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Structure Embedded Nucleus Classification for
Histopathology Images

Wei Lou , Xiang Wan , Guanbin Li , Member, IEEE, Xiaoying Lou , Chenghang Li, Feng Gao ,
and Haofeng Li , Member, IEEE

Abstract— Nuclei classification provides valuable infor-
mation for histopathology image analysis. However, the
large variations in the appearance of different nuclei types
cause difficulties in identifying nuclei. Most neural network
based methods are affected by the local receptive field of
convolutions, and pay less attention to the spatial distribu-
tion of nuclei or the irregular contour shape of a nucleus.
In this paper, we first propose a novel polygon-structure
feature learning mechanism that transforms a nucleus con-
tour into a sequence of points sampled in order, and employ
a recurrent neural network that aggregates the sequential
change in distance between key points to obtain learnable
shape features. Next, we convert a histopathology image
into a graph structure with nuclei as nodes, and build a
graph neural network to embed the spatial distribution of
nuclei into their representations. To capture the correlations
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between the categories of nuclei and their surrounding
tissue patterns, we further introduce edge features that
are defined as the background textures between adjacent
nuclei. Lastly, we integrate both polygon and graph struc-
ture learning mechanisms into a whole framework that can
extract intra and inter-nucleus structural characteristics
for nuclei classification. Experimental results show that
the proposed framework achieves significant improvements
compared to the previous methods. Code and data are made
available via https://github.com/lhaof/SENC

Index Terms— Nuclei classification, recurrent neural net-
work, graph neural network.

I. INTRODUCTION

RECENTLY, computer-aided diagnosis (CAD) systems
have achieved great success in histological examination

tasks for their efficient, accurate and reproducible diagnosis
performance [1], [2]. In a CAD system, nuclei segmentation
and classification are critical steps for analyzing histopathol-
ogy images. Segmenting a nucleus is to label all its pixels
while nuclei classification is to identify the category of a
nucleus. Solving these tasks not only obtains the size, texture
and shape of each nucleus, but also provides the distribution
among different nuclei types. The spatial relationships among
different types of nuclei can effectively guide the CAD system
in computational pathology tasks such as survival predic-
tion [3], [4], cancer subtype classification and grading [5],
[6].

Nowadays, nuclei classification for histopathology images
remains a challenge. Two nuclei of different types could
have similar shapes and textures, and it is hard to dis-
tinguish between them. Meanwhile, for the nuclei of the
same category, their appearances could have a wide vari-
ation during the different periods of their life cycle [7],
[8]. It is difficult for CAD systems or inexperienced
pathologists to classify every single nucleus in an image
accurately. Thus, we aim at solving the nuclei classification
task.

Most deep learning (DL) based methods [7], [8], [9], [10]
adopt Convolutional Neural Networks (CNNs) to detect and
classify a nucleus based on its own convolutional features.
However, these approaches seldom consider the relationship
between different nuclei in an image. Such inter-nucleus
information is crucial and widely used by experts in manual
classification. Moreover, existing DL-based models rely on
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Fig. 1. Overview of the proposed nucleus classification framework that
consists of (a) a polygon structure learning module, (b) a multi-layer GNN
for graph structure learning, and (c) an instance-level classifier.

pixel-level features that are implicitly encoded by learnable
convolutions. These approaches may be able to capture corner
or boundary feature, but they can be distracted by the texture,
color information, or overlapping areas of nuclei. Most of them
do not disentangle the shape of a nucleus from other attributes
or explicitly model it as an individual structure (such as a
polygon or a sequence of points). Recently, Graph Neural
Networks (GNNs) based methods have grown rapidly in
computational pathology [11], [12], [13], [14], [15]. Previous
GNN models employ tissue patches or nuclei objects as graph
nodes to construct a graph. However, most of them focus on
classifying Whole Slide Images (WSIs) instead of nuclei.

Inspired by the above observations, we propose to improve
the nuclei classification by considering not only the correla-
tions among different nuclei, but also the polygon structure of
a nucleus shape. First, to exploit the shape characteristics of
a nucleus, we model a nucleus contour as a polygon, which
can be described as an ordered sequence of points sampled
from the contour (as shown in Fig. 1(a)). A recurrent neural
network (RNN) is utilized to learn structural representations
for the polygon from the point sequence, by aggregating the
continuous changes in relative positions of sampled contour
points. Such a polygon feature can well describe the irregular
contour of a nucleus, and will act as a part of the nucleus rep-
resentation. Second, to harvest the spatial distribution among
nuclei, we model a histopathology image as a graph by
defining a node as a nucleus and an edge as the middle
point of the line connecting two adjacent nuclei. Due to
the receptive field of CNNs, an edge feature is supposed to
describe a local tissue region centered at the middle point.
A graph neural network is exploited to capture inter-nuclei
contexts via iteratively propagating each node information
to its neighbors and updating each nucleus feature with its
background and adjacent nodes. The structural information of
the whole histopathology graph is embedded into the enhanced
representation of each nucleus. Lastly, we combine the above
ideas of graph structure learning and polygon shape learning
to develop a nuclei classification framework in which the
pixel-level feature extraction and the nuclei-level classification
are end-to-end trained.

