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SENSE: Self-Evolving Learning for Self-Supervised
Monocular Depth Estimation

Guanbin Li*, Member, IEEE, Ricong Huang ~, Haofeng Li*“, Member, IEEE, Zunzhi You™, and Weikai Chen

Abstract— Self-supervised depth estimation methods can
achieve competitive performance using only unlabeled monocular
videos, but they suffer from the uncertainty of jointly learning
depth and pose without any ground truths of both tasks.
Supervised framework provides robust and superior perfor-
mance but is limited by the scope of the labeled data. In this
paper, we introduce SENSE, a novel learning paradigm for
self-supervised monocular depth estimation that progressively
evolves the prediction result using supervised learning, but with-
out requiring labeled data. The key contribution of our approach
stems from the novel use of the pseudo labels — the noisy depth
estimation from the self-supervised methods. We surprisingly
find that a fully supervised depth estimation network trained
using the pseudo labels can produce even better results than its
“ground truth”. To push the envelope further, we then evolve
the self-supervised backbone by replacing its depth estimation
branch with that fully supervised network. Based on this idea,
we devise a comprehensive training pipeline that alternatively
enhances the two key branches (depth and pose estimation) of
the self-supervised backbone network. Our proposed approach
can effectively ease the difficulty of multi-task training in self-
supervised depth estimation. Experimental results have shown
that our proposed approach achieves state-of-the-art results on
the KITTI dataset.

Index Terms— Self-supervised, monocular depth estimation,
pseudo labels, learning paradigm.

I. INTRODUCTION

MAGE-BASED depth estimation provides a low-cost man-
ner of sensing the 3D surroundings by only using a
commodity camera. It has gained an increasing attention due
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to its ability to inexpensively complement LiDAR sensors
that are widely used in autonomous driving and robotics.
Generating high-quality depth-from-color can also enable new
applications in mobile devices, such as 3D photo editing and
AR compositing. Despite the ill-posed nature of this prob-
lem, recent advances in deep neural networks have achieved
promising results by learning from a large corpus of paired
data. However, collecting per-pixel ground-truth depth data for
supervised learning is a challenge, especially at a large scale.
As an alternative, recent works on self-supervised learning [1],
[2], [3] have shown the possibility of obtaining high-quality
depth estimation by using only monocular videos as supervi-
sory signals.

Besides using stereo as supervision, a lot of self-supervised
monocular depth estimation methods resort to a multi-task
framework that predicts the depth and pose simultaneously.
In particular, they typically employ a view synthesis system
that encourages the estimation of the scene geometry and
camera pose to be consistent with the physical measurements.
However, due to the lack of ground truths in both tasks, the
training of the multi-task network is particularly challenging
and is prone to suffer from inferior local minima, leading to
noisy estimation or even artifacts. Moreover, since the depth
regression is indirectly supervised by the image reconstruction
loss, the supervision flow can be highly sparse especially
in the textureless regions. Such uncertainty could cause vul-
nerability in the system where a small perturbation of the
input may lead to dramatic variations in the output depth
maps.

The key to resolving the above issues in self-supervised
learning is to provide dense per-pixel supervision to remove
the uncertainties. Nonetheless, this traces back to the afore-
mentioned dilemma of data collection. To this end, we propose
to attack this problem by introducing a novel learning
paradigm, coded SENSE, which can proactively evolve the
performance of self-supervised backbones with supervised
learning. However, our method does not need ground-truth
depths for training but only requires monocular videos instead.
We achieve this goal by fully exploiting the pseudo labels
generated by the self-supervised methods. Our approach is
built upon the insight that deep neural networks have a mem-
orization effect and tend to learn clean and simple patterns
before overfitting noisy labels [4], [5]. Thus a well-trained
deep convolutional network without over-fitting can even cor-
rect the artifacts existing in the noisy training samples, i.e. the
pseudo labels [6], [7]. We verify this observation via extensive
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Fig. 1. The self-evolving process of SENSE for depth estimation. We pro-
pose a novel training paradigm that can effectively evolve the performance
of a self-supervised network with supervised learning. After completed
self-supervised training with videos, we leverage its output as pseudo labels
for supervised training. This helps remove the artifacts in the pseudo labels
and leads to a stronger depth estimation network which is used to replace the
depth branch of the self-supervised backbone. We then finetune the entirety
of the backbone network with a carefully designed alternate training.

experiments and demonstrate the effectiveness of this idea in
Fig. 1 and Tab. IV respectively.

Motivated by the above observations, we propose a novel
training framework that can progressively evolve the per-
formance of the self-supervised networks. Following [3],
we adopt the self-supervised backbone that estimates depth
and pose simultaneously. We first train the backbone network
in a self-supervised manner using the monocular videos. The
obtained pseudo labels are then used to train a stronger depth
network with full supervision. We achieve the first “evolve-
ment” by replacing the depth branch of the backbone with the
fully supervised depth network. Afterwards, we employ the
self-supervised mechanism again to finetune the pose model
while fixing the boosted depth branch. Lastly, we enhance
the entirety of the backbone network by combining the self
and full supervised paradigms, which accomplishes the second
“evolvement”. We repeat this process until the network fully
converges. In Fig. 1, we show that the proposed self-evolving
training strategy can effectively improve the depth estimation
in terms of both qualitative and quantitative measurements.

