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Abstract

Temporal sentence grounding aims to identify exact mo-
ments in a video that correspond to a given textual query,
typically addressed with detection transformer (DETR) so-
lutions. However, we find that typical strategies designed
to enhance DETR do not improve, and may even degrade,
its performance in this task. We systematically analyze and
identify the root causes of this abnormal behavior: (1) con-
flicts between queries from similar target moments and (2)
internal query conflicts due to the tension between global
semantics and local localization. Building on these in-
sights, we propose a simple yet powerful baseline, Sim-
DETR, which extends the standard DETR with two minor
modifications in the decoder layers: (1) constraining self-
attention between queries based on their semantic and posi-
tional overlap and (2) adding query-to-frame alignment to
bridge the global and local contexts. Experiments demon-
strate that Sim-DETR unlocks the full potential of DETR for
temporal sentence grounding, offering a strong baseline for
future research.

1. Introduction

Video has become a dominant media on the internet, with
short-form content rapidly expanding and achieving expo-
nential growth in reach over recent years [18–20, 24]. In-
stead of passively watching entire videos, users now pre-
fer to target specific segments of interest, with natural lan-
guage descriptions serving as an intuitive and flexible way
to convey intent [30, 61, 68]. This amplifies interest in
the research topic of temporal sentence grounding [22, 25–
27, 32, 40, 46, 47, 57, 71, 81], which aims to locate one or
more semantically aligned segments within an untrimmed
video according to a given natural language sentence, as
shown in Figure 1a.

Early methods either align sentences with predefined
temporal proposals for selection [44, 70] or directly predict
moment spans through cross-modal interactions between
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Figure 1. Illustration of (a) temporal sentence grounding task, (b)
phenomenon of random matching across multiple layers, and (c)
the challenge of achieving the balance between focus on boundary
for span prediction and alignment with global semantics.

language and frames [36, 37, 72]. Recent advances cen-
ter on integrating the Detection Transformer (DETR) [2]
for object detection into the temporal sentence grounding,
leveraging its query-based proposal detection framework to
eliminate hand-crafted proposal components and deliver su-
perior grounding performance with high efficiency [22, 25,
26, 46, 47, 57]. They leverage moment queries—often sev-
eral times more numerous than ground truth segments—in
the multi-layer decoder, which are initialized randomly [26,
46, 57], generated from sentences [22, 47], or extracted as
event units from the video [25], to locate and search the
most suitable matches for target segments. A one-to-one
label assignment is applied in the training objective to facil-
itate non-redundant predictions for each ground-truth seg-
ment. The overall architecture of the DETR-based temporal
sentence grounding framework is shown in Figure 6a.

However, we observe that strategies generally effective
for DETR in other tasks, such as object detection, like in-
creasing the number of queries or decoder layers, do not
improve performance in temporal sentence grounding and
may even degrade it (Sec 3.1). This motivates us to revisit
the specific characteristics of temporal sentence grounding
that give rise to the distinct challenges in applying DETR
to this task. In a series of investigations on query-segment
alignment (Sec 3.2), we verify that performance degrada-
tion primarily stems from the difficulty in identifying dis-
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tinct local boundaries for target segments that share highly
similar global semantics, leading to inherent conflicts both
between and within queries. By diagnosing the similari-
ties between queries and between queries and frames, we
uncover two conflicts that result in learning puzzles for
queries:
• Queries corresponding to distinct target segments exhibit

high similarity, leading to random matching with various
targets and creating learning puzzles for the queries. The
presence of multiple semantically similar target segments
results in the high similarity between their correspond-
ing queries, making them difficult to clearly distinguish
(Sec 3.3). This causes each query to potentially match
well with multiple segments, leading to significant ran-
domness in the one-to-one matching for each target seg-
ment (Figure 1b). We observe that across different de-
coder layers, the queries matched for optimization can
vary considerably (Sec 3.2).

• Each query faces an inherent conflict between encoding
the global semantics of its corresponding segment and de-
coding its local boundary. To align well with a segment,
a query must encode the segment’s global semantics from
the start to the end frame, such as the entire process of a
person holding a cup. However, the query also needs to
directly predict the segment’s boundary, requiring focus
on the local frames near the boundary (Figure 1c). This
creates a trade-off: the query either prioritizes global se-
mantics or local boundaries, making it challenging to op-
timize both simultaneously (Sec 3.3).