Our main contributions are as follows:

• A novel intra-nucleus polygon structure learning (PSL)
module that learns the shape feature of a nucleus.

• A novel structure embedded nuclei classification frame-
work based on an inter-nucleus graph structure learning
(GSL) module and the proposed PSL module.

• The proposed framework significantly outperforms the
existing methods by 4.7%-9.8% average F-score on
an in-house dataset and three public benchmarks. The
experimental results show that both the proposed PSL
and GSL modules can effectively improve classification
performance.

II. RELATED WORK

A. Cell Classification in Histopathological Images
In the early stage, handcrafted features of texture, morphol-

ogy and color are extracted and sent into an SVM/AdaBoost
classifier for nuclei classification [16], [17]. These methods
explicitly model the intra-nucleus structure but are limited
by the non-learnable representations. Nowadays, most nuclei
classifiers adopt CNNs with two stages, detecting nuclei
instances and then labeling them [7], [18], [19], [20], [21].
Sirinukunwattana et al. [22] propose a CNN to detect nuclei
centers and another CNN to classify the image patches con-
taining a nucleus. Graham et al. [9] proposes a CNN of three
branches, two for segmentation, and one for classification.
Doan et al. [8] predicts a weight map to highlight hard
pixel samples for classification. However, these approaches
are limited by the receptive field of CNNs, and fail to
harvest long-range contexts and spatial distributions of nuclei
instances. Some non-CNN methods utilize denoised autoen-
coder [23] or vision transformers [24], [25] to classify cell
types. However, they fail to exploit the contour or topology
information of cell instances.

B. Cell Nucleus Detection and Segmentation
DL-based methods have achieved remarkable success in

nuclei detection and segmentation [26], [27], [28], [29], [30],
[31], [32], [33], [34], which are crucial steps as important
prerequisites for cell classification. Some approaches employ
the two-stage method that first detects the bounding box of
each nucleus instance and then proceeds to segment the con-
tour [35], [36], [37]. Some other methods utilize a single-stage
framework, which predicts the semantic labels for each pixel
and separates each nucleus instance by well-defined distance
map or morphology operations [8], [24], [38]. In this work,
we use some of the existing nuclei segmentation methods [9],
[10], [39], [40] as the pre-processing component of our method
and show that the proposed method is flexible to integrate with
different nuclei segmentation models to enhance the ability of
nuclei classification.

C. Graph Models in Computational Pathology
GNNs have become popular in computational pathol-

ogy [41], [42], [43], [44], [45], [46], [47]. Most GNN methods
are to classify a whole image [48], [49], [50] or tissue
patches [51]. In these works, graph nodes are defined as tissue
patches [50], [52], nuclei objects [15] or superpixels [14].
The node embeddings can be hand-crafted [41], [53] or
extracted from pre-trained models [15], [48]. Different from
these works, we design a finer node representation including
a shape feature of polygon-structure learning. Some existing

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on September 26,2025 at 08:06:40 UTC from IEEE Xplore.  Restrictions apply. 



LOU et al.: STRUCTURE EMBEDDED NUCLEUS CLASSIFICATION FOR HISTOPATHOLOGY IMAGES 3151

Fig. 2. Structure Embedded Nucleus Classification (SENC) framework. It consists of a pixel-wise feature extraction branch (upper) and an
instance-level classification branch (lower) using the inter-nucleus Graph Structure Learning module (GSL). In the GSL module, an intra-nucleus
Polygon Structure Learning module (PSL) computes the shape features for nuclei. Then the input image is transformed into a graph and a GNN
enhances the features of the graph nodes for nuclei classification.

work is based on GNN but it works by refining the nuclei
classification results from existing models [46]. Instead, the
GNN in our framework does not rely on nuclei types predicted
in advance but directly performs the classification.

D. Contour and Polygon Representation Learning
Predicting polygons for object segmentation [29], [54], [55]

and contour detection [56] have been widely studied, while the
feature extraction and classification for contours and polygons
have been less discussed. Contour-aware nuclei segmentation
methods [57] predict if a pixel is at a contour to improve
the segmentation, but do not aggregate the pixel-level contour
features to classify nuclei. PBC [58] is a polygon-based classi-
fier that pools the texture features of each point in a polygon,
but it does not consider the irregularity and smoothness of a
polygon contour. Sharma et al. [17] computes morphological
statistics (such as Area and Convexity of Contour) as the shape
feature of a nucleus. Differently, we model a nucleus contour
in a fine-grained way, using a sequence of relative positions
between the centroid and vertices.

III. METHODOLOGY

A. Structure Embedded Nucleus
Classification Framework

The Structure Embedded Nuclei Classification (SENC)
framework is illustrated in Fig. 2. The proposed framework
consists of a pixel-wise feature extraction branch and an
instance-level classification branch based on the module of
Inter-nucleus Graph Structure Learning (GSL). The graph
construction part in GSL contains a new Polygon Structure

Learning (PSL), a Nuclei Texture feature extraction (NuTef)
and an edge feature extraction modules.