In addition to the self-evolving learning strategy, we also
propose a new backbone network, Hierarchical Depth Infer-
ence Network (HiDNet). As shown by works [8], [9], and [10],
feature resolution is important for dense prediction tasks, like
semantic segmentation and depth prediction. High-resolution
features can maintain more details of the scene, which is
critical for estimating more precise depth of those objects
occupying only few pixels in the image. We also consider that
when estimating the depth of objects from different distance,
human vision could capture the details of different levels. For
close objects, a viewer can perceive fine-grained details, but
could be misled by more noises. For distant objects, the viewer
can obtain smooth and stable estimated depths, but delicate
patterns are missed. Inspired by the use of high-resolution
feature and Level of Detail (LOD) [11], a computer graphic
method that simplifies the mesh as objects become distant
from the viewer, we propose a level-of-detail embedding
module that yields robust representations by aggregating visual
features from short to long distance. The proposed HiDNet is
built upon the LOD embedding modules. Using the HiDNet
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alone without the self-evolving framework can already achieve
better results than the state-of-the-art.
We summarize our contributions as follows:

« We introduce a novel self-evolving learning paradigm
that advocates a novel use of pseudo labels and can
progressively evolve the performance of self-supervised
monocular depth estimation using supervised learning,
but without the need of labeled data.

o We develop a new level-of-detail (LOD) embedding
module to harvest robust depth features, and implement
a hierarchical depth inference network based on the
proposed LOD module.

o We validate that the proposed framework considerably
surpasses the existing self-supervised counterparts in the
challenging KITTI dataset.

II. RELATED WORK

A. Self-Supervised Monocular Depth Estimation

Self-supervised monocular depth estimation methods [3],
[12], [13], [14], [15] adopt the photometric differences
between a reprojected source view and the target view as
supervisory signals. Prior methods in this direction can be
roughly divided into using adjacent monocular frames [3],
[16] and using stereo pairs [17], [18]. We focus on
the former one which is more flexible in practise. Since
Zhou et al. [3] propose an effective self-supervised structure-
from-motion (SfM) pipeline, most recent works aim at
improving the self-supervised SfM pipeline by designing novel
loss functions, including a 3D-based loss [16], a minimum
reprojection loss and an auto-masking loss [1], and a feature-
metric loss [19], or building new neural network modules,
including a 3D packing module [2], a feature fusion Squeeze-
and-Excitation module [9], a self-attention module [20],
a transformer-based module [21], and orthogonal planes [22].
Moreover, Feng et al. [23] introduce semantic information
to deal with object motion and occlusion. Following [3],
these methods learn a single-view depth model and a camera
pose estimator at one stage, while few of them consider a
multi-stage training scheme. Poggi et al. [24] train the depth
network in 2 stages based on the modelling of uncertainty.
Ren et al. [25] propose to distill the learned knowledge from
teacher networks to a student network through an ensemble
architecture. Petrovai and Nedevschi [26] propose a two-stage
training strategy to resolve inter-frame scale consistency,
which is similar to our work. However, their applicable scenar-
ios are limited. Different from existing methods, we propose
a stage-wise learning framework that progressively trains the
depth network and the pose network in a self-evolving way.
Some works [27], [28] distill knowledge via left and right
disparity maps. Peng et al. [29] propose a data grafting
strategy, which requires stereo image pairs as input. To release
this limitation, our method distills knowledge based on the
StM framework, and adopts a more flexible setting only using
monocular images. As for depth network architectures, most of
the existing methods [1], [2], [19] employ an encoder-decoder
network that reduces and recovers the resolution of features
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Overview of the proposed Self-evolving Learning Framework. The framework consists of 4 steps. Notice that pseudo labels can be used for the

training in Step 2 and Step 4. Step 4 could update the pseudo labels and form an iterative loop.

in one stream, while our proposed depth network learns
high-resolution features with multi-resolution fusion.

B. Supervised Monocular Depth Estimation

Supervised monocular depth estimation methods usually
train a fully convolutional network to regress pixel-wise depth
values with LiDAR-captured ground truths. Eigen et al. [30]
first tackle the supervised depth estimation from a single
image by using a coarse global network and a local refinement
network. Fu et al. [31] build a spacing-increasing strategy for
depth discretization and cast depth perception as an ordinal
regression task. Luo et al. [32] use a network to synthesize
the right image from a left one, and a stereo matching
network to predict depth with the image pair. The other
recent advances are achieved with semantic information [33],
[34], [35], [36], domain adaptation [37], [38], [39], geometric
constraints [40] and new network architectures [41], [42].
In particular, Guo et al. [37] train a supervised stereo network
with synthetic data and a monocular network by distilling the
stereo network, which is most related to our work. They utilize
the supervised stereo network to produce virtual disparity
maps, while we synthesize pseudo labels with a self-supervised
monocular network.

C. Self-Training for Visual Perception

Self-training is to infer pseudo labels on unlabeled data and
then train a model with both real and pseudo labels [43]. It has
been widely used in semi-supervised learning. Arpit et al. [4]
point out that a deep neural network (DNN) without overfitting
tends to learn the simple and general patterns shared by the
training samples since the noises are harder for a DNN to
fit. And some methods [44], [45] achieve great performance
in image classification through learning with noisy labels.
Even though real depth labels are not available, pseudo depth
labels could derive from non-learning based algorithms [46],

[47] or self-supervised learning based models [48]. Klodt
and Vedaldi [46] apply a traditional structure-from-motion
algorithm to produce proxy ground truths of depth and
ego-motion, while we adopt a self-supervised learned depth
network to yield pseudo labels and update them iteratively.

