation of the performance comparison on the ChengDu
dataset. With a MAPE 15.48%, our RATFM also performs
better than UrbanFM and UrbanPy, whose MAPE are 16.34%
and 16.35%, respectively. These experiments well exhibit the
robustness of our method during rush hours.

In summary, our method is capable of achieving state-of-
the-art performance under various settings of time periods.
Such performance is attributed to that our RATFM can
effectively capture the inherent distribution of urban traffic
flow with the prior knowledge of road networks regardless
of the time evolution. These experiments well demonstrate
the robustness of our method for fine-grained traffic flow
inference.

C. Component Analysis

As mentioned in Section III, our RATFM is composed
of a road network modeling module, a short-range road-
aware inference module, a long-range road-aware inference
module, and an external factor modeling module. To verify the
effectiveness of each component, we implement five variants
of RATFM, which are described as follows.

1) Short-Net: This variant is a baseline that only uti-
lizes a simple short-range inference module to generate
fine-grained traffic flow maps. Note that the short-range
inference module is road-independent, since the road
network is not involved in this variant.

2) Road+Short-Net: This variant learns the local spatial
distribution of traffic flow under the guidance of road
network information. Specifically, this network consists
of the road network modeling module and short-range
road-aware inference module.

3) Road+Short+Long-Net: This variant utilizes the road
network information to facilitate the short-range infer-
ence and long-range inference simultaneously. Specifi-
cally, this network is composed of the above modules
other than the external factor modeling module.

4) Road+Short+Long+External-Net: This variant is the
full model of the proposed RATFM. Compared with
other variants, this network further incorporates external
factors to generate fine-grained traffic flow maps.

5) ConcatRoad+Short+Long+External-Net: This variant
doesn’t have the road network modeling module.
Instead, the road network map is directly sized to
I f × J f and then concatenated with the upsampled
coarse-grained traffic flow map and the external factor
features as input to the short-/long-range modules.

We evaluate the performance of these variants on three
datasets and summarize the results in Table VI. Only using
the local information of coarse-grained maps, the baseline
Short-Net obtains a MAPE 23.94% on XiAn, 20.44% on
ChengDu, and 18.00% on TaxiBJ-P1, ranking last among all
variants. We observe that the performance of Short-Net is very
close to that of the model UrbanFM, since they adopt similar
network architectures, i.e., stacked residual blocks. When
incorporating the road network as prior knowledge, the variant
Short+Road-Net obtains obvious performance improvements
on all evaluation metrics. For example, the MAPE is decreased
to 22.65% on XiAn, 19.41% on ChengDu, and 17.50% on
TaxiBJ-P1. These improvements are mainly attributed to the
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TABLE VI
PERFORMANCE OF DIFFERENT VARIANTS OF OUR RATFM ON THE XIAN, CHENGDU, AND TAXIBJ-P1 DATASETS

Fig. 10. MAPE of 1-D convolution layers and 2-D convolution layers for
traffic road modeling.

fact that the road network map provides a wealth of infor-
mation about the spatial distribution of traffic flows. Further,
the variant Road-Short+Long-Net achieves very competitive
MAPE, i.e., 21.72% on XiAn, 18.71% on ChengDu, and
16.98% on TaxiBJ-P1, when introducing the road network
into the transformer for global inference. As verified in
Section IV-D3, our road-aware global inference is much better
than the original global inference [14]. Thus, we can conclude
that performing short-range inference and long-range inference
with road network prior is more effective for fine-grained traf-
fic flow inference. Finally, when incorporating external factors,
the variant Road+Short+Long+External-Net can achieve the
best results on all datasets. For example, the MAPE is reduced
to 21.38% on XiAn, 18.65% on ChengDu, and 16.83% on
TaxiBJ-P1. Thus we can conclude that the external factor
modeling is meaningful for fine-grained traffic flow inference,
although the improvements are relatively slight [5].

Finally, we verify the necessity of the road network mod-
eling module by comparing the performance of the fourth
and fifth variants in Table VI. We observed that the variant
ConcatRoad+Short+Long+External-Net, which removes the
road network modeling module and directly concatenates the
road network map as input, exhibits performance degrada-
tion on all metrics when compared to our full model. This
highlights the importance of utilizing a specialized module to
capture the prior knowledge of the road network.

D. More Discussion

1) Effectiveness of 1-D Convolution for Road Modeling: In
Section III-A, we propose some special 1-D convolutional lay-
ers to learn the semantic features of thin and long traffic roads
on the map. To verify the effectiveness of 1-D convolution,
we implement a variant of Short+Road-Net, which adopts

Fig. 11. MAPE of the weighted road network map and common road network
map.

the 2-D convolutional layers with square filters in the road
network branch. The performances of different convolutions
are summarized in Fig. 10. It can be observed that there
is a certain performance degradation on each dataset when
2-D convolution is used. For instance, the MAPE is increased
from 22.65% to 23.18% on XiAn, from 19.41% 19.73% on
ChengDu, and from 17.50% to 17.84% on TaxiBJ-P1. This
is due to that 2-D convolutional layers involve too much
information of background, while our 1-D convolutional layers
have some thin/long filters which are more aligned with road
shapes. These experiments well demonstrate the effectiveness
of our 1-D convolutional layers for traffic road modeling.

