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Abstract— Due to the advancement of deep learning, the
performance of salient object detection (SOD) has been sig-
nificantly improved. However, deep learning-based techniques
require a sizable amount of pixel-wise annotations. To relieve the
burden of data annotation, a variety of deep weakly-supervised
and unsupervised SOD methods have been proposed, yet the
performance gap between them and fully supervised methods
remains significant. In this paper, we propose a novel, cost-
efficient salient object detection framework, which can adapt
models from synthetic data to real-world data with the help of
a limited number of actively selected annotations. Specifically,
we first construct a synthetic SOD dataset by copying and pasting
foreground objects into pure background images. With the masks
of foreground objects taken as the ground-truth saliency maps,
this dataset can be used for training the SOD model initially.
However, due to the large domain gap between synthetic images
and real-world images, the performance of the initially trained
model on the real-world images is deficient. To transfer the model
from the synthetic dataset to the real-world datasets, we further
design an uncertainty-aware active domain adaptive algorithm to
generate labels for the real-world target images. The prediction
variances against data augmentations are utilized to calculate the
superpixel-level uncertainty values. For those superpixels with
relatively low uncertainty, we directly generate pseudo labels
according to the network predictions. Meanwhile, we select a
few superpixels with high uncertainty scores and assign labels to
them manually. This labeling strategy is capable of generating
high-quality labels without incurring too much annotation cost.
Experimental results on six benchmark SOD datasets demon-
strate that our method outperforms the existing state-of-the-art
weakly-supervised and unsupervised SOD methods and is even
comparable to the fully supervised ones. Code will be released
at: https://github.com/czh-3/UADA.

Index Terms— Salient object detection, domain adaptation,
active learning.
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I. INTRODUCTION

SALIENT object detection (SOD) aims to accurately seg-
ment visually distinctive object regions within an image.

Traditional methods heavily rely on the hand-crafted fea-
tures [1], [2], [3], which often lack representational power and
result in poor generalization performance. Recent advance-
ments in deep learning have significantly improved the
performance of SOD by leveraging large-scale pixel-wise
labeled datasets [4], [5], [6]. However, the acquisition of such
high-quality and large-scale annotations is time-consuming
and costly [7], [8], thereby limiting the practical applicability
of deep learning-based SOD methods.

To alleviate the burden of data annotation, there has been
considerable research interest in weakly-supervised [9], [10],
[11] and unsupervised [12], [13], [14] SOD algorithms.
Weakly-supervised methods utilize less expensive annotation
forms, such as image-level categories [9], captions [10], and
scribbles [11] to train models. Unsupervised SOD methods aim
to learn models without any manual annotations by leveraging
noisy pseudo-labels [13], [15], [16] generated by traditional
unsupervised SOD methods. However, the simple annota-
tions used in weakly-supervised methods provide limited
supervision, while the quality of pseudo-labels generated by
traditional methods is compromised. As a result, a substantial
performance gap still exists between weakly-supervised or
unsupervised approaches and fully-supervised methods.

In this paper, we propose an approach to alleviate the data
annotation burden in SOD by leveraging a synthetic saliency
detection dataset. Specifically, we collect a large number of
images with pure background content and insert foreground
objects into these backgrounds, creating synthetic images
with salient foreground objects. The masks of these inserted
objects serve as ground-truth saliency maps. Two examples of
synthetic images are illustrated in Fig. 1 (a). This synthetic
dataset allows for training SOD models without incurring
additional data annotation costs. However, training models
solely on the synthetic dataset leads to suboptimal performance
on real-world images due to the domain gap between synthetic
and real-world domains.

To address this limitation, we introduce a novel method
named Uncertainty-Aware Active Domain Adaptive (UADA)
SOD to transfer the saliency detector trained on the synthetic
dataset to real-world datasets. The main differences between
our adaptation algorithm and existing weakly supervised SOD
methods include two folds: 1) producing pseudo-labels along
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Fig. 1. The contrast between the foreground object and the background
content is apparently distinct between synthetic images (a) and real-world
images (b). In (c), We present two examples for comparing our method with
existing weakly supervised methods SCRIB [11] and SCWS [17].

with their certainty levels from a saliency detector pre-trained
with a synthetic dataset; 2) generating supervision informa-
tion for target images by combining pseudo-labels and few
manually collected labels. Pseudo-labels are obtained from
the model’s predictions and are widely used in unsupervised
domain adaptation for exploring unlabeled images [18], [19].
However, these pseudo-labels may contain noise that hin-
ders the optimization of network parameters. To evaluate the
reliability of pseudo-labels, we propose a superpixel-level
uncertainty estimation algorithm based on the inference vari-
ance among differently augmented images. This algorithm
helps identify unreliable pseudo-labels with larger inference
variances, which indicate a higher likelihood of noise. Con-
versely, unreliable pseudo-labels often correspond to more
challenging samples, which are crucial for improving the
robustness of the SOD model. Therefore, we design an active
superpixel-level labeling system to create manual labels for
these challenging samples without incurring significant anno-
tation costs.

We train the salient object detection model using the syn-
thetic dataset as the source domain and the DUTS dataset [20]
as the target domain. During testing, we evaluate the model
on six public benchmarks, including DUTS [20], ECSSD [21],
DUT-O [22], HKU-IS [23], PASCAL-S [24], and SOD [25].
The experimental results indicate that our method achieves
state-of-the-art performance. We provide two examples in
Fig. 1 (c), which demonstrate that our method achieves more
accurate saliency predictions than existing weakly supervised
methods, SCRIB [11] and SCWS [17].