III. METHOD

The proposed self-evolving learning framework is a stage-
wise method, as shown in Fig. 2. Sec. III-A describes a
self-supervised training pipeline that is a prerequisite of the
framework. Sec. III-B details each stage of the self-evolving
framework. In Sec. III-D and Sec. III-E, we introduce a
hierarchical depth inference network and the training loss.

A. Self-Supervised Training

The following discusses how we achieve depth perception
with raw monocular videos. Let (I, ..., Iy) denote the frames
of a video. Due to the lack of ground truth data, we leverage
the view synthesis error to train a depth prediction model D
and a camera pose estimator P. The goal of view synthesis
is to reconstruct a target image I; from its adjacent frame
(referred to as source image) I. The reconstructed view is
denoted as I/_,, which is calculated with the depth of target
image I; and the relative camera pose YA}H,/ = P, Iy),
following [3]. We denote the depth of I; as ﬁt = D ().
As p; indicates the homogeneous coordinates of a pixel in the
target image, D, ( p;) returns the depth of p,. Let p, stand for
p:’s projected coordinates in the source image I,. Hence, py
is calculated as:

pr ~ KT,y Dy (p1) K~ ' py, (0

where K denotes the intrinsic matrix of the camera which
is known in our pipeline. We calculate p, for each p;, and
use py to sample I, from [, using bilinear interpolation.
Following [1] and [17], we combine structural similarity
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(SSIM) [49] with L1 loss as a photometric loss to measure
the view synthesis error as supervisory signals:

o
Lph Iy, Iy ) = E (I = SSIM ({;, Iy 1))
+ A —a) [l = Iyl 2

where o is a weighting factor. We further apply a smoothness
loss [17] to encourage the continuity of the predicted depth,
as shown in: Ly 3;“ = |8xc2;“|e_|3x1'| + |8y12;"|e_|a)'1", where
dx and d, denote the gradients in horizontal and vertical

direction respectively. c?t* = d, /c?t denotes an inverse depth
map normalized by its mean.

Considering that the presence of occlusions could lead to
a large photometric loss that fails to measure the quality
of depth. Inspired by [1] and [3], we adopt two adjacent
frames of the target image as source images. For each pixel,
only the smaller error in the two source images is chosen as
the final loss to help reduce the affect of occlusion. Since
the self-supervised monocular training assumes that a camera
moves in a static scene, an auto-mask [1] is utilized to filter
out stationary pixels. Thus, the masked photometric loss is
computed as:

Lp = Mauro © min 1 Lph s, Iy ) s €))

t'eft—1,t+1}
where © is element-wise multiplication, M, is a mask that
sets the loss of stationary pixels as zeros. My, is defined as:

Mayro = |:1’1’?an[1 Iz, Iy ) < n};anh (I, It/):| . @

where [x] returns 1 if the input is true. Otherwise, it returns 0.
The overall loss (see Sec. 1II-E) is a combination of L, Ly,
and a pseudo-label loss L ;. (see Sec. III-B). By minimizing
the loss, the gradients are passed through T,_, and D, (pr)
to train the pose network P and the depth model D.

B. Self-Evolving Learning

Existing self-supervised monocular methods usually train
the depth network and the ego-motion estimator simultane-
ously. Instead, we propose to learn the depth and the pose
estimation tasks progressively in a self-evolving manner, for
better training results. As shown in Fig. 2, the proposed
self-evolving learning framework consists of four steps. First,
we employ the self-supervised pipeline described in Sec. III-A
to train a depth network D’ and a pose network P’ at once.
For each video frame in the train set, the depth network D’
infers a disparity map d’. Pseudo labels {d?} ( p for “pseudo”)
are obtained by enhancing the disparity maps d’ with a post-
refinement [17].

In the second step, we train another depth network D” from
scratch with the proxy ground truth {d”}. Since a pseudo
disparity map is noisy, only the disparity of some positions
are beneficial for training. To locate these useful pseudo labels,
we use a Gaussian Mixture Model to compute a confidence
map P (see Sec. III-C) for each pseudo label map. The
proposed pseudo-label loss is defined as:

Lpse = P O Lperhu,
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d" —d”|, d" —dP| < ¢
el ~ 2
Lernu (d ) dp) = (d” — dp) +¢?
~ 7 d"—-dP| >,
2¢
¢ =02 max (|d;g _ df|) (5)

where L pern, denotes a Berhu loss [36], [50], [51], [52]. d”
is a disparity map output by D”. d” is the corresponding
pseudo ground truth. x is the coordinate of an arbitrary pixel
in d”. Incorrect depth in pseudo labels can be viewed as the
noise of the pseudo-label, which is usually harder for the
model to fit than the normal pixels that meet the contextual
depth estimation inference rules. From the perspective of
model generalization, we believe that a model well-trained
with a large number of noisy pseudo-labels without overfitting
usually learns the universal inference of depth estimation, and
thus has the potential of label denoising. Besides, the pseudo
labels can become more accurate after the post-processing [17]
and more robust with the confidence map in Eq. (5). Thus, it is
likely that after the supervised training with pseudo labels, the
depth network D” could obtain better results than D’.

In the third step, we resort to the self-supervised pipeline
again, and train another pose network P” from scratch by
fixing the parameters of the depth network D”. Since D"
performs better depth perception than D’, then P” is likely to
infer more accurate ego-motion than P’ according to Eq. (1).
In the last step, we combine the self-supervised view synthesis
loss with the supervised Berhu loss based on the pseudo labels
{dP}. Such a joint loss is used to simultaneously finetune the
depth network D” and the pose network P”. The updated
variants of depth networks and pose networks are denoted as
D* and P* respectively. After updating pseudo ground truths
with the depth network D*, the last step is connected to the
second step and forms a closed loop. The iterative process
continues until the depth prediction of D* converges.