2) Influences of the Weighted Road Network Map: In
section III-A1, we note that the traffic flow of each road is
different, thus we generate a weighted road network on the
basis of historical flow. Here, we explore the influences of the
weighted road network map and common road network map.
Specifically, we implement two RATFM, one of which takes
the weighted map as input and another one uses the common
map. The performances of different road network maps are
summarized in Fig. 11. We can observe that the performance
of the weighted map is better than that of the common map on
all datasets. Thus, we conclude that the weighted road network
map is useful for fine-grained traffic flow inference to some
extent.

3) Effectiveness of the Road Network-Based Query: In
Section III-D, we take the road network feature as query
priori, which is fed into the transformer decoder for global
feature generation. In the previous work [14], a learned posi-
tion feature is adopted as input of the transformer decoder.
Here, we compare the performance of road network-based
query and position-based query. As shown in Fig. 12, our
RATFM achieves better performance on all datasets when
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Fig. 12. MAPE of road network-based query and position-based query in
the transformer decoder.

TABLE VII
MAPE OF DIFFERENT NUMBERS OF TRANSFORMER LAYERS

TABLE VIII
MAPE OF DIFFERENT NUMBERS OF TRANSFORMER HEADS

using the road network information. For instance, our road
network-based query obtains a MAPE 21.38% on the XiAn
dataset, while the position-based query has a MAPE 21.94%.
On the ChengDu dataset, with a MAPE 18.65%, our road
network-based query also outperforms the position-based
query, whose MAPE is 19.03%. In summary, the road
network-based query can improve the performance with some
considerable margins.

4) Configuration of Transformer: We further explore the
transformer configuration (e.g., layer number and head num-
ber) in the long-range road-aware inference module. As shown
in Table VII, our method can obtain competitive results
when using a single-layer transformer, and achieves the best
performance with a two-layer transformer. Regarding the head
setting, our performance improves gradually as the head num-
ber increases, as shown in Table VIII. The proposed method
achieves the best performance when the head number is set to
8. Therefore, the transformer layer number and head number
are set to 2 and 8, respectively, in our work.

5) Efficiency Analysis: Here we compare the inference
efficiency of different methods for fine-grained traffic flow
inference. Specifically, we evaluate the inference time of six
deep learning-based methods on the same NVIDIA 3090 GPU.
As shown in Table IX, CUFAR only costs 4.65–5.25 millisec-
onds for each inference, ranking first among all methods. Our
RATFM requires 16.73 milliseconds on XiAn and ChengDu
and 24.94 milliseconds on TaxiBJ-P1 for each inference, which
is more efficient than IPT and UrbanODE. In summary, all

TABLE IX
INFERENCE TIME (MILLISECOND) OF DIFFERENT METHODS

FOR FINE-GRAINED TRAFFIC FLOW INFERENCE

TABLE X
MAPE OF DIFFERENT METHODS FOR FINE-GRAINED

TRAFFIC FLOW PREDICTION

methods can run in real time and the inference efficiency is
not the bottleneck of this task. We should focus on how to
improve the performance of fine-grained traffic flow inference.

6) Fine-Grained Traffic Flow Prediction: Finally, we apply
the proposed method to address fine-grained traffic flow pre-
diction. Formally, the coarse-grained maps {Yt−P+1, . . . , Yt }

of previous P time and the current external factor Et are used
to forecast the future fine-grained map Yt+1, where the hyper-
parameter P is set to 4 in our work. Here, we reimplement
our RATFM and four recent deep models [5], [22], [24], [52]
on the XiAn and ChengDu datasets. We do not use TaxiBJ-P1,
since the time intervals of its samples are not continuous. More
specifically, all coarse-grained maps are first concatenated on
the channel dimension and then fed into the networks of
different methods. Note that the coarse-grained map X t+1 is
unavailable and it is meaningless for those methods [5], [22],
[24] to generate coarse-to-fine mapping weights. To solve this
issue, these methods are reimplemented to directly forecast the
future map Yt+1 as our method does. As shown in Table X, our
method achieves a MAPE 32.99% on XiAn and 27.84% on
ChengDu, outperforming other methods by large margins. This
experiment well demonstrates the effectiveness of the proposed
method for fine-grained traffic flow prediction.

V. CONCLUSION

In this work, we focus on the task of fine-grained traffic
flow inference, which aims to generate fine-grained data from
coarse-grained data collected through limited traffic sensors.
We observe that the traffic flow distribution is significantly
similar to the road network structure, which can be considered
valuable prior knowledge for traffic flow inference. To this
end, we propose a novel RATFM to estimate fine-grained flow
under the gaudiness of road network information. We construct
a high-resolution road network map based on the crawled
realistic geographic map and extract the road network feature
with a tailor-designed multidirectional 1-D convolutional layer.
The extracted road feature is then incorporated into a stacked
residual branch and a transformer architecture to fully learn
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the short/long-range spatial distribution of fine-grained traffic
flow. The extensive experiments conducted on three real-world
benchmarks show that the proposed RATFM is capable of
achieving state-of-the-art performance under various scenarios.
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