Building on these findings, we propose a simple yet strong
baseline for video temporal grounding, Sim-DETR. The
framework builds on the standard DETR-based tempo-
ral sentence grounding architecture, with two minor yet
straightforward design modifications to the decoder lay-
ers to address the two conflicts between and within queries
(Figure 6), respectively. First, we adjust the self-attention
weights between queries based on their pairwise corre-
lation, encouraging indistinguishable queries to focus on
different contexts, reducing their similarity, and allowing
the most suitable query to gather information from related
queries to refine its prediction (Figure 6b). Second, we in-
troduce a query-to-frame matching and loss term, account-
ing for the alignment between the query and each frame
within the segment, as shown in Figure 6c. This ensures that
all frames, not just those near the boundary, contribute to
segment localization. The full sequence of all target frames,
from start to finish, acts as a bridge connecting the global
semantics to the local boundary.

Empirically, we indeed observe that our minor modifica-
tions (1) significantly reduce conflicts between queries cor-
responding to different target segments Figure 3), (2) im-
prove the alignment between the query’s global semantic
attention to frames and its boundary prediction (Figure 5),

and (3) lead to more consistent query predictions across lay-
ers (Figure 4). Furthermore, (4) increasing the number of
queries and decoder layers no longer causes performance
degradation (Figure 2). Finally, due to the consistent match-
ing and prediction of queries, (5) our Sim-DETR not only
achieves substantial performance gains but also accelerates
convergence (as shown in Appendix). All the above obser-
vations and advantages, including the minor modifications,
are intended to unlock the potential of query-based frame-
works for temporal sentence grounding and provide a sim-
ple yet strong baseline for future research.
Our contributions are summarized as follows:
• We systematically analyze the root causes of abnormal

behavior in the DETR-based temporal sentence ground-
ing framework, identifying two key conflicts: (1) tar-
get segments with highly similar semantics but distinct
temporal localization create learning puzzles between
queries, and (2) a trade-off between relying on global se-
mantics for matching and local boundaries for localiza-
tion within queries.

• Based on our analysis, we propose two modifications to
form Sim-DETR: (1) a simple adjustment to the self-
attention to resolve conflicts between queries and (2) the
introduction of a query-to-frame matching to reconcile
global semantics and local localization within queries.

• Our Sim-DETR, a simple yet powerful baseline, achieves
consistent and significant improvements across all bench-
marks. More importantly, it eliminates observed anoma-
lies and exhibits faster convergence.

2. Related Work
Temporal Sentence Grounding (TSG) aims to identify
specific video moments that align with given language ex-
pressions. As computer vision advances across neural ar-
chitectures, generation, detection, segmentation, and multi-
modal tasks [4, 8, 21, 33, 53–55, 73, 82], temporal under-
standing requires task-specific optimizations. Early meth-
ods fall into proposal-free and proposal-based categories.
Proposal-free methods use end-to-end frameworks by di-
rectly regressing boundary coordinates [6, 43, 76] or pre-
dicting frame-level boundary likelihood [16, 78]. Proposal-
based approaches densely sample candidate segments via
sliding windows [1, 12, 15, 23, 38, 80], temporal an-
chors [5, 32, 41, 75, 77, 81], or multimodal feature similar-
ity [7, 34, 35, 66, 69]. Recently, DETR has shown excep-
tional effectiveness in detection tasks. [27, 65] pioneered
DETR for TSG. Subsequent studies enhance cross-modal
representations [46, 47, 57, 67], improve decoder queries
with semantic/spatial information [22, 25, 58], or explore
joint training with other temporal tasks [57, 71].
Detection Transformers (DETR) [2] is a pioneering end-
to-end framework for object detection and segmentation
that employs transformers to make direct set-based pre-
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dictions [14, 52, 54, 55, 60, 61, 85]. However, DETR
has notable limitations, especially its high computational
complexity and slow convergence, impacting its practi-
cal efficiency. To address these issues, several derivative
models have emerged. Some methods [51, 63, 74, 84]
improve computational efficiency by reducing redundant
calculations within the DETR architecture. Other mod-
els [9, 13, 59] refine the attention mechanism for more ef-
ficient information processing and resource utilization. Ad-
ditionally [39, 45, 64] enhance convergence by embedding
spatial information directly into the query design, which ac-
celerates object localization. Recent models [28, 79] tackle
optimization challenges in DETR’s bipartite matching pro-
cess by integrating denoising strategies during training, im-
proving both convergence and performance. Despite re-
cent advancements in enhancing DETR for object detection,
there is a lack of systematic studies addressing the unique
challenges of applying DETR to TSG and the potential dif-
ficulties in query optimization.