C. Pseudo Label Refinement

It is uneasy to obtain accurate depths for some image
regions, such as object boundaries. Therefore, the pseudo
depth labels on these regions could be noisy. To resolve this
problem, we follow [53] and adopt a two-component Gaussian
Mixture Model (GMM) to calculate the confidence of each
position in the pseudo label maps. For each pixel position,
the GMM measures the possibility that the pseudo label of
the position is clean. The GMM is fitted to the L, ; of each
image i in the training set using the Expectation-Maximization
algorithm. The pseudo label depth dl.p is used when calculating
L pp,,i. Then the probability of each position being a clean label
is collected to form a confidence map. For each position (i, j)
in a pseudo label map, the confidence P; ; is the posterior
probability p(g|L,p,i), where g is the Gaussian component
with smaller mean. The photometric loss L, and Berhu loss
L perny are weighted by multiplying with the confidence map
so that the network concentrates on the reliable positions.

D. Hierarchical Depth Inference Network

Most of the depth estimation networks [3], [17], [54] adopt
a U-shape architecture with an encoder-decoder network.
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Fig. 3. Architecture of the proposed hierarchical depth inference network
and the proposed level-of-detail embedding module.

The encoder gradually increases the channel number of
image features to capture higher-level semantics at the cost
of lower resolution. The decoder then recovers the feature
resolution by fusing low and high-level features. However,
the precise spatial information decreases in the encoder with
the lower resolution of features and is hard to recover
in the decoder. In fact, Ranftl et al. [10] also point out
that feature resolution and granularity are critical for depth
prediction.

To solve the issue of the U-shape encoder-decoder,
HR-Net [8] is proposed to achieve high-resolution visual
recognition. In HR-Net, four parallel streams learn and
maintain image features of four different resolutions, which
help describe the objects of different scales for semantic
understanding tasks. However, in the task of depth estima-
tion, we argue that, compared to the high-level semantic of
multi-scale objects, stable low-level features with details are
more important in determining the final depth quality. Thus,
to achieve high-resolution depth estimation, we propose to
maintain only one main feature stream of high-resolution,
which is different from HR-Net that learns four parallel
feature streams in the meanwhile. To enhance and stabi-
lize the high-resolution feature map, we apply a series of
multi-resolution fusion modules proposed in the following
to suppress the feature noises and to aggregate the details
observed from far to near distance.

In the self-supervised monocular depth estimation task,
a photometric loss is commonly used [54], [55]. However,
the loss may lead to noisy signals, due to the lack of ground
truth. To overcome the difficulty, we resort to the idea of Level
of Detail (LOD) [11]. LOD refers to the complexity of a 3D

L
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Fig. 4. The training loss functions. Lp, Ls, Lperpy denote the masked

photometric loss, the smoothness loss and the Berhu loss.

model representation in computer graphics. When rendering
an object distant from the camera, the vertex number of mesh
can be reduced by the LOD technique. The rationale is that the
fine details of distant objects are usually missed by the viewer
and the perceived size of the objects scales inversely with
the distance [56]. When human subjects estimate the depth
of long-range objects, they could neglect noisy signals and
perceive smooth depths. For short-range objects, human vision
can capture fine-grained textures as well as the patterns of
high uncertainty. Thus we propose a level-of-detail embedding
module that first simulates visual features at different distance
by applying multiple neural network branches of different
resolutions to an input high-resolution feature map, and then
merges these multi-resolution outputs into an enhanced depth
representation as the module output.

1) Level-of-Detail Embedding Module: In each module,
a feature with resolution of % X % is the input and the output
is of the same resolution as its input. In the main body, the
feature will be transformed into m different branches which
simulate the information observed from m different distances.
In each branch, the resolution of the feature halves gradually.
The lower-resolution features are obtained by one or more
stride-2 3 x 3 convolutions and their channels are doubling
gradually. Then those features with different resolutions will
have n times of convolution units to enhance themselves. After
that, the lower-resolution features will be upsampled to the size
of % X %. All those features will be fused by element-wise
addition and then output.

2) Depth Predictor: In the depth predictor, the feature
with resolution of % X % will be transformed into 3 dif-
ferent branches. In each branch, the resolution of feature
halves gradually and then will be upsampled. For the output
of each branch {O;,,n = 1,2,3}, the current estimation
aAI,,n is obtained by using the last estimation dA,’n_ 1 dA,,,, =
Sigmoid (OI‘,, + c?,,n,l), C?r,o = 0 especially.

3) Overall Architecture: We build a hierarchical depth
inference network (HiDNet) based on the LOD embedding
module, as shown in Fig. 3. The details of HiDNet are shown
in TABLE 1. The input images are sent into a stem, which
consists of two 3 x 3 convolutions of stride 2. Then we
obtain a feature of the resolution % X %. The first stage
contains 1 LOD embedding module that has 1 branch and
3 convolution units. The second stage has 1 LOD embedding
module with 2 branches and 5 convolution units. The last
stage has 7 LOD embedding modules with the same structure.
Each module has 3 branches and 5 convolution units. At the
end, multi-scale depth estimation results are output by a depth
predictor.
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TABLE I

