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ABSTRACT

Deep polyp segmentation methods have made tremendous
progress recently. However, due to the domain shift among
different imaging modalities, existing methods learned on
white-light imaging (WLI) achieve inferior results on other
modalities such as narrow-band imaging (NBI), which limits
their clinical usage. To tackle this problem, we propose a
Polyp Style Translation Network (PST-Net). Specifically, test
images from the NBI domain are translated by PST-Net to
have the style and features of WLI images. In this way, the al-
ready deployed segmentation model can be easily generalized
to images from the unseen NBI domain, without the need for
tedious re-training and re-labeling. Besides, three additional
designs, content consistency, attention map consistency, and
adversarial segmentation loss, are proposed to achieve better
translation as well as domain adaptation. Extensive exper-
iments demonstrate that PST-Net achieves state-of-the-art
performance.

Index Terms— Polyp Segmentation, Generative Adver-
sarial Network, Domain Adaptation, Image-to-Image Trans-
lation

1. INTRODUCTION

According to Global Cancer Statistics [1], colorectal cancer
ranks third in both incidence and mortality, posing a serious
threat to human health. Fortunately, localization and segmen-
tation of polyps can help diagnose colorectal cancer at an
early stage. With the development of deep learning, recent au-
tomatic polyp segmentation methods [2, 3, 4] have achieved
impressive performance, showing their great potential in con-
structing better computer-aided diagnosis systems.

Despite the remarkable success, there are still some
under-discussed problems preventing the broader applica-
tion of these segmentation methods, one of which is domain
shift. As shown in Fig. 1(a) and 1(b), white-light imag-
ing (WLI) and narrow-band imaging (NBI) are two imaging
modalities widely used in clinical practice. However, most
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Fig. 1. (a) A sample from the WLI domain. (b) A sam-
ple from the NBI domain and its corresponding ground truth
mask. (c) Segmentation result of the NBI image before trans-
lation. (d) Our translated image. (e) Segmentation result after
translation.

existing models are trained and evaluated on WLI datasets,
such as Kvasir [5] and ClinicDB [6]. Due to the appearance
difference and underlying feature distribution mismatch be-
tween WLI and NBI, a model well-trained on the source WLI
domain has a higher risk of failure on the target NBI domain,
as illustrated in Fig. 1(c).

Unpaired image-to-image translation (I2I), which aims to
translate images from one style to another style, can be em-
ployed as a domain adaptation technique to alleviate domain
shift. Hoffman et al. [7] develop a semantic consistency loss
to guide the image translator to preserve the structure and con-
tent of the original image. Murez et al. [8] leverage a trans-
lation classification loss to constrain the target encoder to be
trained with supervision on images similar to target domain
ones. An adversarial contrastive training strategy is proposed
in [9] to jointly analyze both style and content of a sample.

Recently, some attempts have emerged to deal with the
multi-centre problem [9] in polyp segmentation, while how
to address the domain shift caused by imaging modality is
still under-explored. To tackle this problem, we propose a
Polyp Style Translation Network (PST-Net) to enhance the
generalizability of existing segmentation models over differ-
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ent imaging modalities. Specifically, NBI images for testing
are directly translated to have the style and features of WLI
images (Fig. 1(d)). In such a manner, the performance of the
already deployed segmentation model is boosted (Fig. 1(e)),
which is meaningful in clinical practice since it is laborious
to re-label target domain images and re-training a new seg-
mentation model. In addition, we propose three additional
designs, where content consistency is used to encourage con-
tent retention during translation, attention map consistency fa-
cilitates the network to learn the multi-level discrepancies be-
tween NBI and WLI, and adversarial segmentation loss makes
the translated images better adapted to the segmentation net-
work. In summary, our contributions are three-fold:

• By constructing an unpaired image-to-image translation
network, the generalizability of the existing polyp seg-
mentation model is boosted in a simple and effective way.

• Three additional designs are proposed to achieve better
translation as well as domain adaptation.

• Compared to existing state-of-the-art methods, extensive
experiments demonstrate the superiority of PST-Net.

2. METHOD

2.1. Problem Definition

Define WLI as the source domain and NBI as the target do-
main. fs is a polyp segmentation network pre-trained on the
source domain. Given the source domain images xs ∈ X s

and target domain images xt ∈ X t. ps and pt are the distri-
butions of X s and X t. Our goal is to develop a generative
adversarial network that translates images from the target do-
main to the source domain. Then, the translated images xt→s

are input into fs to obtain better segmentation results.

2.2. Framework Overview

The architecture of our method is shown in Fig. 2, which is
CycleGAN-like [10]. Specifically, PST-Net consists of two
generators, Gs, Gt, and three discriminators, Ds, Dt, Da.
Next, we will describe how to integrate network modules
with loss functions to build a basic translation network.