3. Probing DETR’s Inherent Behavior for TSG
This study begins with the observation that enhancements
effective for object detection in DETR [2] do not apply
to temporal sentence grounding (TSG), as discussed in
Sec 3.1. To explore the reasons behind DETR’s failure to
enhance, this section presents preliminary studies to reveal
the behavior of queries in the DETR decoder, as queries
are central to predicting proposals. Specifically, we exam-
ine the similarity between queries and outputs in Sec 3.2,
and the attention between queries and inputs (i.e., frames)
in Sec 3.3. These help reveal the underlying cause, and our
modification addressing it not only eliminates the abnormal
phenomena but also has a positive side effect (Sec 3.4).
Experimental Settings. Unless otherwise specified, our
default experimental setup involves conducting statistical
analyses on the full validation set of QVHighlights [27].
CG-DETR [46] and TaskWeave [71], which serve as base-
lines for DETR-based TSG due to their strong performance
while retaining the core vanilla DETR mechanism, are used
with their standard configurations.

3.1. Abnormal Phenomena
Motivation. DETR is originally proposed for object de-
tection, and increasing the number of queries and decoder
layers typically improves performance. We explore whether
this trend also applies to TSG.
Setting. Both CG-DETR and TaskWeave default to 10
queries, with 3 and 2 decoder layers, respectively. This ex-
periment specifically increases the number of queries and
decoder layers to isolate their effects, keeping all other hy-
perparameters and training protocols constant.
Result & Discussion. As shown in Figure 2, increasing
the number of queries to 15 and 20 led to progressively
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Figure 2. The impact of the number of queries and decoder layers.

larger performance declines, with a drop of over -2% with
TaskWeave [71] at 20 queries. Similarly, increasing the
number of decoder layers caused a drop from -1% to -2.5%.
In contrast, our Sim-DETR mitigates this phenomenon and
achieves a slight improvement, demonstrating its robust-
ness. This observation motivates an in-depth exploration of
decoder layer, particularly the role of queries (see Sec 3.2).

3.2. Similar Target Segments Cause Query Conflicts
Motivation. Initially, we hypothesize that the lack of per-
formance improvement with increased queries is due to
query redundancy. However, performance declined, sug-
gesting that conflicts between queries, rather than redun-
dancy, prevent compatibility with existing queries. Simi-
larly, conflicts between queries across layers may explain
the ineffectiveness of increasing the number of layers.
This motivates us to explore (1) the relationships between
queries to identify their potential conflicts and (2) their vari-
ations across layers to reveal the impact at different layers.
Setting. (1) To evaluate query relationships, we assess sim-
ilarities between queries corresponding to the same seg-
ment (intra-segment similarity) and those from different
segments (inter-segment similarity). Specifically, we iden-
tify the corresponding segment for each query based on
the maximum IoU between the query’s prediction and all
ground-truth (GT) segments during inference. Queries
whose IoU with the corresponding segment is 0.5 or greater
are included in our analysis to ensure meaningful corre-
sponding. We then compute feature similarities between
queries associated with the same segment (intra) and those
matched to different segments (inter). (2) To analyze varia-
tions across layers, we introduce the metric of cross-layer
matching consistency. Specifically, during training opti-
mization, each GT segment is uniquely matched to a query
through bipartite matching at each decoding layer. We as-
sess match consistency by measuring the proportion of seg-
ments that retain their corresponding queries across two
consecutive decoder layers.
Result & Discussion. (1) As shown in Figure 3, CG-
DETR fails to distinguish query similarities between inter-
or intra-segment groups, indicating that queries are not
clearly grouped with their corresponding segments. Con-
sequently, the same query oscillates between segments,
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Figure 3. Distribution of query similarity for intra-segment (blue)
and inter-segment (red) pairs. Our method can effectively distin-
guish intra-segment and inter-segment queries, ensuring more sta-
ble query-segment associations and reducing conflicts in query as-
signments across different segments.
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Figure 4. Measuring cross-layer matching consistency (y-axis, de-
fined in Line-260) of segments across two consecutive decoding
layers (x-axis). Our method achieves higher consistency.

lacking stable and consistent corresponding. Figure 4 fur-
ther supports our hypothesis, demonstrating that cross-layer
matching consistency in CG-DETR is lower than ours. (2)
We attribute this to multiple GT segments in a video shar-
ing the same linguistic semantics. The high semantic sim-
ilarity between GT segments results in high similarity be-
tween their corresponding queries. Figure 4 supports this,
showing that the consistency for cases with multiple GT
segments is lower than for those with a single segment.