Main contributions of this paper are summarized as follows:

• We construct a synthetic SOD dataset and make the
first attempt to learn the saliency detector from the
synthetic dataset via domain adaptation and active label-
ing techniques, which varies from existing deep weakly
supervised SOD algorithms based on coarse labels.

• We propose an active domain adaptive SOD algorithm
that exploits reliable pseudo labels acquired via

superpixel-level uncertainties and minima manual labels
obtained by active labeling to adapt the saliency detector
trained on the synthetic dataset to real-world scenarios.

• Our method outperforms existing weakly-supervised or
unsupervised SOD methods and is comparable to fully
supervised methods, as indicated by evaluation results on
six benchmark datasets, namely DUTS, DUT-O, ECSSD,
HKU-IS, PASCL-S, and SOD.

II. RELATED WORK

A. Salient Object Detection

This subsection provides a brief introduction to literature
of salient object detection (SOD) which is closely related
to our paper. A comprehensive survey about this field can
be referred to [26] which summarizes various types of SOD
methods and offers extensive analysis about the robustness and
generalization of those SOD methods.

Traditional SOD methods [1], [2], [3], [27], [28] rely
on saliency priors and handcrafted features. However, recent
advancements are made by leveraging deep convolutional neu-
ral networks (DCNNs), leading to significant improvements
in SOD performance [29], [30], [31], [32], [33]. Li and
Yu [34] set up a large-scale benchmark dataset and devise a
DCNN model based on hierarchical features for implementing
superpixel-wise saliency inference. Li et al. [7] propose a
multi-scale framework which uses a contour prediction branch
to achieve instance-level salient object extraction. Apart from
a pixel-wise prediction branch, a superpixel-wise inference
branch is incorporated to generate saliency maps with clearer
boundaries in [35]. Wang et al. [6] propose to merge the multi-
ple features recurrently from the bottom level to the top level.
In [36], a complementary information selection module is
devised to aggregate different levels of features selectively, and
a recursive feature feedback mechanism is applied to eliminate
the differences among different feature levels. Pang et al. [37]
design inter-level and intra-level feature interaction modules
to make full use of multi-level features. A few methods [38],
[39] are dedicated to preventing information dilution during
the top-down decoding process. Wei et al. [4] decouple the
saliency map into a body map and a detail map to alleviate
the imbalance in edge pixel distribution. Despite their effec-
tiveness, DCNN-based approaches are data-hungry and heavily
depend on a substantial number of manually annotated pixel-
wise labels, posing significant challenges and costs.

To address the laborious data annotation process,
researchers have proposed weakly supervised SOD methods
that learn from less expensive forms of supervision, such
as image-level categories [9], captions [10], scribbles [11],
and sketches [40]. These approaches avoid the reliance
on costly pixel-wise annotations by generating coarse
pixel-wise annotations from weak supervision information.
Yu et al. [17] propose a local coherence loss to propagate
labels to unlabeled regions based on image features and pixel
distance. Additionally, a series of methods [13], [15], [16],
[41], [42] focus on learning saliency prediction models from
automatically generated annotations, instead of relying on
manual annotations. They rely on traditional unsupervised
methods to generate pseudo-labels for training images. Due

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on September 26,2025 at 07:45:51 UTC from IEEE Xplore.  Restrictions apply. 



5512 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

to the lack of high-quality pixel-wise annotations, these
weakly-supervised or unsupervised methods still have a large
room for performance improvement.

In contrast to the aforementioned methodologies, we pro-
pose a novel perspective for SOD that involves learning
from synthetic but clean labels. The fundamental idea is to
construct a synthetic dataset consisting of images with pure
background content. Foreground objects are then inserted into
these background images, resulting in images with salient
foreground objects. The masks of these inserted objects serve
as ground-truth saliency maps, providing accurate and reliable
labels for model training. With this synthetic dataset, we can
effectively reduce the burden of data annotation while still
achieving high-quality results.

B. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) is a research field
that focuses on transferring knowledge obtained from a labeled
source domain to an unlabeled target domain. It has garnered
significant attention in various computer vision tasks, includ-
ing image classification [43], pose estimation [44], object
detection [45], and semantic segmentation [46]. Among these
tasks, semantic segmentation is the most closely related to
salient object detection (SOD) due to their shared goal of
pixel-level labeling.

Recent advances in UDA for semantic segmentation can
be broadly categorized into two main approaches. The first
approach aims to align the feature representations between
the source and target domains. This can be achieved through
techniques such as style transfer in the input space [47],
feature space alignment [48], [49], or adversarial learning [50].
By reducing the distribution discrepancy between the domains,
these methods facilitate knowledge transfer from the source to
the target domain.

The second approach in UDA involves generating
pseudo-labels for confident samples in the target domain [51],
[52]. Practically, pseudo-labels are assigned to target domain
samples based on their confidence scores generated by the
current model. Retraining the model with the target domain
data and pseudo-labels helps to eliminate the domain gap.

In the context of salient object detection, we present the
first exploration of domain adaptation techniques. Specifically,
we investigate domain adaptation for SOD by considering
synthetic images as the source domain data. For real-world
images, we can generate pseudo-labels from the model predic-
tion and estimate superpixel-level uncertainty according to the
prediction consistency across data augmentations. Then, super-
pixels with low uncertainty levels are utilized for fine-tuning
the model, thus bridging the domain gap between synthetic and
real-world images. This pioneering approach opens up new
possibilities for improving the performance of SOD models in
real-world scenarios through domain adaptation.