DETAILS OF HIDNET ARCHITECTURE. K DENOTES THE KERNEL SIZE,S DENOTES THE STRIDE AND INPUT DENOTES THE INPUT OF EACH LAYERWHERE
1 DENOTES AN UPSAMPLING OPERATION USING BILINEAR INTERPOLATIONAND | DENOTES ONE OR MORE CONVOLUTIONS WITH STRIDE
2.WHEN THE INPUT HAS MORE THAN ONE FEATURES, ALL FEATURES ARE FUSED BY ELEMENTWISE ADDITION.B, R AND S IN
PARENTHESES DENOTE BATCH NORMALIZATION, RELU AND SIGMOID, RESPECTIVELY.NUMBERS IN PARENTHESES
DENOTE THE REPEATED TIMES OF THE BLOCK. [] INDICATES THE INPUT MAY NOT EXIST

Depth Network

layer description | k | s input output tensor dim
RGB image 3xHxW
stem convl (BR) 312 RGB image 64 x H/2 x W/2
conv2 (BR) 312 convl 64 x H/4 x W /4
stagel (x1) Bottleneck conv2 256 x H/4 x W /4
stage2 (x1) fusel (BR) 311 Bottleneck 48 x H/4 x W /4
fuse2 (BR) 312 Bottleneck 96 x H/8 x W/8
BasicBlockl fusel 48 x H/4 x W /4
BasicBlock2 fuse2 96 x H/8 x W/8
fusel BasicBlockl, TBasicBlock2 48 x H/4 x W /4
stage3 (X7) fuse2 (BR) 312 fusel 96 x H/8 x W/8
fuse3 (BR) 312 fusel 192 x H/16 x W/16
BasicBlockl fusel 48 x H/4 x W /4
BasicBlock2 fuse2 96 x H/8 x W/8
BasicBlock3 fuse3 192 x H/16 x W /16
fusel BasicBlockl, BasicBlock2, 1BasicBlock3 | 48 x H/4 x W /4
depth predictor | InvDepth3 Tfuse3 1xH/4x W/4
InvDepth2 Tfuse2, TInvDepth3 1xH/2x W/2
InvDepthl Tfusel, TInvDepth2 1xHxW
Bottleneck
layer description | k | s input output tensor dim
(x1) X 64 x H/4 x W /4
convl (BR) 1)1 X 64 x H/4 x W /4
conv2 (BR) 311 convl 64 x H/4 x W /4
conv3 (B) 1)1 conv2 256 x H/4 x W /4
conv4 (B) 1)1 X 256 x H/4 x W /4
x (R) conv3, conv4 256 x H/4 x W /4
(x3) convl (BR) 11 X 64 x /4 x W/4
conv2 (BR) 311 convl 64 x H/4 x W/4
conv3 (B) 1)1 conv2 256 x H/4 x W /4
x (R) conv3, x 256 x H/4 x W /4
BasicBlock
layer description | k | s input output tensor dim
X CxH xW
(x4) convl (BR) 301 X CxH xW
conv2 (B) 301 convl CxH xW
x (R) conv2, x CxH xW
InvDepth
layer description | k | s input output tensor dim
X, [InvDepth] CxH xW
(x1) convl (BR) 1)1 X CxH xW
x (S) 1|1 convl, [InvDepth] 1xH xW

Different from HR-Net [8] using 4 parallel feature streams,
HiDNet maintains only 1 main feature stream without mining

too high-level semantic information. In HR-Net, the four
streams of different resolutions are fused with each other to

update their feature maps. HiDNet updates the high-resolution
feature map of the main stream with LOD Embedding mod-
ules, which employ two to three network branches to compute
the multi-resolution representations and to merge these repre-
sentations into one enhanced feature map. HiDNet is related
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E. Training Loss

to but does has difference from HR-Net and it is a compact
model tailored for high-resolution depth estimation.

This section is to summarize the loss functions utilized in
the four steps of our proposed framework, as shown in Fig. 4.
In the first step, we combine a mask photometric loss and
a smoothness loss as: L, = L, + A;L,;, where )\; denotes
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TABLE I

QUANTITATIVE COMPARISON OF PERFORMANCE ON THE KITTI DATASET. IN THE Train COLUMN: M REFERS TO TRAINING BY MONOCULAR IMAGE
SEQUENCE SUPERVISION; S REFERS TO TRAINING BY STEREO IMAGES; T REFERS TO USING CITYSCAPES OR SEMANTIC SEGMENTATION
INFORMATION ALONG WITH KITTI FRAMES IN TRAINING; ¥ REFERS TO USING MULTIPLE FRAMES AT TEST TIME; * REFERS TO
USING POST-PROCESSING [17];FOR EACH RESOLUTION IN THE M SETTING, THE BEST RESULTS ARE PRESENTED IN BOLD, WITH
SECOND BEST RESULTS UNDERLINED. FOR METRICS FOLLOWED BY |, LOWER IS BETTER,

AND FOR METRICS FOLLOWED BY %1, HIGHER IS BETTER

Method

| Train | Resolution | Abs Rel | SqRel | RMSE | RMSElog | [0 <1251 §<1.25°] §<125°1