3.3. Global Matching vs. Local Localization
Motivation. We further question whether the inconsistency
in matching is solely due to query conflicts from multiple
GT segments. If so, why does the previous method still
show roughly 25% mismatched queries in cases with a sin-
gle target segment? Therefore, we shift our focus from con-
flicts between queries to conflicts within individual queries.
A query serves dual roles: aligning with global linguistic se-
mantics (global matching) and precisely localizing the seg-
ment, particularly its boundaries (local localization). This
prompts us to explore whether conflicts arise from these
roles within a single query.
Setting. (1) To evaluate global matching, we use the query’s
classification confidence score, as it reflects the confidence
of the query being referenced by the global semantics of the
linguistic description. (2) To evaluate local localization, we

Density Map

Attention Region of CG-DETR

Ground-Truth Segments

Attention Region of Ours

CG-DETR

Global Matching Score

Lo
ca

l L
oc

al
iz

at
io

n 
Sc

or
e

Figure 5. Global matching score (defined in Line-290) vs. lo-
cal localization score (defined in Line-293). Compared to CG-
DETR, our method concentrates a query’s attention significantly
more within a single GT segment, rather than dispersing it across
multiple segments, leading to improved local localization scores.

extract attention scores between each query and frame from
the cross-attention module in the last decoder layer, as they
indicate query-based frame localization. We then compute
the IoU score between this attention and the query’s corre-
sponding GT segment, reflecting the accuracy of the query’s
localization at the frame level.
Result & Discussion. As shown in Figure 5, CG-DETR
(marked in red) may yield low local localization scores
despite high global matching scores, indicating that while
queries align well with linguistic descriptions, they fail to
achieve precise localization. Further analysis reveals that
query attention may span frames in multiple GT segments
(see Figure 5 “Attention”), leading to a low local score for
the query’s specific GT segment it corresponds to.

3.4. Positive Side Effect
Convert Abnormal to Normal: Our Sim-DETR effec-
tively (1) distinguishes queries within the same target seg-
ment and across different segments in Figure 3, (2) achieves
consistent matching across decoder layers in Figure 4, and
(3) aligns with global semantics while ensuring precise lo-
calization in Figure 5.
Positive Side Effect: (1) More importantly, Sim-DETR
maintains stable and robust performance with increased
queries and decoder layers (see Figure 2). (2) By elim-
inating the abnormal phenomena, it also achieves signifi-
cantly faster convergence compared to previous methods,
as shown in Appendix C.

4. Method
We present a simple yet effective TSG baseline that re-
solves query conflicts in existing DETR-based TSG frame-
works [22, 25, 27, 46, 47, 57, 67, 71] through two mi-
nor yet key modifications. First, we introduce the standard
DETR-based [2] TSG architecture (Sec 4.1). Sec 4.2 intro-
duces our first modification, which adjusts the self-attention
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Figure 6. Framework of the proposed Sim-DETR, featuring two simple yet powerful modifications: Query Grouping and Ranking to
mitigate cross-query conflicts and Global-Local Bridging to address global-local conflicts within each query.

mechanism between queries in the decoder to avoid con-
flicts among them, based on the observations presented in
Sec 3.2. Next, Sec 4.3 presents another improvement that
addresses the conflict between global matching and local lo-
calization within the query (discussed in Sec 3.3) by intro-
ducing query-to-frame matching loss, which serves as the
bridge between the global and local perspectives.

4.1. Standard DETR-based TSG Architecture
In TSG, the goal is to identify video segments with temporal
spans that correspond to a given language expression.
Feature Extraction. Previous DETR-based works [25, 47,
57, 71] employ CLIP [49] and SlowFast [10] to extract
video features, represented as T ∈ RN×C , where N and
C stands for the number of frames and the hidden dimen-
sion, respectively. For the language expression, typically a
sentence with L tokens, the CLIP text encoder is used to
obtain token-level features, resulting in W ∈ RL×C .
Multimodal Encoder. After feature extraction, DETR-
based TSG methods [22, 46, 47, 57] employ a multimodal
encoder to fuse these video and language features, produc-
ing multimodal video features, denoted as T̂ ∈ RN×C .
The key component of the multimodal encoder is a cross-
attention mechanism [62], where video features T act as
queries, while word features W serve as keys and values.
Temporal Sentence Decoding. In the decoder, the model
initializes a set of query to gather global information from
the video, which is then decoded into local spans in the span
prediction head. Specifically, given initialized queries Q ∈
RM×C , where M is the query number, and the multimodal
video features T̂ , the decoder facilitates interaction between
queries and gathers global information through interleaved