C. Active Learning

Active learning has emerged as a crucial area of research
in SOD, with the objective of training models using a min-
imal number of annotations. The central challenge in active

Fig. 2. Illustration of the generation procedure of SYNSOD dataset. We first
collect foreground object images (a) with transparent background regions and
cluttered images (b) with non-salient scenes. Then, the foreground images are
pasted into the cluttered images, forming synthetic images (c). The masks of
foreground objects are regarded as synthetic labels of saliency maps (d).

learning lies in the selection of samples that carry the highest
importance and informative value during the training process.
Various sample selection strategies have been proposed for
image classification and semantic segmentation, including the
uncertainty-based approach [53], [54], [55], diversity-based
approach [56], [57], and expected model output change [58].
A comprehensive analysis and evaluation for different types
of active learning methods is provided in [59]. This kind of
techniques has been adopted for boosting domain adaptation
algorithms for image classification [60], [61] and semantic
segmentation [62]. To enhance the annotation quality for real-
world images, we sample out those informative superpixels
with high prediction uncertainty levels and allocate manual
labels to them. With this superpixel selecting and labeling
process, we can supply informative supervision information
efficiently for further improving the model performance.

III. SYNTHETIC SALIENT OBJECT DETECTION DATASET

In this section, we introduce the construction process of
our synthetic salient object detection (SYNSOD) dataset and
provide a comprehensive illustration about its statistics.

A. Dataset Collection

To facilitate the training of salient object detection models,
we propose an image synthesis approach that leverages the
inherent characteristics of salient objects. Given that salient
objects predominantly correspond to foreground objects within
images, we synthesize training images by seamlessly inte-
grating foreground objects into background images devoid of
salient content.

To generate synthetic images with salient objects, we gather
a substantial collection of foreground object images (refer to
Fig.2 (a)) and background images (refer to Fig.2 (b)) from
diverse non-copyrighted image sources. Employing a copy-
paste strategy, we generate synthetic images by compositing
foreground objects onto background images. The composition
results can be observed from Fig. 2 (c).

The image synthesis process encompasses the following
steps: 1) Randomly selecting a pair of a background image
and a foreground object image; 2) Resizing the foreground
object image using a scaling factor randomly drawn from
the range of [0.5, 1.1], followed by a random spatial shift;
3) Compositing the foreground object image and the back-
ground image using an alpha channel, where the transparency
level of the background content is 100%. The pixel-wise
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Fig. 3. Statistics of our SYNSOD dataset and existing real-world SOD
datasets including DUTS [20], ECSSD [21], DUT-O [22], HKU-IS [23],
and PASCAL-S [24]. The object size distribution and center bias have
significant difference between our SYNSOD dataset and existing real-world
SOD datasets.

salient object annotation is obtained by applying a threshold
of 0.5 to the alpha channel. Following this image synthesis
procedure, we construct a synthetic salient object detection
dataset, referred to as SYNSOD, comprising 11,197 synthetic
images accompanied by pixel-wise annotations.

B. Dataset Statistics

We visualize the object size and center bias statistics of our
SYNSOD dataset and five existing SOD datasets [20], [21],
[22], [23], [24] in Fig. 3. We categorize salient objects into
four groups according to their spatial size evaluated with the
ratio between the salient object area and full image area, i.e.,
small (0 − 10%), medium (10 − 20%), large (20 − 30%), and
huge (> 30%) objects. The frequency values of four groups
are illustrated in Fig. 3 (a). The size of most salient objects
in SYNSOD is less than 20%, and the average is 14.72%.
For presenting the center bias of all datasets, we calculate
the average of saliency maps and visualize it in Fig. 3 (b).
The analysis of both object size and center bias statistics
indicates the existence of a moderate domain gap between our
SYNSOD dataset and real-world SOD datasets. To demon-
strate the differences in appearance and style between our
synthetic dataset and real-world datasets, we randomly select
500 images from each dataset and use VGG19 to extract their
appearance features as well as gram matrices. Then, t-SNE is
used to visualize these appearance features and gram matrices
as shown in Fig. 4. It can be observed that there exists evident
distribution gap in appearance features between our synthetic
dataset and most real-world datasets, whereas the differences
in gram matrix distributions are minor.

IV. PROPOSED METHODOLOGY

In this section, we demonstrate the technical details of our
proposed method. The method in this paper is an extension of
our conference paper [63], with new contributions as follows:
1) Aiming to improve the quality of pseudo-labels on target
domain images, we propose a superpixel-level uncertainty
estimation strategy based on the inference variance among
differently augmented images. 2) To use pixels with unreliable
pseudo-labels, we devise an active labeling system that assigns
manual labels to superpixels with high uncertainty values.

A. Problem Formulation

To alleviate the burden of data annotation in salient object
detection, this paper proposes to adapt models from synthetic

Fig. 4. T-SNE visualization of appearance features and gram matrices
distributions between synthetic dataset and real-world datasets. The first five
images of each subplot show the differences between our synthetic dataset
and single real-world datasets, while the last image shows the differences
between the synthetic dataset and the union of five real-world datasets. The
appearance feature distribution of our synthetic dataset differs evidently from
that of real-world datasets, while the differences in gram matrices are relatively
minor.

source images to real-world target images. Only a limited
number of superpixel-level labels are allowed for each target
image. Let us denote the synthetic source image set as X s

=

{xs
i }

N s

i=1, where xs
i ∈ RH×W×3 represents an image from our

SYNSOD dataset, and N s is the number of synthetic source
images. Additionally, Ys