1) Pixel-Wise Feature Extraction Branch: We utilize an exist-
ing CNN [59] as the encoder and a feature pyramid network
(FPN) [60] as the decoder to build the pixel-wise feature
extraction branch. The branch uses a histopathology image
as input and produces a pixel-level feature map from the
second last decoder layer. The encoder in the pixel-wise
extraction branch consists of four convolutional blocks with
large kernel sizes, which help capture a large receptive field
for the input image. The output sizes of the four blocks
are: h

4 ×
w
4 , h

8 ×
w
8 , h

16 ×
w
16 , h

32 ×
w
32 , where h and w are

the height and width of the input image, respectively. The
decoder consists of three layers. Each decoder output is
up-sampled to fuse with the corresponding encoder feature
of the same resolution, and the fused result is sent to the
next decoder layer. The output of the decoder has the same
size of the input image. The encoder-decoder follows a top-
down pathway, which involves upsampling the feature maps
from higher-level layers to match the resolution of lower-level
feature maps, establishing a hierarchy of feature maps with
varying levels of spatial information. More detailed values of
hyper-parameters can be found in section IV-B. In Fig. 2, the
semantic segmentation map is the output of the decoder, when
the encoder-decoder is pre-trained on a semantic segmentation
task using DICE loss and cross-entropy loss.

The inter-nucleus GSL module takes the pixel-level feature
map and an instance segmentation map as inputs. The instance
segmentation map is the result of a pre-trained nuclei instance
segmentation model. Since we focus on solving the classifi-
cation task, we simply use an existing nuclei segmentation
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model [9] to predict the instance segmentation map. The
inter-nucleus GSL module first transforms a histopathology
image into a graph structure and then learns nuclei repre-
sentation as graph nodes and background features as edges.
In particular, in the GSL branch, we use the edge feature
extraction, the intra-nucleus PSL and the NuTef modules to
capture edge features, shape and texture features of nodes,
respectively. After enhancing the node features with a graph
neural network, all the nuclei are classified with a fully-
connected (FC) layer and a Softmax layer.

B. Inter-Nucleus Graph Structure Learning
To capture the spatial relationship among nuclei, we develop

an inter-nucleus graph structure learning module, which
includes the construction of a histopathology graph topology,
and the feature extraction of graph nodes and edges.

1) Histopathology Graph Topology: Suppose a histopathol-
ogy image contains N nuclei. We construct a graph topology
corresponding to the image by defining a graph node as
a nucleus. The graph is undirected and can be defined as
G = (V, E). V denotes the set of nodes in the graph, namely,
all the nuclei entities in the histopathology image. E is the
set of edges which represent the inner relationships between
adjacent nuclei. To build an efficient and sparsely-connected
graph, we first calculate the Euclidean distance between the
centroid coordinates of any two nuclei. For each nucleus, K
undirected edges are linked between the nucleus and its K
nearest neighbors. The connection of nodes can be defined as
a symmetric adjacency matrix A ∈ RN×N , where Au,v = 1 if
the edge between the uth and vth nodes exists (eu,v ∈ E). After
computing the adjacency matrix, the original representations
of nodes and edges, we use a GNN to update the node features
and to harvest the structural embedded nuclei representation.
The updated node features are exploited to predict the nuclei
types.

2) Node Feature Extraction: To obtain original node rep-
resentations, we propose a node feature extraction process.
The process takes the feature map from the pixel-wise feature
extraction branch (Fig. 2) and a nucleus instance segmentation
map as inputs and outputs a feature vector for the nucleus.
The shape of the feature map is h

4 ×
w
4 × c. h and w are the

height and width of the input image, while c is the number
of channels of the feature map. The node feature extraction
includes an intra-nucleus Polygon Structure Learning mod-
ule (PSL) and a Nucleus Texture feature extraction module
(NuTef). The PSL module is to calculate the shape feature Z
for a nucleus, using a recurrent neural network (RNN). The
PSL details are in the next subsection. The NuTef module is
to learn the texture feature of a nucleus. As Fig. 4 shows,
ROI Align [35] is used with the input feature map to compute
the representation B ∈ R1×c of the nucleus bounding box.
The centroid coordinate (x0, y0) of the nucleus is adapted to
sample a feature vector C ∈ R1×c from the input feature
map (of size h

4 ×
w
4 × c). In details, we locate the four

pairs of integer coordinates nearest to (x0, y0) and sample
the centroid feature as the weighted combination of these
four feature vectors, using the bilinear interpolation method.
To introduce the information of the nucleus location in the

Fig. 3. Visualization of edge points for the feature extraction of edges.
An edge point of two connected nuclei nodes is defined as the middle
point (red cross) between the position of their centroids.

original histopathology image, we compute a global position
embedding P E ∈ R1×c for the nucleus centroid, using the
Sinusoidal Position Encoding method [61]. To obtain the final
texture representation, the above three feature vectors are
concatenated into a vector T ∈ R1×3c as (1) shows:

T = concat ({B, C, P E}). (1)

After computing the shape feature Z with the PSL module,
the feature vector of a node can be obtained by joining the
texture and shape features as: X = concat (T, Z).