self-attention and cross-attention modules, as follows:QSA
q = FCSA

q (Q),QSA
k = FCSA

k (Q),QSA
v = FCSA

v (Q),

QSA = FCSA
o

(
softmax

(
QSA

q (QSA
k )⊺

√
C

)
QSA

v

)
.QCA

q = FCCA
q (QSA), T̂k = FCCA

k (T̂ ), T̂v = FCv(T̂ ),

QCA = FCCA
o

(
softmax

(
QCA

q (T̂k)
⊺

√
C

)
T̂v
)
.

Q̂ = MLP(LayerNorm(QCA) +Q),

B = Hspan(Q̂), B = {b1, · · · , bM},
(1)

where FC(·) denotes the fully connected projection layer,
with SA and CA representing self-attention and cross-
attention, respectively. Subscripts q, k, and v indicate query,
key, and value computations. MLP(·) represents a nonlin-
ear mapping with an activation function. Hspan(·) denotes
the span prediction head, which takes the updated query
features Q̂ to predict the span set B, where each bi ∈ R2

represents the (start, end) of a predicted span.

4.2. Query Grouping and Ranking
In this section, we address the query conflicts identified
in Sec 3.2: (1) the inability to distinguish between intra-
and inter-segment queries (Figure 3), leading to query
oscillation between segments without stable correspon-
dence (Line-266), and (2) inconsistencies in segment-query
matching across layers, where different queries may be
matched to ground-truth (GT) segments at each layer for
optimization, hindering effective learning (Figure 4).

To differentiate queries across segments, the challenge
arises from GT segments that inherently share identical lin-
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guistic semantics, leading to highly similar queries. There-
fore, a natural solution is to directly group queries, as-
signing each group to a specific GT segment for training
and prediction. Instead of hard grouping with predefined
rules or extra hyperparameters, we learn a soft grouping
based on predicted temporal spans of queries, where closer
spans indicate potential corresponding for the same seg-
ment. Specifically, for any two queries qi and qj , we com-
pute their span distance, which is then used in Eq. 4 to learn
their grouping: S intra

i,j = ∥bi − bj∥2, (2)

where ∥·∥2 denotes the L2 norm. Notably, we use L2 dis-
tance instead of the commonly used L1 because, when two
spans are close (normalized distances ≤ 1), L2 distance de-
creases more sharply than L1, imposing a smaller penalty
on minor differences (see Appendix G).

Meanwhile, to enhance cross-layer matching consis-
tency, we draw inspiration from EASE-DETR [14]’s query
ranking strategy in object detection. By ranking queries
within a segment at each layer, the leading query is priori-
tized for segment matching in subsequent layers. However,
directly ranking queries by prediction scores, as in EASE-
DETR, proves ineffective (see Appendix D). As analyzed
in Sec. 3.3, high prediction/confidence scores do not guar-
antee precise predictions and may correspond to poor local-
ization. Instead, we introduce an IoU head to assess local-
ization accuracy and rank queries based on both factors, as
follows:

Rrank(qi, qj) =

{
+1 Pcls

i ◦ P IoU
i ≥ Pcls

j ◦ P IoU
j

−1 Pcls
i ◦ P IoU

i < Pcls
j ◦ P IoU

j

, (3)

where Pcls and P IoU denote the query’s confidence score
and IoU prediction, respectively, with subscripts i and j in-
dicating queries qi and qj . Rrank(qi, qj) = 1 indicates that
query qi has a higher priority than query qj , considering
both global alignment and local localization.

Finally, we incorporate query grouping within segments
and intra-segment ranking to infer relative relationships,
then reshape query-to-query self-attention following [14] to
mitigate conflicts, as follows:

Sattn = sigmoid
(
MLP(S intra ◦ Rrank

)
,

QSA = FCSA
o

(
softmax

((
QSA

q (QSA
k )⊺

√
C

)
Sattn

)
QSA

v

)
(4)

where Sattn represents query relationships, with higher val-
ues promoting high-quality queries to dominate predictions
by integrating similar queries within the same group.