Klodt ef al. [46] M - 0.166 1490  5.998 - 0.778 0.919 0.966
SGDepth [57] M 640x192 | 0.117 0907  4.844 0.196 0.875 0.958 0.980
Monodepth?2 [1] M 640x192 | 0.115 0903  4.863 0.193 0.877 0.959 0.981
PackNet-SfM [2] | M 640x192 | 0.111 0.785  4.601 0.189 0.878 0.960 0.982
HR-Depth [9] M 640x192 | 0.109 0792  4.632 0.185 0.884 0.962 0.983
Wang ef al. [58] |M 640x192 | 0.109 0779  4.641 0.186 0.883 0.962 0.982
Johnston ef al. [20] | M 640192 | 0.106 0.861 4.699 0.185 0.889 0.962 0.982
SD-SSMDE [26] | M 640x192 | 0.106 0.751  4.485 0.180 0.885 0.964 0.984
HiDNet (Ours) M 640x192 | 0.108 0.733  4.454 0.184 0.887 0.962 0.983
SENSE (Ours) M 640x192 | 0.104 0.693  4.294 0.177 0.894 0.965 0.984
Wang et al. [59] MF | 640x192 | 0.106 0.799  4.662 0.187 0.889 0.961 0.982
Monodepth2 [1] MS | 640x192 | 0.106 0.818  4.750 0.196 0.874 0.957 0.979
FSRE-Depth [60] |M' | 640x192 | 0.102 0.675  4.393 0.178 0.893 0.966 0.984
ManyDepth [61] | Mf | 640x192 | 0.098 0.770  4.459 0.176 0.900 0.965 0.983
EPCDepth [29] S* 640192 |  0.099 0.754  4.490 0.183 0.888 0.963 0.982
DynamicDepth [23] | MT* | 640x192 | 0.096 0.720  4.458 0.175 0.897 0.964 0.984
Monodepth2 [1] M | 1024x320 | O0.115 0882  4.701 0.190 0.879 0.961 0.982
SGDepth [57] M | 1280x384 | 0.113 0.880  4.695 0.192 0.884 0.961 0.981
R-MSEM6 [62] M | 1024x320| 0.108 0.748  4.470 0.185 0.889 0.963 0.982
PackNet-SfM [2] | M | 1280x384 | 0.107 0.802  4.538 0.186 0.889 0.962 0.981
FeatDepth [19] M | 1024x320 | 0.104 0.729  4.481 0.179 0.893 0.965 0.984
HR-Depth [9] M | 1280x384 | 0.104 0.727 4410 0.179 0.894 0.966 0.984
SD-SSMDE [26] |M | 1024x320| 0.101 0700  4.332 0.174 0.895 0.966 0.985
HiDNet (Ours) M | 1024x320 | 0.104 0.676 4250 0.177 0.896 0.967 0.984
SENSE (Ours) M | 1024x320 | 0.099 0.617  4.079 0.172 0.902 0.968 0.985
Monodepth2 [1] MS | 1024x320 | 0.106 0.806  4.630 0.193 0.876 0.958 0.980
Wang et al. [59] | M! | 1024x320 | 0.106 0773  4.491 0.185 0.890 0.962 0.982
FeatDepth [19] MS | 1024x320 | 0.099 0.697  4.427 0.184 0.889 0.963 0.982
FSRE-Depth [60] | M | 1024x320 | 0.102 0.687  4.366 0.178 0.895 0.967 0.984
ManyDepth [61] Mf | 1024320 |  0.091 0.694  4.245 0.171 0.911 0.968 0.983
EPCDepth [29] S* | 1024x320 | 0.093 0.671  4.297 0.178 0.899 0.965 0.983
PlaneDepth [22] S 1280x384 |  0.085 0563  4.023 0.171 0.910 0.968 0.984

the weight of the smoothness loss, to train the depth network
branch D’ and the pose network branch P’. In the second step,
we train a depth network D” from scratch with the enhanced
pseudo labels {d”} using the pseudo-label loss L .. In the
third step, we train a pose network P” with the loss L ,. by
fixing the depth network D”. Finally, we finetune the depth and
the pose network branches together using the loss: L fipq =
POL,~+ AL+ ApseL pe.

IV. EXPERIMENTS

Dataset: We evaluate the effectiveness of our method on the
KITTI [63] dataset. We use the data split in Eigen et al. [30]
with the removal of static frames in Zhou et al. [3] for
a fair comparison. We use 39,810/ 4,424/ 697 images
for training/ validation/ evaluation. The ground truth depth
maps for evaluation are captured by a calibrated LiDAR
Sensor.

Training Details: Our models are built on PyTorch [64]
with 2 NVIDIA GeForce RTX 3090 GPUs. We use the
Adam optimizer [65] with 81 = 0.9, B2 = 0.999, and a

batch size of 16. The depth network is the proposed HiDNet
(see Sec. III-D). The pose network adopts a backbone of
ResNet18 [66] with the fixed input resolution of 640 x 192.
Both networks are initialized with ImageNet-pretrained [67]
weights. The SSIM weight «, smoothness loss weight g and
pseudo-label loss weight A, are set to 0.85, 0.001, 0.1,
respectively.

The proposed self-evolving paradigm contains 4 steps.
In the first step, we train the depth and the pose networks
for 10 epochs with L. and a learning rate (LR) of 2 x 1074,
and then decrease the LR to 2 x 107 when finetuning the
networks with L . for another 10 epochs. The depth network
in the second step is trained from scratch for the first 10 epochs
with an LR of 2 x 10, and then 10 epochs with an LR of
2% 107, In the third step, while the depth network is fixed, the
pose network is trained from scratch for the first 5 epochs and
then 5 epochs, with LR 2 x 10™* and 2 x 107>, respectively.
Finally, in the last step, the depth and the pose networks are
jointly finetuned for 10 epochs with an LR of 2 x 107>, For
an input/output resolution of 640 x 192, it takes 8 hours for
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Fig. 5.