3) Edge Feature Extraction: Edge features are widely used
in GNNs to enhance the relationship reasoning between two
neighboring nodes. In histopathology images, the category of
a nucleus has correlations with its surrounding tissue back-
grounds. Thus, we define a graph edge as a local background
region centered at the middle point between the two nuclei
nodes. To extract an edge feature, we draw a line between
two edge-connected nodes, and define an edge point as the
middle point between the centers of two connected nucleus
nodes (see the red crosses in Fig. 3) of the line. The edge
feature is sampled from the pixel-wise feature map ( h

4 ×
w
4 ×c),

using the coordinates of the edge point and the bilinear
interpolation. Due to the large receptive field obtained through
the pixel-wise feature extraction branch, the edge feature
contains rich contextual information of a local background
region centered at the middle point of two connected nodes.

C. Intra-Nucleus Polygon Structure Learning
The intra-nucleus polygon structure learning module (PSL)

is to model a nucleus contour as a polygon, and to learn the
shape representation of the nucleus. For a nucleus, we compute
its centroid position p0 and sample n points p1, . . . , pn at the
nucleus contour. To better describe the irregular shape, n rays
are emitted from the centroid with the same angle interval α =
2π
n , and intersect the boundary at n points that are collected

in clockwise order to form a point sequence. To model the
positions of contour points relative to the centroid, we insert
the centroid at the head of the sequence.

We employ a multi-layer recurrent neural network (RNN)
called shape RNN to harvest the shape feature with the
point sequence. The input of the RNN is a feature sequence
corresponding to the point sequence. The i th element of the
feature sequence is defined as Si = (i, γi , L P Ei ) to represent
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Fig. 4. Node feature extraction process for each nucleus. It consists of two parts: an intra-nucleus Polygon Structure Learning module (PSL) and
a Nuclei Texture feature extraction module (NuTef). The PSL module uses a shape RNN to extract the feature Z for a sequence of sampled contour
points. i/γi/LPEi denotes a point index, the Euclidean distances between pi and the centroid p0, the position encoding of pi in a local coordinate
system. The NuTef module computes the textures feature with the bounding box and centroid of a nucleus. The pixel-level feature map is produced
by the pixel-wise feature extraction branch as shown in Fig. 2.

the initial feature of each sampled point pi . i denotes the index
of the point sequence, γi is the Euclidean distance between
a sampled point pi and the centroid p0. L P E means the
Local Position Encoding. L P Ei denotes the position encoding
vector of pi , and is calculated in a local rectangular coordinate
system, which is centered at the bottom-left corner of the
bounding box of the nucleus. To run the RNN with the input
sequence S, we set the hidden (input) states before the 1st

layer of the RNN as h0
i = Si (0 ≤ i ≤ n). Then the hidden

state of the l th layer and i th input position can be computed
as (2):

hl
i = φ

(
hl

(i−1)W
l
s + hl−1

i W l
h

)
, (2)

where W l
s and W l

h are the weights of the input and recurrent
neurons at the l th hidden layer, hl

i−1 is the hidden state of
the (i − 1)th input position and the (l)th layer. + denotes the
elementwise addition. φ denotes the ReLU function. If i −1 is
unavailable (< 0), then hl

(i−1)W
l
s is ignored in (2). The RNN

output is based on the hidden state of the final layer:

Z = hM
n WZ , (3)

where M is the layer number of the RNN. WZ is the weights
in the output layer and Z ∈ R1×c is the output shape feature
for the input nucleus node.

D. Graph Neural Network Architecture
Given a histopathology graph G = (V, E), its initial node

features and edge features, we employ a GNN to harvest
structure guided representations and to identify types for these
nuclei nodes. A GNN usually consists of multiple layers. Each
GNN layer aggregates and updates the node features from
the previous layer or GNN input. In the aggregating step, the
node features in a neighborhood are aggregated into a single

feature via a differentiable operator. In the update step, each
node feature is updated as the combination of its aggregated
neighboring feature and itself.

We implement the GNN using GENeralized Graph Con-
volution (GENConv) [62] with the DeepGCN [63] structure.
GENConv is a graph convolution operator that can deal with
edge features. Its key idea is to apply generalized mean-max
aggregation functions by keeping the message features posi-
tive [62]. The message aggregation and update processes can
be formulated as (4) and (5), respectively:

ai = σ
(
ReLU

(
X j + Ai j · Yi j

)
+ ϵ

)
, j ∈ 9(i), (4)

X i = ζ (X i , ai ) , (5)

where σ is the Softmax aggregations function [62], X i/X j
denotes the representation of the i th/j th node, 9(i) is the
set of the neighbor indices of the i th node and ϵ is a small
positive constant set to 1e-7. Ai j is 1 if the i th and j th nodes
are connected by an edge otherwise 0. Yi j is the feature of the
edge between the i th and j th nodes. In the update function (5),
ζ is a two-layer perceptron using ReLU as the activation
functions, and is to enhance X i with the aggregated feature
ai . To alleviate the vanishing gradient problem, we further
utilize the residual connection following DeepGCN as shown
in (6):

X l+1
= F

(
X l

)
+ X l , (6)

where F(·) contains a GENConv layer, a batch normalization
layer and a ReLU activation function. X l denotes all the node
features X l

i produced by the l th GNN layer. Finally, with X L

the node representations updated by the last GNN layer, all
the nodes are predicted through a classifier described in (7):

t = Sof tmax
(

FC
(

X L
))