4.3. Global-Local Bridging
In this section, we address the query conflicts identified in
Sec 3.3, specifically the conflict between a query’s global
semantic matching and local localization. Since queries
overly rely on global semantics while neglecting local local-
ization, our core idea is to reinforce fine-grained frame-level
localization within the segment. Specifically, we introduce
a query-to-frame matching mechanism and loss term to
enhance localization beyond segment boundary prediction,
ensuring alignment with in-segment frames while avoiding
matches with those from other segments. The full sequence
of frames within the segment, from start to finish, serves as
a bridge linking global semantics to local boundaries.

During training, we compute the semantic similarity be-
tween each query qi and all frames within its correspond-
ing ground-truth span, maximizing similarity to ensure full
alignment with in-segment frames while minimizing simi-
larity to out-segment frames. The computation process is
outlined as follows,

z = sigmoid(τ · cos(qi, T̂ )),

Lbridge =λbridge
−
∑

j zjI[b
gt
i ]j∑

j zj(1− I[bgt
i ]j) +

∑
j I[b

gt
i ]j

,
(5)

where z ∈ RN donates query-to-frame similarity, calcu-
lated using the cosine similarity between the query qi and
the N frame features T̂ defined in Line-347, and τ is a
learnable scaling coefficient. bgt

i is the ground-truth span
corresponding to query qi, while I[bgt

i ] ∈ RN is an indi-
cator function that assigns 1 to frames within the ground
truth and 0 otherwise, with j representing the frame in-
dex. Thus, the numerator in Lbridge, i.e., −

∑
j zjI[b

gt
i ]j ,

encourages the query to be similar to every frame within
its corresponding segment. Meanwhile, the denominator’s
first term,

∑
j zj(1 − I[bgt

i ]j), represents query qi’s simi-
larity to out-segment frames, promoting its minimization.
The denominator’s second term,

∑
j I[b

gt
i ]j , represents the

length of the ground-truth segment, serving as a normaliza-
tion factor. And λbridge is a hyperparameter that controls the
loss weight.

4.4. Overall Loss
The overall loss is: L = LMD + λbridgeLbridge + λiouLiou,
where LMD includes the L1, gIoU, classification, and
saliency losses, as in Moment DETR [26]. Liou is the loss
for the IoU head introduced in Line-406, designed to assist
in ranking queries using P IoU

i and P IoU
j in Eq 3. The IoU

head implementation follows [25, 58]. Ablations for hyper-
parameters λbridge and λiou are detailed in Appendix E.
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Method

test val

R1 mAP R1 mAP

@0.5 @0.7 @0.5 @0.75 Avg. @0.5 @0.7 @0.5 @0.75 Avg.

M-DETR [27]NeurIPS’21 52.89 33.02 54.82 29.40 30.73 53.94 34.84 - - 32.20
UMT [40]CVPR’22 56.23 41.18 53.83 37.01 36.12 60.26 44.26 - - 38.59
QD-DETR [47]CVPR’23 62.40 44.98 62.52 39.88 39.86 62.68 46.66 62.23 41.82 41.22
UniVTG [32]ICCV’23 58.86 40.86 57.60 35.59 35.47 59.74 - - - 36.13
EaTR [22]ICCV’23 - - - - - 61.36 45.79 61.86 41.91 41.74
MomentDiff [29]NeurIPS’23 57.42 39.66 54.02 35.73 35.95 - - - - -
TR-DETR [57]AAAI’24 64.66 48.96 63.98 43.73 42.62 67.10 51.48 66.27 46.42 45.09
UVCOM [67]CVPR’24 63.55 47.47 63.37 42.67 43.18 65.10 51.81 - - 45.79
TaskWeave [71]CVPR’24 - - - - - 64.26 50.06 65.39 46.47 45.38
BAM-DETR [25]ECCV‘24 62.71 48.64 64.57 46.33 45.36 65.10 51.61 65.41 48.56 47.61
CG-DETR [46]Arxiv‘24 65.43 48.38 64.51 42.77 42.86 67.35 52.06 65.57 45.73 44.93
SpikeMba [31]Arxiv‘24 64.13 49.42 - 43.67 43.79 65.32 51.33 - 44.96 44.84

Sim-DETR(Ours) 67.64 50.91 67.81 47.59 46.93 69.48 54.06 69.70 51.11 49.50

Table 1. Experimental results on the QVHighlights benchmark, comparing ours with state-of-the-art methods.