Qualitative comparison with other methods on the KITTI dataset. Comparing with other self-supervised methods, our approach predicts depth maps

with finer details and sharper boundaries of objects. It also successfully estimates the depth of distant objects which other methods fail to recognize.

TABLE III

QUANTITATIVE COMPARISON OF PERFORMANCE ON KITTI IMPROVED GROUND TRUTH FROM [68]

Method [ Train | Resolution [ Abs Rel | SqRel | RMSE | RMSElog | [6 <1257 §<1.25°] §<125°]
Monodepth2 [1] M 640% 192 0.090 0.545 3.942 0.137 0.914 0.983 0.995
Johnston et al. [20] | M 640% 192 0.081 0.484 3.716 0.126 0.927 0.985 0.996
PackNet-SfM [2] | M 640x192 0.078 0.420 3.485 0.121 0.931 0.986 0.996
HiDNet (Ours) M 640% 192 0.075 0.367 3.323 0.115 0.938 0.989 0.997
SENSE (Ours) M 640x192 0.071 0.339 3.175 0.109 0.945 0.990 0.998
PackNet-SfM [2] [ MT [ 1280x384 [ 0.071 0.359 3.153 0.109 0.944 0.990 0.997
HiDNet (Ours) M 1024x320 | 0.070 0.313 3.071 0.107 0.947 0.991 0.998
SENSE (Ours) M 1024%320 | 0.067 0.281 2.923 0.102 0.951 0.992 0.998

training in the first step, 5 hours in the second step, 2 hours
in the third step, and 4 hours in the last step.

A. Depth Estimation Performance

For evaluation, we follow the commonly used metrics
described in [30], and cap the maximum predictions of all
network to 80 meters [17]. We conduct experiments with two
input/output resolutions, i.e. 640 x 192 and 1024 x 320,
to better compare with other methods. Methods that use the
resolution of 1280 x 384 are also included and compared
with our results of larger resolution for a more comprehensive
comparison. We use only a monocular video for training. Such
limited supervision requires a scale factor § to match the
median of the predicted depth maps with ground truth [3],
i.e. § = median(Dg;)/median(D preq).

The results are summarized in TABLE II. We first train
our model using the proposed backbone of HiDNet (cf.
Sec. III-D) without self-evolving learning or pseudo label
refinement, which already produces a strong baseline that is
competitive or even better than the current state-of-the-art
methods. Moreover, our full approach, SENSE, achieves bet-
ter performance and outperforms all existing self-supervised
models. Our method shows improvements in all metrics,
especially for Sq Rel and RMSE. According to their def-
initions, Sq Rel is more sensitive to errors in the short
range, while RMSE penalizes large depth errors which occur
in distant regions more often. Therefore, our approach not
only overcomes the challenges from textureless regions or
near objects that produce sparse supervisory signals, but
also learns high-resolution representations that capture precise
information in long-range regions. SENSE also outperforms
or produces comparable results to methods that rely on a

stronger supervision in training, including stereo image pairs
and semantic segmentation label, or multiple frames at test
time.

We study the performance of our model using an improved
set of ground truth depth maps for the KITTI dataset from [68],
which produces 652 high-quality depth maps by using 5 con-
secutive LiDAR frames and stereo pairs to handle moving
objects and occlusions. We compare the results with other
methods in TABLE III where our proposed SENSE sur-
passes previous methods in all measures. Fig. 5 shows the
performance comparison qualitatively. In general, SENSE is
able to capture finer details and structures of objects includ-
ing trucks, trees, and signs in contrast to existing methods.
Note that in the 4th column, while other models struggle to
recognize the traffic sign, SENSE successfully estimates its
depth.

B. Ablation Studies

In TABLE IV, we perform an ablative analysis to validate
the effectiveness of each proposed algorithmic component.

1) HiDNet: First, we show the effectiveness of our pro-
posed LOD embedding module by comparing the performance
of HiDNet with a baseline. In the baseline, the LOD modules
are replaced with single-level embedding modules, i.e., m = 1
for all modules and n remains the same. In the first and
second rows, our proposed HiDNet outperforms the baseline
in all metrics, indicating the hierarchical architectures can
perform more accurately by inferring depth from different
levels of details. Second, we show that our proposed HiDNet
performs better than using HRNet as depth network in most
metrics, especially in the metrics Sq Rel and RMSE. The
results indicate that our design of one high resolution branch
is better than HRNet to resist the noisy influence from the
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TABLE IV
ABLATION STUDY ON THE KITTI BENCHMARK FOR 1024 x 320 RESOLUTION. PP MEANS THE RESULTS HAVE BEEN POST PROCESSED USING [17]

Method AbsRel | SqRel | RMSE| RMSElog | [6<1.257 §<125°1 §<1.25°1
1 [ HRNet [8] 0.104 0.687 4317 0.177 0.894 0.966 0.984
2 | baseline 0.115 0.735 4.444 0.187 0.877 0.961 0.983
3 | HiDNet 0.104 0.676 4.250 0.177 0.896 0.967 0.984
4 | HiDNet w/ pp 0.103 0.652 4.191 0.176 0.897 0.967 0.985
5 | SENSE Step 2 w/o GMM |  0.102 0.644 4.145 0.174 0.898 0.967 0.985
6 | SENSE Step 2 w/ GMM 0.100 0.620 4.115 0.173 0.900 0.968 0.985
7 | SENSE 0.099 0.617 4.079 0.172 0.902 0.968 0.985
8 | SENSE w/ another round 0.099 0.612 4.069 0.171 0.902 0.968 0.985
TABLE V