. (7)
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E. Training Scheme
In the proposed framework, the pixel-wise feature extraction

branch and the instance-level classification branch are trained
simultaneously in an end-to-end manner. The feature extrac-
tion branch aims to learn rich texture features by solving a
semantic segmentation task with the Dice loss in (8) and the
Cross-entropy loss in (9):

LCE = −
1

H × W

H×W∑
i=1

Q∑
q=1

ys
i,q log x s

i,q , (8)

LDice = 1 −

2 ×
∑H×W

i=1
∑Q

q=1

(
ys

i,q × x s
i,q

)
+ ε∑H×W

i=1
∑Q

q=1(ys
i,q + x s

i,q) + ε
, (9)

where x s is a H W × Q predicted map of the semantic
segmentation task and ys is the ground truth map. Q is the
number of nuclei types, H/W denotes the height/width of a
GT or predicted map. ε is a smoothness constant set to 1e-8.

In the instance-level classification branch using the PSL &
GSL modules, the classifier predicts category-wise probabil-
ities for each nucleus entity. Cross-entropy loss is widely
used in multi-class classification tasks. However, in the nuclei
classification task, the distribution of different categories is
usually unbalanced and easy samples (such as the nuclei of
some tumor cells) could be too dominant to train a robust
model. Therefore, we utilize a Focal loss [64] to pay more
attentions to hard samples as (10) shows:

LFocal = −
1
N

N∑
i=1

Q∑
q=1

τq(1 − ti,q)γ yo
i,q log ti,q , (10)

where t (∈ RN×Q) contains the predicted probabilities for N
nuclei objects, yo is the true labels. γ is a hyper-parameter to
make the network concentrate on hard samples. The higher the
value of γ , the lower the loss for well-classified examples. τq
is the weight for each category and is set to the reciprocal of
the proportion of the q th class in the training set. The overall
objective to train the network is described as (11):

L
(
x s, t

)
= LDice

(
x s)

+ LCE
(
x s)

+ LFocal (t) , (11)

which is composed of two semantic segmentation losses
(Dice & Cross-entropy loss) and a classification loss (Focal
loss). All three losses are equally weighted.

IV. EXPERIMENTS

A. Datasets
The proposed framework is evaluated on four nuclei clas-

sification datasets: CRC-FFPE, CoNSeP [9], PanNuke [66],
MoNuSAC [67]. The CRC-FFPE dataset is an in-house col-
orectal cancer dataset that consists of 16 patients with 59 H&E
stained histopathology tiles of size 1000 × 1000. The images
are extracted from the WSIs collected from TCGA [68]
and annotated by the pathologists in a local hospital. The
nuclei types of the CRC-FFPE dataset include Tumor, Stroma,
Immune, Necrosis, and Other. These images are divided into a
training set (45 tiles) and a testing set (14 tiles). The CoNSep
dataset is a colorectal adenocarcinoma dataset that contains

41 H&E stained images of size 1000 × 1000. The dataset
includes 24139 annotated nuclei that are grouped into
four categories: Miscellaneous, Inflammatory, Epithelial, and
Spindle-shaped. We split the CoNSeP dataset into a train-
ing set with 27 images and a testing set with 14 images.
The MoNuSAC dataset is a multi-organ dataset, comprising
310 images (209 for training, 101 for testing) of 71 patients.
The size of images ranges from 81 × 113 pixels to 1422 ×

2162 pixels. The dataset contains four types of organs (breast,
kidney, lung, and prostate). The nuclei types of the dataset
are: Epithelial, Lymphocytes, Macrophages, and Neutrophils.
The PanNuke dataset contains 7899 image tiles of size 256 ×

256 of 19 different organs. The images were digitized at 20×

or 40× magnification. The nuclei types of the dataset are
Inflammatory, Connective, Dead, Epithelial and Neoplastic.
We follow the official three-fold data splits of the PanNuke
datset. The number of images in Fold 1, Fold 2 and Fold
3 are 2657, 2523 and 2721, respectively.

B. Implementation Details
For the CRC-FFPE and CoNSeP datasets, all the training

images are resized to 1024 × 1024. For the MoNuSAC
dataset, we crop image patches of size 512 × 512. For the
PanNuke dataset, we set the original image size to 256 × 256.
We implement the proposed framework with PyTorch [69]
and PyTorch Geometric library [70]. The encoder in the
pixel-wise extraction branch consists of 4 layers with kernel
sizes [3,3,12,3] and channel sizes [64,128,320,512], following
the previous work [59]. The encoder is pre-trained on Ima-
geNet [71]. For the GSL module, the GCN model comprises
two GENConv [62] layers (L=2) of 64 hidden channels. The
neighbor number K is set to 4 for building edges of a graph.
For the proposed PSL module, the channel number c of each
feature vector for the bounding box, centroid, and positional
embedding is 64. The number of hidden layers M of the RNN
model is 2 and each layer has 128 hidden units. The number
of sampled contour points n in PSL is set to 18. The proposed
framework is trained for 100 epochs with an Adam optimizer,
an initial learning rate of 1×10−4, and a momentum of 0.9 and
0.99. For all four datasets, γ in the Focal loss is set to 2.