Method
TACoS Charades-STA

R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU

2D-TAN [81] 40.01 27.99 12.92 27.22 58.76 46.02 27.50 41.25
M-DETR [27] 37.97 24.67 11.97 25.49 65.83 52.07 30.59 45.54
MomentDiff [29] 44.78 33.68 - - - 55.57 32.42 -
QD-DETR [47] - - - - - 57.31 32.55 -
UniVTG [32] 51.44 34.97 17.35 33.60 70.81 58.01 35.65 50.10
CG-DETR [46] 52.23 39.61 22.23 36.48 70.43 58.44 36.34 50.13
UVCOM [67] - 36.39 23.32 - - 59.25 36.64 -
SpikeMba [31] 51.98 39.34 22.83 35.81 71.24 59.65 36.12 51.74

Sim-DETR(Ours) 57.06 42.79 26.82 39.44 73.09 61.34 39.62 52.56

Table 2. Comparison results on the TACoS and Charades-STA benchmarks.

5. Experiments

5.1. Datasets and Implementation Details

Datasets. Following [27, 31, 32, 47, 67], we conduct com-
prehensive evaluation experiments across three datasets:
QVHighlights [27], Charades-STA [12], and TACoS [50].
The QVHighlights dataset contains 10,310 text expressions
and 18,367 distinct events, with most expressions corre-
sponding to multiple events. Charades-STA is derived from
a collection of 9,848 indoor scene videos, encompassing
16,128 events. TACoS includes only 273 videos, with an
average length approaching five minutes per video. For a
fair comparison, we adopt the same evaluation metrics as
in previous methods. On the QVHighlights benchmark, we
use Recall and Mean Average Precision (mAP) as primary
metrics, while for Charades-STA and TACoS, we employ
Recall and Mean Intersection over Union (mIoU).

Implementation Details. We set the input video resolu-
tion to 224×224 and represent each video by concatenating
the CLIP [49] [CLS] tokens with SlowFast [10] features.
For the Charades-STA and TACoS datasets, we additionally
constructed two experiments using I3D [3] and VGG [56]
as visual encoders, with Glove [48] embeddings for text
features. The model is trained for 200 epochs on a single
NVIDIA A40 GPU, using the AdamW [42] optimizer with

Backbone Method R@0.5 R@0.7

VGG [56]

2D-TAN [81] 40.94 22.85
FVMR [11] 42.36 24.14
SSRN [83] 46.72 27.98
UMT [40] 48.31 29.25
MomentDiff [29] 51.94 28.25
QD-DETR [47] 52.77 31.13
TR-DETR [57] 53.47 30.81
CG-DETR [46] 55.22 34.19
Sim-DETR(Ours) 55.97 35.38

I3D [3]

MAN [77] 46.53 22.72
VSLNet [78] 47.31 30.19
QD-DETR [47] 50.67 31.02
TR-DETR [57] 55.51 33.66
TaskWeave [71] 53.36 31.40
Sim-DETR(Ours) 57.55 35.73

Table 3. Experimental results with VGG or I3D as backbone.

an initial learning rate of 1e-4. Note that, for a fair compar-
ison, the total number of layers in our Sim-DETR is set to
6, the same as recent works [22, 46, 67].

5.2. Comparison with State-of-the-Art Methods
As shown in Tables 1-3, we report detailed evaluation re-
sults across the QVHighlights, Charades-STA, and TACoS
benchmarks. Our Sim-DETR consistently outperforms all
state-of-the-art methods (SOTAs) across all metrics.
Results on QVHighlights are shown in Table 1. Compared
to the latest published work, BAM-DETR [25], our Sim-
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Method
R1 mAP

@0.5 @0.7 @0.5 @0.75 Avg.

Baseline 65.48 50.84 65.34 45.82 44.97
+ Liou 66.58 51.94 65.68 46.30 45.22
+ QGR 68.77 52.26 67.72 48.28 47.03
+ GLB 67.16 52.77 68.58 48.88 48.17
+ QGR,GLB 69.48 54.06 69.70 51.11 49.50

Table 4. Ablation study on components.

Inner Relevance Outer Global Outer Local mAP

(1) span border dist confidence pred IoU pred 49.50
(2) center dist 48.59
(3) span IoU confidence pred IoU pred 48.94

(4) span border dist w/o IoU pred 48.93

(5) w/o 48.66
(6) span border dist confidence pred

center pred 48.97

Table 5. Impact of different measures.