= {ys
i }

N s

i=1 represents the set of
ground-truth saliency maps corresponding to X s . The target
image dataset is composed of N t real-world images, denoted
as X t

= {xt
j }

N t

j=1.
To tackle the aforementioned problem, we propose a novel

uncertainty-aware active domain adaptive (UADA) algorithm,
as illustrated in Fig. 5. The algorithm consists of K rounds:
in the first round, the model is pre-trained with labeled source
images, and in the remaining rounds, the model is fine-
tuned with both source and target images. In each round
except the first, pseudo-labels are generated for the target
images by applying a threshold to the prediction confidences
of the model obtained from the previous round. Pixel-level
and superpixel-level uncertainties of the predicted saliency
map are estimated by analyzing the output variance across
different image augmentations. Subsequently, the training loss
is re-weighted based on the pixel-level uncertainty values, with
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Fig. 5. The overall framework of the proposed active domain adaptive SOD method. It learns saliency prediction from source domain images with synthetic
labels and target domain images with composite labels formed by combining reliable pseudo-labels and superpixel-level manual labels. Here, we first estimate
the pixel-wise uncertainties based on the prediction variances across multiple augmented versions of the input image, including the original image and its
augmented variants generated by scaling, flipping, and Fourier domain adaptation (FDA). Then, superpixel-level uncertainties are calculated by averaging
pixel-wise uncertainties within every superpixel. Afterwards, we generate pseudo-labels along with loss weights for pixels inside super-pixels with relatively
low uncertainties, while assigning manual labels to those pixels inside super-pixels with high uncertainties.

low uncertainty pixels receiving higher weights. Additionally,
an active labeling strategy is devised by manually annotating
superpixels with high uncertainty values.

The training process of each round can be formulated as
the optimization of network parameters with the following
objective function:

L = L(X s,Ys, �s) + γL(X t , Ŷ t , �t ), (1)

where Ŷ t
= {ŷt

j }
N t

j=1 denotes the set of pseudo-labels for the
target images, and γ is a constant. �s and �t represent the sets
of re-weighting maps of Ys and Ŷ t respectively. Specifically,
�s

= {ωs
i }

Ns
i=1 and �t

= {ωt
j }

Nt
j=1, where ωs

i and ωt
j denote the

re-weighting maps for ys
i and ŷt

j , respectively. The function
L(·, ·, ·) accumulates the training loss on source or target
domain images and is defined as,

L(X ,Y, �) =

|X |∑
i=1

H∑
h=1

W∑
w=1

ω
(h,w)
i ℓ(p(h,w)

i , y(h,w)
i ), (2)

where ℓ(·, ·) represents the binary cross-entropy function.
Here, pi ∈ [0, 1]

H×W denotes the saliency probability map
predicted from the image xi . Furthermore, ω

(h,w)
i , p(h,w)

i , and
y(h,w)

i refer to the value at pixel (h, w) of ωi , pi , and yi ,
respectively. The re-weighting maps of the source domain
images are set to full one matrices, i.e., ωs

i = 1H×W for
i ∈ [1, 2, · · · , N s

]. In the first training round, γ is set to
0; otherwise, γ is set to 1.

In the subsequent sections, we provide detailed explanations
of the pseudo-labeling process for real-world images.

B. Uncertainty-Aware Pixel-Level Pseudo-Labeling

To address the performance degradation caused by the
domain gap between synthetic and real-world images, we pro-
pose an uncertainty-aware active domain adaptation strategy
consisting of four steps.

1) Consistency-Based Uncertainty Estimation: We can
assign pseudo-labels to target domain images based on the
saliency maps predicted by the current model. However, due to
the evident distribution differences between source and target
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Fig. 6. Procedure for generating the pixel-wise uncertainty map.

domain images, these pseudo labels often contain noise. It is
critical to estimate the reliability of pseudo labels and mitigate
the impact of unreliable ones. To achieve this, we leverage the
smoothness assumption [64], which states that a prediction
is accurate if it remains stable under subtle variations in the
input. Consequently, we propose estimating the uncertainty
of the predicted saliency maps by analyzing variances across
different image augmentations.

Practically, we apply reversible augmentation strategies,
such as horizontal flipping, rescaling, and Fourier domain
adaptation (FDA) [65], to each target domain image. For
FDA, a random source image is selected to provide the
low-frequency amplitudes. Denote the total number of aug-
mentation strategies as U . For a given target image xt

j ,
we generate a new image xt

j,u using the u-th augmentation
strategy, denoted as xt

j,u = Au(xt
j ), where Au(·) represents

the u-th image augmentation function. This augmented image
xt

j,u is then fed into the saliency detector, resulting in the
saliency map pt

j,u . To ensure consistency, we apply reverse
spatial transformations to the saliency map pt

j,u , producing
p̃t

j,u . The reverse spatial transform operation is an identity
mapping for augmentation strategies that do not introduce
spatial distortions, such as FDA.

Finally, we evaluate the pixel-level uncertainty map v j ∈

RH×W using the following formulation,

v j =

∑U
u=0(p̃

t
j,u −

1
U+1

∑U
u′=0 p̃t

j,u′)
2

U + 1
, (3)

where p̃t
j,0 = pt

j represents the saliency map predicted
from the original image xt

j , and the square operation
is performed element-wise. This formulation measures the
pixel-wise variance among saliency maps predicted from
differently augmented images, allowing us to estimate the
pseudo-label uncertainty for each target domain image.