C. Evaluation
Following the previous works [7], [8], [9], we use the

F-score Fc [9] to evaluate the nuclei classification methods.
The F-score considers the performance of both detection and
classification. Given a set of predicted nuclei and a set of
ground truth (GT) nuclei, we assign each GT nucleus with its
nearest predicted nucleus if their centroids are within 12 pixels,
and ensure that no two GT nuclei are assigned to the same
predicted nucleus. The predicted nuclei then can be split into
the detected, undetected, and wrongly detected ones, whose
numbers are denoted as T Pd , F N d , F Pd , respectively. The
classification performance is measured based on T Pd . For one
of the categories (for example, the type q), the number of
correctly classified nuclei, wrongly classified nuclei, correctly
classified nuclei of types other than q , and wrongly classified
nuclei instances of types other than type q are denoted as
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TABLE I
QUANTITATIVE COMPARISON BETWEEN EXISTING NUCLEI SEGMENTATION & CLASSIFICATION MODELS WITHOUT AND WITH OUR METHOD

(+OURS) ON THE CONSEP, MONUSAC, CRC-FFPE AND PANNUKE DATASETS. ‘Net+OURS’ MEANS OUR CLASSIFICATION METHOD TAKING

THE SEGMENTATION RESULTS OF THE Net AS INPUT.Fm
c ,Fi

c ,Fe
c ,Fs

c , Fl
c , Fma

c , Fn
c , Ft

c , Fst
c ,Fim

c ,Fne
c ,Fo

c ,Fc
c ,Fd

c ,Fneo
c REPRESENT THE F-SCORE FOR

THE NUCLEI TYPES OF MISCELLANEOUS, INFLAMMATORY, EPITHELIAL, SPINDLE-SHAPED, LYMPHOCYTES, MACROPHAGES, NEUTROPHILS,
TUMOR, STROMA, IMMUNE, NECROSIS, OTHER, CONNECTIVE, DEAD, NEOPLASTIC, RESPECTIVELY. Favg IS THE AVERAGE F-SCORE OF THE

CATEGORIES IN A DATASET. ‘IMP.’ IS THE CLASSIFICATION IMPROVEMENT WHEN USING OUR FRAMEWORK

T Pc, F Pc, T Nc and F Nc, respectively. The F-score of type
q is computed as (12):

Fq
c =

2 (T Pc + T Nc)[
2 (T Pc + T Nc) + α0 F Pc + α1 F Nc

+α2 F Pd + α3 F Nd

] , (12)

where α0 = 2, α1 = 2, α2 = 1 and α3 = 1. The average
F-score of all categories in a dataset is reported as Favg and can
be viewed as a general metric of classification performance.

To show the detection and segmentation results of previous
works, we evaluate the nuclei segmentation metrics: Aggre-
gated Jaccard Index (AJI) [72], Panoptic Quality (PQ) [73],
Detection Quality Fd [9]. AJI is an extension of the global
Jaccard index and measures the overlapping areas of multiple
objects and is recognized as an object-level criterion for
segmentation evaluation. PQ is another metric for accurate
quantification of detection and segmentation. It is defined as
PQ =

|T P|

|T P|+
1
2 |F P|+

1
2 |F N |

×

∑
(x,y)∈T P IoU(x,y)

|T P|
. The first part

of PQ is the detection quality Fd . Each prediction-GT pairs
are matched to be unique if their IoU(x,y) is larger than 0.5.
The predictions and GT are split into matched pairs (TP),
unmatched GT (FN) and unmatched predictions (FP). The
detection quality Fd then is defined as the F1 score for instance
detection. The second part of PQ is the segmentation quality
which can be interpreted as how close each correctly detected
instance is to its matched GT.

D. Comparison With the Existing Methods
We compare our proposed approach with the exist-

ing classification methods SRDNet [65], HoVer-Net [9],
Triple U-net [39], MCSpatNet [7], TSFD-net [10], and

Mask2former [40]. Among them, SRDNet, HoVer-Net,
MCSpatNet, and Mask2former support nuclei classification.
TSFD-net is a semantic segmentation method and Triple U-net
is an instance segmentation method. For SRDNet, HoVer-
Net, MCSpatNet and Mask2former, we directly compare the
instance classification performance using their original set-
tings. The nuclei classification F-scores for SRDNet are from
its original paper. For TSFD-net, we extract the instance
classification results using its semantic segmentation out-
puts and instance segmentation outputs. For Triple U-net,
an extra 1 × 1 convolution is added as the classification
layer. Note that we aim at solving the classification task in
this paper. To fairly compare the classification performance
among existing methods and ours, we propose an evaluation
setting ‘instance-ground truth’ where the GT maps of nuclei
instance segmentation are accessible to all these methods dur-
ing the testing stage. In this setting, these methods excluding
Mask2former use the GT segmentation maps to replace their
own predicted segmentation results for classifying nuclei. For
Mask2former, we find the nearest predicted instance mask
for each instance GT, and assign the predicted cell type to
the instance GT. Since each method adopts the segmentation
results of the same quality, the ‘instance-ground truth’ setting
provides a fair comparison of nuclei classification. We also
report the results on a typical setting ‘instance-prediction’
where the segmentation GTs are not accessible and each
method needs to predict its own segmentation results.