THE COMPLEXITY OF HIDNET. THE FLOPS ARE CALCULATED BASED ON ASINGLE IMAGE WITH A RESOLUTION OF 640 x 192

Model RMSE | Params Ratio-to-HiDNet | FLOPs Ratio-to-HiDNet
HiDNet 4.250 31.64M 1x 36.26G 1x
PackNet-SfM | 4.538 | 128.29M 4.1x 205.37G 5.7
FeatDepth 4.481 35.21IM 1.1x 31.95G 0.9x
TABLE VI

THE INFLUENCE OF A ps.. INPUT RESOLUTION Is 1024 x 320

Apse | AbsRel | SqRel | RMSE| RMSElog | [d<1.251 §<125°] §<1.25° ]

0 0.098 0.638 4.112 0.172 0.903 0.968 0.985

1 0.100 0.622 4.091 0.172 0.901 0.968 0.985
0.1 0.099 0.617 4.079 0.172 0.902 0.968 0.985
0.01 0.098 0.631 4.091 0.171 0.903 0.968 0.985
0.001 0.098 0.639 4.110 0.172 0.903 0.968 0.985

photometric loss. What’s more, we analyse the complex-
ity of HiDNet, which is shown in TABLE V. Compared
with PackNet-SfM [2], HiDNet has less parameters and
GFLOPs, which is more applicable when the computation
resources are limited. Besides, HiDNet has comparable param-
eters and GFLOPs with FeatDepth [19], but shows superior
performance.

2) Pseudo Labels as Supervision: As described
in Sec. III-B, the generated pseudo labels from the
self-supervised network are post processed using [17]
to provide better supervision. The row of “SENSE Step 2 w/o
GMM” refers to the depth network trained by the post-
processed pseudo-labels but without further steps. We show
that its performance surpasses its “ground truth” (4th row),
which validates our insight that CNNs properly trained for
monocular depth estimation are able to correct the noise in
training samples.

3) Refinement With GMM: The performance with and
without GMM pseudo label refinement (cf. Sec. III-C) is
compared in the 5th and 6th row. A great performance boost
is obtained by using GMM, indicating that more confident
predictions provide better supervision and our method based
on GMM is an effective way to find them.

4) Self-Evolving Learning: Finally, we carry out the whole
cycle of self-evolving learning, resulting in the full model of
SENSE. By jointly finetuning the depth and the pose net-
works with self-supervised and supervised training, we further
improve the depth prediction (7th row v.s. 6th row). To fully
explore the potential of self-evolving learning, we conduct
experiments that train the model for another round of total

4 steps. We observe that the performance can be slightly
improved, which further validates the effectiveness of the self-
evolving training.

5) Generalization of Our Approach: To demonstrate the
generalization of our proposed self-evolving learning frame-
work, which can be applied to any self-supervised monocular
depth estimation model. In TABLE IX, we perform an
ablation study on previous methods, i.e. Monodepth2 [1]
with the backbone of ResNet-18 and ResNet-50 [66], and
HR-Depth [9]. We produce pseudo labels using the original
models whose performance is shown in the first, third, and
fifth rows. Then we apply our proposed SENSE framework to
these models using the pseudo labels, and report their results.
The results demonstrate that our method is general enough to
boost existing self-supervised networks.

6) Hyperparameters: ~ We investigate the influence of
weight factor Apg.. When Ajs. = 0, the pseudo labels are not
used to guide the training. As shown in TABLE VI, pseudo
labels can lead to significant improvements for the metrics Sq
Rel and RMSE while influencing the metrics Abs Rel and § <
1.25 slightly. Apge = 0.1 achieves a better trade off in most
of the metrics. Additionally, we study the effect of different
combinations of m in LOD embedding module. We design
4 different depth network architectures. The baseline model
contains m = 1 branch in all 3 stages. HIDNet_1_2_2 contains
m = 1 branch in Stage 1, m = 2 branches in Stage 2
and m = 2 branches in Stage 3. HiDNet_1_2_4 contains
m = 1 branch in Stage 1, m = 2 branches in Stage 2 and
m = 4 branches in Stage 3. In TABLE VII, the results show
that out proposed HiDNet with 3-branch LOD embedding
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TABLE VII
THE INFLUENCE OF DIFFERENT BRANCH NUMBER m IN A LOD EMBEDDING MODULE

Model AbsRel | SqRel | RMSE| RMSElog | [6<125] §<125°7 §<1.25"1
baseline 0.115 0.735 4.444 0.187 0.877 0.961 0.983
HiDNet_1_2_2 0.108 0.690 4.308 0.181 0.889 0.964 0.984
HiDNet 0.104 0.676 4.250 0.177 0.896 0.967 0.984
HiDNet_1_2_4 0.108 0.753 4.407 0.182 0.891 0.964 0.983
TABLE VIII
THE INFLUENCE OF VARYING QUALITY OF PSEUDO LABELS

Epoch | Step [ Abs Rel | SqRel | RMSE | RMSElog | [§ <1257 §<1.25°1 §<1.25°]

5 1 0.135 0.822 4.636 0.200 0.842 0.956 0.983

2 0.125 0.757 4.444 0.190 0.861 0.960 0.984

10 1 0.114 0.785 4.425 0.187 0.879 0.963 0.983

2 0.109 0.715 4.249 0.180 0.887 0.966 0.984

20 1 0.104 0.676 4.250 0.177 0.896 0.967 0.984

2 0.100 0.620 4.115 0.173 0.900 0.968 0.985
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