2) Superpixel-Level Sample Filtering (SSF): To address
the issue of pixel-wise uncertainty estimation, we adopt a
superpixel-based approach to re-estimate the uncertainty of
pseudo-labels. To implement this, we decompose the target
domain image xt

j into a set of superpixels S j with the SEEDS
algorithm [66]. Suppose the number of superpixels within xt

j

be M j . We can denote S j as S j = {S(m)
j }

M j
m=1, where S(m)

j
represents the m-th superpixel and can also be described by a
binary mask of size H × W denoted as S(m)

j . The uncertainty
value V (m)

j of the superpixel S(m)
j is estimated by averaging

the uncertainty values of its inner pixels,

V (m)
j =

∑H
h=1

∑W
w=1 v

(h,w)
j S(m,(h,w))

j∑H
h=1

∑W
w=1 S(m,(h,w))

j

, (4)

where v
(h,w)
j and S(m,(h,w))

j represents the value at the pixel
position (h, w) of v j and S(m)

j , respectively.
Since the model is relatively weak in the early training stage

and is progressively improved during training, we assume
that: 1) only pseudo-labels with low uncertainty need to be
selected; 2) the number of pseudo-labels involved during
training should be gradually increased with respect to the
training iteration. During the k-th training round, we rank all
superpixels based on their uncertainty values, and select the
bottom 0.2×(k−1) ratio of superpixels which have the lowest
uncertainty values. These selected superpixels are denoted
as S(k)

low and are used to filter pixel-wise pseudo-labels as
below,

ŷt,(h,w)
j =

{
pt,(h,w)

j , if Isp(xt
j , (h, w)) ∈ S(k)

low;

−1, otherwise.
(5)

Here, Isp(x j , (h, w)) maps the pixel (h, w) in x j to its
corresponding superpixel identity. ŷt,(h,w)

j = −1 indicates that
the label for pixel (h, w) remains unknown.

3) Pixel-Wise Pseudo-Label Reweighting (PPR): The
pseudo-labels filtered by superpixel-level uncertainties as in
Eq. (5) may still contain noises. To mitigate the nega-
tive effects of noisy pseudo-labels, we propose a pixel-wise
pseudo-label reweighting strategy based on the uncertainty
map v j from Eq.(3). The reweighting map ωt

j is calculated
as follows:

ω
t,(h,w)
j =

{
e−µv

(h,w)
j , if Isp(xt

j , (h, w)) ∈ S(k)
low;

0, otherwise;
(6)

where µ is a hyper-parameter for controlling the attenuation
degree of the weights.

C. Active Superpixel-Level Labeling

Solely training the model on superpixels with low uncer-
tainty scores in target domain images may lead to suboptimal
performance, as it disregards superpixels with high uncertainty
scores. To strike a balance between annotation cost and
label quality, we propose an active labeling strategy, termed
Active Superpixel-level Labeling (ASL), to incorporate these
high-uncertainty superpixels during training. At the beginning
of every training round, we identify a small percentage of
previously unlabeled superpixels with the highest uncertainty
scores. Subsequently, we manually annotate each selected
superpixel with a dominant label.

For each manually labeled superpixel in the target domain
image xt

j , we update labels of its constituent pixels in ŷt
j with

the assigned manual label. Moreover, we assign a weight value
of 1 to the corresponding entries in the weight map ωt

j . This
labeling strategy enables us to explore high-uncertainty super-
pixels without incurring a heavy annotation burden, as only
a limited number of superpixel-level labels are required.
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Algorithm 1 Uncertainty-Aware Active Domain Adaptive Salient Object Detection Algorithm

Additionally, superpixels, being composed of visually similar
pixels and preserving object boundaries well, tend to yield
higher-quality labels compared to pixel-wise pseudo-labels for
these high-uncertainty superpixels.

In summary, the training procedure of our proposed method
consists of two stages. Initially, the model is pre-trained
using source domain images. Subsequently, the target domain
images are annotated through a combination of pseudo labels
and actively collected manual labels. The complete training
procedure is outlined in Algorithm 1.

V. EXPERIMENTS

A. Experimental Setup

1) Implementation Details: We adopt LDF [4] with
ResNet50 [72] backbone as the saliency detector. During
training, the proposed synthetic dataset SYNSOD is regarded
as the source domain, and the training set of DUTS [20] is
regarded as the target domain. We set the number of training
rounds K to 4. The number of epochs is set to 48 for the
first round, and 24 for the remaining three rounds. During
the four rounds, 100%, 40%, 20%, and 10% of the source
domain images are randomly selected in turn. In the k-th round
(k ∈ {1, 2, 3, 4}), the proportion of selected target domain
superpixels for pseudo-label learning is set to 0.2(k − 1).
From the second round to the fourth round, 5% additional
superpixels are selected for active labeling per round. µ is set
to 20. We adopt the SGD optimizer with momentum of 0.9 and
weight decay of 5×10−4. The learning rate is scheduled by the
one cycle policy [73]. Specifically, in the k-th training round,
we set the maximum learning rate to 0.0025 × 0.9k−1 for the
backbone and 0.05 × 0.9k−1 for the detector. The batch size
is set to 32 throughout the training process. During testing,
images are resized to 352 × 352.

2) Datasets and Evaluation Metrics: To evaluate the per-
formance of our proposed method, we test on six real-world
SOD datasets including DUTS [20], DUT-OMRON [22],
ECSSD [21], HKU-IS [23], PASCL-S [24], and SOD [25].
We apply six widely used evaluation metrics, including
S-measure (Sm) [74], F-measure (F) [75], weighted F-measure
(Fw

β ) [76], E-measure (E) [77], and mean absolute error
(MAE, M) [78]. Precision-recall (PR) curves are also provided
to illustrate the robustness of SOD algorithms.