As TABLE I shows, in the ‘instance-prediction’ setting the
proposed framework outperforms the existing methods on all
4 types in the CoNSeP dataset, all 5 types in the CRC-FFPE
dataset, 3 types in the MoNuSAC dataset and 2 types in
the PanNuke dataset. ‘Model + Ours’ denotes our proposed
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Fig. 5. Visualized classification results on the CRC-FFPE dataset and the ‘instance-ground truth’ setting where the GTs of nuclei instance
segmentation are accessible. We compare the classification performance between our framework and the existing methods.

TABLE II
QUANTITATIVE COMPARISON BETWEEN EXISTING METHODS AND OURS FOR NUCLEI CLASSIFICATION ON THE CONSEP, MONUSAC,

CRC-FFPE AND PANNUKE DATASETS IN THE ‘INSTANCE-GROUND TRUTH’ SETTING. THE GROUND TRUTH OF NUCLEI

INSTANCE SEGMENTATION IS ACCESSIBLE FOR ALL THE METHODS IN THE INFERENCE STAGE

framework taking the segmentation predictions of the Model
as input. ‘Imp.’ is the classification F1-score improvement
over each previous method when using our classification
framework. The results display that our method can signif-
icantly improve the previous nuclei classification methods
by 3.8%-12.2%, 4.4%-8.8%, 2.5%-10.8%, 2.5%-3.9% average
F-score on the CoNSeP, MoNuSAC, CRC-FFPE, and PanNuke
datasets, respectively. In TABLE II, on the ‘instance-ground
truth’ setting, our proposed framework achieves the highest
F-score on all 4 types in the CoNSeP dataset, all 4 types
in the MoNuSAC dataset, all 5 types in the CRC-FFPE
dataset and 4 types in the PanNuke dataset. The proposed
method outperforms the second-best model by 6.6%, 9.1%,
9.8%, and 4.7% average F-score on the four datasets. The
results indicate that our proposed framework has the ability to
significantly improve the nuclei classification performance for
existing methods.

Fig. 5 visualizes the nuclei classification results of some
existing methods and ours on the CRC-FFPE dataset. The
visual results are obtained on the ‘instance-ground truth’
setting to compare only the classification performance among

TABLE III
ABLATION STUDY ON THE CONSEP DATASET AND USING THE GROUND

TRUTH AS SEGMENTATION MAP IN THE INFERENCE STAGE

these approaches. In Fig. 5(a), our method can accurately
identify sparsely-distributed nuclei, since a GCN is utilized to
propagate contextual information among even remote nuclei.
In Fig. 5(b), the proposed framework shows its advantage of
classifying densely-distributed nuclei of the same type. Most
of these nuclei are surrounded by similar background regions,
which can be well described by the edge representations and
guide the nuclei classification in our proposed method.

E. Ablation Study
We perform the ablation study on the CoNSeP dataset and

the ‘instance-ground truth’ setting. In TABLE III, (a)‘Baseline’
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TABLE IV
COMPUTATIONAL EFFICIENCY ON WHOLE SLIDE IMAGES. INFERENCE

TIME IS MEASURED AS THE AVERAGE TIME OF INFERRING TEN

WHOLE SLIDE IMAGES

consists of the pixel-wise feature extraction branch and a
simple nuclei feature extraction module without PSL and
GSL. (b)‘+GCN’ is the baseline using a GCN without edge
features. (c)‘+EdgeFeat’ denotes the baseline using a GCN
with edge features. (d)‘Ours’ is the proposed framework with
the PSL & GSL modules. Comparing (a) to (b), using the
GCN significantly improves the classification performance by
around 21.4% average F-score. That shows the powerful ability
of the graph network in modeling relationships. Comparing
(c) to (b) shows that the proposed edge features improve the
average F-score by 3.9%. It indicates that the background
information provided by the proposed edge feature helps better
identify the nuclei types. Comparing (d) to (c) suggests that
our proposed PSL module leads to a great increase of 8.7%
average F-score. Overall, the proposed framework surpasses
the baseline by 34.0% average F-score when the segmentation
GT is available.

1) Computational Efficiency: We evaluate our proposed
classification framework on a machine with Ubuntu 20.04,
an NVIDIA-A6000 GPU with 48 GB memory, and Intel(R)
Xeon(R) W-2235 CPU with 64 GB memory. Training our
proposed method cost 8 hours to 2 days for these four
datasets. The GPU memory cost and inference time for an
image patch of size 1000 × 1000 are about 6 GB and 1.97s.
To evaluate the feasibility of real-world applications of our
proposed framework, we assessed the average parameter count
(#Para), inference time (Infer Time), and storage size on ten
whole slide images (WSIs) in TABLE IV. These WSIs have
an average size of 53672 × 74692. The WSIs are randomly
selected from The Cancer Genome Atlas (TCGA) database.
They have an average size of 53672 × 74692. The numerical
results of ‘Ours’ in TABLE IV do not include the trained
segmentation model used by our method. In comparison to
Hover-net, our framework increases about 20% inference time
and 300 MB hard disk storage. We argue that the extra
computational overhead is acceptable, considering the low cost
of hard disk and the significant improvement in performance.