DETR outperforms it by an average of +2.88% across all
metrics. More importantly, it achieves remarkable gains
of +4.93% and +2.27% in R1@0.5 and R1@0.7, respec-
tively. In comparison TR-DETR [57], which uses standard
DETR [2] as its basic framework and is used as our base-
line model, our Sim-DETR achieves an average improve-
ment of +4.31% and +4.41% in mAP for test and valida-
tion, respectively. These improvements underscore the ef-
fectiveness of our Sim-DETR in fundamentally addressing
conflicts within and between queries. We further conduct a
comparison with SpikeMba [31], a contemporary method
built on the Mamba [17] framework. Without any com-
plex module designs, the consistent improvements across
all metrics highlight the simplicity and effectiveness of our
Sim-DETR. Sim-DETR establishes an efficient baseline for
the task, significantly advancing research in TSG.
Results on Charades-STA and TACoS are presented in
Table 2, where we consistently outperform all methods on
both datasets. Compared to the state-of-the-art methods,
we achieve a +1.97% improvement on the Charades-STA
dataset (with SpikeMba as the SOTA) and a +3.89% im-
provement on the TACoS dataset (with CG-DETR [46] as
the SOTA). These enhancements further demonstrate the
outstanding capability of our method in temporal localiza-
tion. More importantly, they confirm that our Sim-DETR
exhibits significant performance advantages across various
scenarios, types, and lengths of videos, highlighting its ro-
bustness and generalizability.
Results with Different Backbones. Following pre-
vious works, we conduct two additional experiments
on the QVHighlights dataset. These experiments use
VGG and I3D for visual feature extraction and use
Glove [48]embedding as text features. Table 3 presents
the detailed results of these two experiments, where we
achieve state-of-the-art results in both cases. Notably, for
the video feature extractor I3D, we surpass the latest pub-

lished method by +4.26%. These results further demon-
strate the excellent generalization capabilities of our Sim-
DETR across different backbones.

5.3. Ablation Study
Roadmap for building a simple yet effective TSG base-
line is presented in Table 4. We employ TR-DETR without
MR2HD module as our baseline, which achieves an mAP
of 44.97%. Since our Query Grouping and Ranking (QGR)
utilizes Liou proposed by [25, 58], we additionally conduct
an ablation study to isolate the impact of Liou. (1) QGR:
To mitigate conflicts and optimization challenges arising
from overly similar semantics between queries, we intro-
duce the QGR, which improves the baseline by +2.07% on
mAP, representing a subtle yet significant enhancement. (2)
Global-Local Bridging (GLB): To address conflicts and am-
biguities between global semantics and local localization
within queries, we introduce GLB to enable seamless trans-
formation through query-to-frame alignment. Experimen-
tal results show a performance boost to 48.17% on mAP,
indicating the effectiveness of GLB in bridging global-to-
local transformations. However, without QGR to address
semantic conflicts in temporal DETR, the recall predictably
decreased by -3.1%. (3) Overall Framework: With these
adjustments, our Sim-DETR achieves a remarkable SOTA
performance: 49.50% on mAP and 69.48% on R1@0.5.
The Effects of Different Conflict Metrics in QGR. Table
5 summarizes five experiments on conflict metrics in QGR.
(1) The first row displays our final implementation, achiev-
ing 49.50% mAP. (2) & (3) We evaluate L2 center distance
and span IoU for inter-query relationships. Center distance
alone yields 48.59% mAP, highlighting its inadequacy in
segment representation. Span IoU outperforms center dis-
tance but lags by 0.56% compared to boundary distance,
likely due to IoU’s broader tolerance, which reduces pre-
cision in query relevance. (4) To assess outer global se-
mantic alignment, we remove global semantics, resulting in
a -0.57% drop, emphasizing their role in query interaction
and quality. (5) Finally, we test local location metrics in
query prioritization. Excluding the outer local metric signif-
icantly lowers performance (-0.84% mAP), indicating that
without local information, queries encounter conflicts due
to overly generalized global semantics, leading to random
matches. Consistent with (2), center localization accuracy
shows similar limitations, with a 0.53% decrease.

6. Conclusion
In this paper, we propose a concise and efficient tempo-
ral sentence grounding framework Sim-DETR, introduc-
ing two simple modifications to the decoder for resolving
conflicts both between and within queries. Experimental
results demonstrate that our approach significantly outper-
forms state-of-the-art methods across all benchmarks.
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