3) Competing Methods: We compare our method with
existing state-of-the-art methods, including 10 fully supervised
methods: R3 [67], DGRL [6], TSPOA [68], BAS [5], SCRN
[69], AFNET [70], GCPA [38], GateNet [71], MINet [37], and
LDF [4]; and 7 weakly-/un-supervised methods: ASMO [9],
MNL [14], MWS [10], USPS [13], EDNL [12], SCRIB [11],
and SCWS [17].

B. Comparison With State-of-the-Art

1) Quantitative Comparison: Table I and II provide a
comprehensive evaluation of our proposed method and com-
peting approaches on six datasets. The results demonstrate the
superiority of our method over existing weakly-/unsupervised
methods across all datasets. Our method achieves substan-
tial performance gains when compared to the state-of-the-art
weakly-supervised method SCWS. Specifically, we observe
an average improvement of 3.53%, 2.71%, 2.96%, 2.25%,
and 0.97% in terms of Sm , Fw

β , F , E , and M , respectively.
These significant improvement verifies the effectiveness of our
approach. Furthermore, our method demonstrates competitive
performance even when compared to state-of-the-art fully-
supervised SOD methods. Notably, on the HKU-IS dataset,
our method outperforms all other approaches except for
LDF. To visually illustrate the performance of SOD methods,
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TABLE I
QUANTITATIVE COMPARISON OF SALIENT OBJECT DETECTION METHODS ON DUTS, DUT-OMRPN, AND ECSSD DATASETS

TABLE II
QUANTITATIVE COMPARISON OF SALIENT OBJECT DETECTION METHODS ON HKU-IS, PASCAL-S, AND SOD DATASETS

Figure 7 showcases the precision-recall curves for the six
datasets. It is evident that our method consistently surpasses
other weakly-/unsupervised methods and achieves comparable
performance to fully-supervised methods. These results vali-
date the efficacy of our proposed method and its potential to
address the challenges of weakly-/unsupervised SOD task.

2) Qualitative Comparison: Fig. 8 showcases the saliency
predictions on 12 diverse images capturing a range of
scenarios such as images with tiny objects (first row),
complex object shapes (second to fourth rows), multiple
instances (fifth and sixth rows), and highly camouflaged
objects (seventh row). Our method consistently generates
comprehensive and accurate saliency maps with well-defined
boundaries, exhibiting remarkable performance across all
images. Comparing the visualization results of our method
with other weakly-/unsupervised methods, it is evident that
our approach significantly outperforms them. Furthermore,
our method’s saliency predictions are on par with those
achieved by fully supervised methods, further highlighting its
effectiveness.

C. Ablation Study

To verify the effectiveness of our proposed uncertainty-
aware active domain adaptive (UADA) algorithm, we conduct
the ablation study on the main components and discuss the
sensitivity to key hyper-parameters.

1) Effectiveness of Components in Pseudo-Label Learning:
We conduct a series of experiments to evaluate the impact
of critical components in our pseudo-label learning algorithm.
The results are summarized in Table III. The ‘Source Only’
approach, which trains the saliency detector solely on synthetic
source domain data, achieves performance comparable to some
weakly-/unsupervised methods (as shown in Table I and II),
such as ASMO [9] and MWS [10]. This finding demonstrates
the feasibility of learning from synthetic data.

To assess the effectiveness of our pseudo-label learning
algorithm, we train the saliency detector using unlabeled
target domain images through vanilla pseudo-label learn-
ing (Vanilla PL) without employing superpixel-level sample
filtering (SSF), pixel-wise pseudo-label reweighting (PPR),
or active superpixel-level labeling (ASL). It is evident that
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Fig. 7. The PR curves of different SOD methods on six datasets. The fully supervised methods are represented by solid lines, weakly-supervised/unsupervised
methods are represented by dotted lines, and our method is represented by a red dashed line.

TABLE III
ABLATION STUDY ON KEY COMPONENTS OF PSEUDO-LABEL LEARNING

TABLE IV
ABLATION STUDY ON COMPONENTS OF ACTIVE LABELING

training with vanilla pseudo-labels helps bridge the domain
gap between synthetic and real-world data, leading to a sig-
nificant improvement in saliency detection performance.

We also perform ablation experiments by removing SSF and
PPR from our Uncertainty-aware Active Domain Adaptation
(UADA) approach, resulting in ‘UADA w/o SSF’ and ‘UADA
w/o PPR’, respectively. Specifically, for ‘UADA w/o SSF’,
we conducted pseudo-label learning with all superpixels except
those selected for active labeling. For ‘UADA w/o PPR’,
we assign a weight of 1 to all pixels when calculating the
training loss using pseudo-labels. Compared to the complete
UADA approach, both ‘UADA w/o SSF’ and ‘UADA w/o
PPR’ exhibit a slight drop in performance across the six
datasets. This indicates that SSF effectively eliminates incor-
rect pseudo-labels, while PPR mitigates the negative impact
of pixel-wise noisy pseudo-labels.

2) Effectiveness of Components in Active Superpixel-Level
Labeling: To evaluate the effectiveness of components in our
active superpixel-level labeling algorithm, we implemented

four variants and analyzed their performance, as shown in
Table IV.