F. Investigation of Hyper-Parameters
In TABLE V, we study the selection of two

hyper-parameters on the CoNSep dataset. One is the
neighbor number K , which determines how many neighbors
are connected to a nucleus in the graph. The other one is the
number of sampled contour points n, which determines how
fine-grained the nucleus shape is in the PSL module. All
the experiments are on the ‘instance-ground truth’ setting.
As TABLE V shows, setting K to 4 achieves the highest
Favg while setting K to 3/6 results in a drop of 2.5%/5.0%
F-score. Larger K means more connected neighbors and
larger weights for the contextual features. It may be due to
that too much context information makes the model pay less

TABLE V
HYPER-PARAMETERS INVESTIGATION OF THE NEIGHBOR NUMBER K

AND THE NUMBER OF SAMPLED CONTOUR POINTS n
ON THE CONSEP DATASET

Fig. 6. Average match proportion of eight WSIs for four organs. Each
bar represents the result of a whole-slide image.

attention to the original texture or shape features of predicted
nuclei. Thus, setting K to a moderate value mostly benefits
our method. Setting n to 18 obtains the best Favg while
setting n to 36 causes a drop of 3.8% Favg . It may because
the newly sampled points are not distinct enough and could
act as noises to cause overfitting.

G. Visual Evaluation on Whole-Slide Images

To show the effectiveness of our method in the real applica-
tions of in-the-wild whole-slide images (WSIs), we collected
eight WSIs of four organs (Bladder, Brain, Lung, Prostate)
from the Cancer Genome Atlas (TCGA) [68] database. Each
organ contains two WSIs. For each WSI, we first obtain
the nuclei segmentation results using a Hover-net [9] model
trained on the PanNuke dataset. Then, we predict cell types
for the WSI using a sliding window manner with our
PanNuke-trained model. The predicted cell classes include
Inflammatory, Connective, Dead, Epithelial, and Neoplastic.
The window size and stride are set to 256 × 256 and 128,
respectively.

To reduce the workload of pathologists in visually assessing
the entire slide, we randomly cropped six regions of size
2000 × 2000 from each slide. For each region, pathologists
are only required to roughly estimate the proportion (ranging
from 0% to 100%) of predicted cells whose labels match with
the categories estimated by the pathologists. Subsequently,
we define the match proportion of a WSI as the average
of the match proportions obtained from the six cropped
regions.
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Fig. 7. Visual results on whole-slide images (WSIs). The results are predicted by our framework trained on the PanNuke dataset. The WSIs are
randomly selected from The Cancer Genome Atlas (TCGA) [68] database. ‘w/Pred’ means that the WSI or cropped image patches are covered with
the nuclei classification results predicted by our framework.

Fig. 6 shows the average match proportion of the col-
lected WSIs. Each bar in Fig. 6 represents the result of a
WSI. As shown in Fig. 6, our framework achieves a match
proportion of over 75% for each evaluated WSIs, and the
match proportions of 90% on the organs Bladder and Prostate.
The results of visual evaluation conducted by the pathologists
show the practical value of our framework in real applications.
In Fig. 7, we present some visual examples of the predictions
from our framework on these WSIs.

V. DISCUSSION

Regarding the number of connections in the graph, a per-
formance degradation is observed in TABLE V. It should be
taken into account that in a histopathology image, not every
pair of cells has correlations in its types. According to relevant
medical theories [51], [74], [75], the cells close to each other
are more likely to belong to the same category or have some
correlations in their types. Therefore, we determine to connect
the nucleus nodes that are close in distance. However, if we
increase the number of connections K , the distant and less

relevant nuclei could be connected by edges. These unreliable
connections may affect the GNN training and degrade the
performance.

As described in the general workflow (Fig. 2), our method-
ology requires a trained nuclei segmentation model to provide
binary-class instance segmentation maps. Any trained model
that is able to output the boundary or mask of each nucleus
instance in an input image, can be used by our method.
Note that the proposed approach does not require the seg-
mentation model to label fine-grained cell types. As TABLE I
shows, our method can work with four existing segmentation
models (Triplet U-net, Mask2former, TSFD-net, Hovernet),
achieving enhanced performance. Actually, in some cases,
Triplet U-net and TSFD-net are not so effective or successful
in segmenting nuclei, but our method still improves the
nuclei classification when integrating with the two models.
For nuclei detection models, since they do not produce the
boundaries of nuclei which are required by the PSL module,
it is not feasible to take them as the starting point of our
methodology.
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VI. CONCLUSION

In this paper, we aim to solve a challenging task
of automatic nuclei classification for H&E stained
multi-organ histopathology images. First, we propose a
novel structure-embedded nuclei classification framework.
Second, we build an inter-nuclei graph structure learning
module to capture rich contextual information and short-long
range correlations among nuclei. Third, we develop an
intra-nuclei polygon structure learning module for harvesting
better shape representations of a nucleus using a recurrent
neural network. The experimental results suggest that both our
overall framework and the proposed modules can significantly
surpass the existing methods. In the future, it would be
meaningful to extend our framework to a unified graph-based
nuclei detection and classification model and apply the model
to more cancer types of various organs.
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