The first variant, called UADA-G, decomposes target
domain images into superpixels using uniform grids. How-
ever, this approach exhibits a significant degradation in
performance compared to UADA, which utilizes the SEEDS
algorithm [66] for superpixel generation. Specifically, the
Fw

β metric decreases by over 0.1 on the DUTS and DUTS-
OMRON datasets. This performance decline can be attributed
to the fact that uniform grids cannot guarantee adherence to
object boundaries, as depicted in Fig. 9. As a result, a large
number of incorrectly labeled pixels are introduced, leading to
a substantial deterioration in model performance. In contrast,
superpixels generated by SEEDS effectively retain boundary
information and generally consist of semantically coherent
pixels, ensuring higher labeling accuracy during the manual
annotation process.

The second variant, named UADA-R, randomly selects
superpixels for manual label assignment. The results
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Fig. 8. Qualitative comparisons of our method against other fully supervised, weakly-/unsupervised. The performance of our method is better than that of
weakly-/unsupervised methods and is comparable to that of fully supervised methods.

demonstrate that UADA-R achieves worse performance in
terms of Fw

β and M on all six datasets. This finding con-
firms the effectiveness of selecting superpixels based on their
uncertainty values, as opposed to a random selection strategy.

Additionally, we introduced another variant called UADA-F,
where the selected superpixels are assigned pixel-wise precise
labels instead of dominant labels. UADA-F can be considered
an upper bound of our method, providing an estimation of the
best achievable performance.

3) Sensitivity to Hyper-Parameter µ in Pixel-Wise Pseudo-
Label Reweighing: In the PPR module, µ is a hyper-parameter
for controlling the attenuation degree of the weights. Exper-
iments are conducted to demonstrate the robustness of our
method against the variance of µ. As shown in Table V,
the performance drops evidently in the case where µ = 0

(equivalent to removing PPR module, i.e. ‘UADA w/o PPR’
in Table III). Meanwhile, there only exists slight fluctuation
when varying µ in {10, 20, 30}, which verifies the robustness
of the proposed method to µ.

4) Sensitivity to the Number of Superpixel: Table VI
presents an analysis of the sensitivity to the number of super-
pixels in a single image. The extreme case denoted by ’H W ’ in
Table VI represents a scenario where each superpixel consists
of only one pixel, which is equivalent to the UADA-F variant
discussed in Table IV. The results indicate that as the num-
ber of superpixels increases, the performance of the method
improves consistently. This improvement can be attributed to
the finer division of superpixels, which reduces the error rate
associated with assigning the dominant label. However, it is
important to consider the tradeoff between performance and
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TABLE V
SENSITIVITY TO HYPER-PARAMETER µ IN PIXEL-WISE PSEUDO-LABEL REWEIGHING

TABLE VI
SENSITIVITY TO THE NUMBER OF SUPERPIXELS IN A SINGLE IMAGE. H W REPRESENTS THE NUMBER OF PIXELS IN TRAINING IMAGES

TABLE VII
SENSITIVITY TO THE PORTION OF SUPERPIXELS FOR MANUAL LABEL ASSIGNMENT

Fig. 9. Visualization of superpixel generated by uniform grid division and
SEEDS [66]. Superpixels generated by SEEDS can better adhere to the object
boundaries which cannot be ensured by uniform grid division.

annotation cost. In our experiments, we find that setting the
number of superpixels to 100 strikes a good balance between
achieving satisfactory performance and managing annotation
costs.

5) Sensitivity to the Portion of Superpixels for Manual
Label Assignment: In Table VII, we investigate the sensitivity
of the model with regards to the proportion of superpixels
selected for manual label assignment. Four experiments are
conducted using proportions of 9%, 15%, 21%, and 27%,
respectively, with increments of 3%, 5%, 7%, and 9% per
round after the warm-up phase. Notably, a rapid improvement
in performance is observed as the proportion increases from
9% to 15%. However, as the proportion continues to increase,
the performance tends to reach a state of saturation.

6) Effectiveness of Iterative Training: We adopt an itera-
tive training scheme consisting of four rounds. In Fig. 10,
we illustrate the variation of Fw

β and M during the training
process. As the training rounds progress, we consistently

Fig. 10. Performance after each training round.

observe an increase in Fw
β and a decrease in M . This provides

evidence of the effectiveness of our iterative training paradigm.
Furthermore, Fig. 11 presents two examples where incorrectly
predicted pixels are gradually reduced and the prediction
accuracy is improved as the training rounds increase.

7) Choice of Data Augmentation Strategies: Table VIII
showcases the performance achieved by employing diverse
data augmentation strategies in the calculation of pixel-wise
uncertainty values. The label ‘None’ denotes the vanilla
pseudo-label learning approach without the application of
superpixel-level sample filtering or pixel-wise pseudo-label
reweighting. It is noteworthy that the adoption of a single
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TABLE VIII
SENSITIVITY TO DIFFERENT KINDS OF DATA AUGMENTATION IN CONSISTENCY-BASED UNCERTAINTY ESTIMATION

Fig. 11. Two examples of saliency prediction after each training round.

Fig. 12. Typical failure cases in which our method misses salient regions or
regards non-salient regions as salient regions.

data augmentation technique, such as random flip, rescaling,
or FIA, results in a significant enhancement in perfor-
mance. This indicates the efficacy of individual augmentation
strategies in improving uncertainty estimation. Furthermore,
by integrating all three augmentation techniques, an additional
performance boost is observed. This fusion of augmentations
contributes to a more robust estimation of uncertainty, thereby
yielding improved results.

VI. DISCUSSION

A. Failure Cases

In Fig. 12, we illustrate a series of failure cases encountered
by our saliency detection algorithm. The first two rows high-
light instances of false positives and negatives. Specifically,
in the first row, we observe instances where non-salient objects
are mistakenly identified as salient, and in the second row, only
part of genuinely salient objects are detected. The primary
reason behind these inaccuracies can be traced back to the
synthetic nature of our training data, which typically features
high contrast between foreground and background elements.
This characteristic leads to a dataset that, while effective in
simpler scenarios, struggles to replicate the complexity found
in real-world environments. Such complexity often manifests
as intricate background details or low contrast between the
object and its surroundings, that are conditions under which
our model’s performance may diminish. To mitigate this,
future iterations of our work will aim to incorporate more

diverse and complex foreground and background images into
the synthetic dataset, enhancing the model’s ability to handle
such challenging conditions.

The third and fourth rows demonstrate the algorithm’s dif-
ficulties in accurately segmenting salient objects with intricate
structures or high levels of transparency. These shortcomings
are partly due to the simplicity of the foreground objects
included in our synthetic dataset. Future work will explore
the inclusion of more complex and varied foreground materials
to better simulate the diversity of real-world scenarios. Addi-
tionally, the task of precisely segmenting objects with complex
structures poses a significant challenge, necessitating the use of
base models with advanced segmentation capabilities. Enhanc-
ing our dataset to include a wider range of object complexities
and employing more sophisticated models for segmentation
are crucial steps toward overcoming these limitations and
improving the overall performance of our saliency detection
algorithm.

B. Limitations of Our Approach

One limitation of our approach stems from the synthetic
dataset construction process. Although we aim to replicate the
complexity and diversity of real-world data by compositing
foreground objects onto different background images, there
is an inherent risk of creating scenarios that are unlikely
or even impossible in the real world. Such combinations
can introduce noisy training samples, which can potentially
degrade the performance of the saliency detector when applied
to real-world data, as the model may have learned to rec-
ognize patterns or scenarios that do not exist outside the
synthetic environment. To address this limitation, future work
could explore more sophisticated methods for generating syn-
thetic datasets. Techniques such as adversarial training might
be employed to ensure that synthetic images are indistin-
guishable from real images, thereby minimizing the domain
gap.

The second limitation arises from the quality of the super-
pixels generated by our algorithm. Superpixels that contain
both foreground and background elements can introduce noise.
This issue is particularly problematic during the active labeling
process, where superpixels of poor quality are likely to be
selected for manual annotation. Even with human intervention,
the presence of noise is inevitable and affects the overall
performance of the model. Improving the quality of the
superpixels is a straightforward approach to mitigating this
issue. This improvement could be achieved by fine-tuning the
parameters like the granularity of the superpixel algorithm
or adopting more advanced superpixel segmentation methods
that offer a better balance between boundary adherence and
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computational efficiency. Moreover, during the manual anno-
tation phase, human annotators can easily identify and correct
severe inaccuracies introduced by poorly segmented super-
pixels. Implementing a semi-automated annotation process in
which annotators are assisted by suggestions from the model
could reduce the noise level and enhance the quality of training
data.

C. Broader Implications

The implications of our research on SOD utilizing synthetic
datasets and advanced domain adaptation techniques extend far
beyond the immediate improvements in annotation efficiency
and model performance. Here is a detailed exploration of the
broader implications of our work.

One of the most immediate implications of our work is
the substantial reduction in the need for manual annotation.
This not only lowers the cost and time investment required
for training SOD models but also makes it feasible to scale
model training to datasets of virtually unlimited size. As a
result, models can be trained on a wider variety of data,
potentially leading to improvements in their generalizability
and robustness.

Our approach addresses one of the critical challenges in
utilizing synthetic data: the domain gap between synthetic
and real-world images. By developing and implement-
ing uncertainty-aware pixel-level and active superpixel-level
labeling techniques, we provide a pathway for effectively
leveraging synthetic data in training models that perform
well on real-world tasks. This has significant implications
for the entire field of machine learning, suggesting that
with the right techniques, the gap between synthetic and
real data can be bridged more efficiently than previously
thought.

Finally, our work lays the groundwork for future research
in several areas. It challenges researchers to further improve
synthetic data generation techniques, to develop more sophis-
ticated domain adaptation algorithms, and to explore new
applications of these methods in other fields of artificial
intelligence. Moreover, it highlights the importance of inter-
disciplinary collaboration, combining insights from computer
vision, machine learning, and domain-specific knowledge to
tackle complex problems.

VII. CONCLUSION

In this research, we propose a novel approach for salient
object detection that addresses the challenge of limited
data annotations by leveraging both synthetic and real-
world datasets. Our approach introduces an uncertainty-aware
pseudo-labeling algorithm, which includes superpixel-level
sample filtering and pixel-wise pseudo-label reweighting,
to effectively exploit the target domain data. By selectively
excluding unreliable pseudo-labels and assigning different
importance values to reliable ones, we enhance the robust-
ness of the pseudo-labels. Additionally, we propose an
active superpixel-level labeling algorithm that replaces unre-
liable pseudo-labels with manually annotated labels, thereby
improving the overall quality of the labels without imposing

significant annotation costs. We conduct extensive exper-
iments on multiple benchmark datasets, including DUTS,
DUT-O, ECSSD, HKU-IS, PASCL-S, and SOD, to evaluate
the performance of our method. The results demonstrate the
superiority of our approach compared to existing weakly-/un-
supervised methods, as we achieve significant improvements
in salient object detection accuracy. Moreover, our method
remains competitive even when compared to state-of-the-art
approaches. In conclusion, our proposed method makes a
valuable contribution to the field of salient object detection
by addressing the challenge of limited data annotations and
achieving remarkable performance improvements.
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