Adversarial Translation Loss. From the target domain
to the source domain, the generator Gs needs to make the gen-
erated images xt→s = Gs(x

t) realistic to deceive the discrim-
inator, while the discriminator Ds should learn to distinguish
the real source images xs from the fake ones xt→s. Such pro-
cess of adversarial learning can be formalized as follows:

LADT(Gs,Ds) = Exs∼ps
[logDs(x

s)]

+ Ext∼pt
[log(1−Ds(Gs(x

t)))],
(1)

where Ds is expected to maximize the full objective and Gs

tries to minimize log(1−Ds(Gs(x
t))). Similarly, a symmet-

ric loss function LADT(Gt,Dt) can be obtained for translation

CYC
tx

t sx →

t s tx → →

CON
Encs

Decs Enct

Dect

s t

ATT

ADT ADS

Fig. 2. The architecture of our proposed PST-Net. For ease
of illustration, the reverse translation process and discrimina-
tors are omitted in the figure. Gs/Gt should generate plausible
source/target domain images, while Ds/Dt should distinguish
whether an image is really from the source/target domain.
Da is an auxiliary discriminator for adversarial segmentation
loss.

from the source domain to the target domain. In summary,
adversarial translation loss is defined as follows:

LADT = LADT(Gs,Ds) + LADT(Gt,Dt). (2)

Cycle Consistency Loss. Adversarial translation loss
only encourages the translated images to be realistic at the
style level. To realize basic content level retention, follow-
ing [10], we obtain xt→s→t = Gt(x

t→s) and xs→t→s =
Gs(x

s→t) by cycle-translate xt→s and xs→t back to their
original domain. Then, cycle consistency loss is given by:

LCYC = Ext∼pt
[∥Gt(Gs(x

t))− xt∥1]
+ Exs∼ps [∥Gs(Gt(x

s))− xs∥1].
(3)

Identity Loss. By promoting generators to perform iden-
tity mapping for input images from the same domain, identity
loss can be defined as:

LIDT = Ext∼pt
[∥Gt(x

t)− xt∥1] + Exs∼ps
[∥Gs(x

s)− xs∥1].
(4)

As denoted in [10], introducing identity loss can improve the
quality of translated images and stabilize the training process.

Summary. The above design constitutes a basic network
that can perform image translation. Next, we will discuss how
it can be refined to better work with domain adaptation.

2.3. Content Consistency

With the introduction of identity loss, generators are required
to reconstruct the input images themselves. From this per-
spective, the architecture of generators can be considered the
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auto-encoder, consisting of an encoder and a decoder. The
encoder encodes images into latent content codes, and the de-
coder is responsible for decoding content codes back into the
correct domain.

Simply equipping cycle consistency does not guarantee
the translated images retain their original semantics since the
decoder may be able to reconstruct meaningless noisy content
codes back to the original images when overfitting. To tackle
this problem, we enable better semantic information reten-
tion by encouraging latent content codes of translated images
xt→s = Gs(x

t) and xs→t = Gt(x
s) to be consistent with

ones from input images xt and xs, which can be solved by:

LCON = Ext∼pt
[∥Encs(x

t)− Enct(Gs(x
t))∥1]

+ Exs∼ps
[∥Enct(x

s)− Encs(Gt(x
s))∥1],

(5)

where Encs denotes the encoder of Gs, and the rest can be
obtained similarly.

2.4. Attention Map Consistency

Aside from the most evident color inconsistencies, the differ-
ences between NBI and WLI are multifaceted. For example,
blood vessels are more easily identified in NBI than in WLI.
Therefore, the network should deal with discrepancies at dif-
ferent levels to achieve reasonable translation. Unfortunately,
generators can take a shortcut by simply modifying the color
to deceive discriminators, leading to sub-optimal translation
results.

Attention maps are widely used in computer vision tasks
to explain the decision process of deep networks. Inspired
by this, we leverage GradCAM [11] to extract attention maps
from generators. Specifically, attention maps should be con-
sistent throughout the translation process, which can be for-
malized as follows:

LATT = Ext∼pt
[∥AGs(xt)−AGt(Gs(x

t))∥1]
+ Exs∼ps [∥AGt(xs)−AGs(Gt(x

s))∥1],
(6)

where AGs(xt) denotes attention maps drawn from Gs when
xt are input into Gs, and the rest can be obtained similarly.
The intuition behind attention map consistency is that if gen-
erators simply modify the global color information to achieve
translation, attention maps will become more uncontrollable
and difficult to be consistent. Instead, if adaptations other
than color exist, attentions are focused on the modified areas
and are more likely to remain consistent.

2.5. Adversarial Segmentation Loss

For input images xs that are from the source domain, the
segmentation network fs should output reliable segmentation
results rs = fs(x

s). Recall that the ultimate goal of PST-
Net is to generate realistic images xt→s = Gs(xt), which

fs can also easily deal with and output satisfactory results
rt→s = fs(Gs(xt)). Therefore, a critical problem is whether
rt→s are helpful for the segmentation task.

Assessing the quality of rt→s without ground truth masks
is challenging; one advisable way is to evaluate whether they
have features similar to rs, such as low uncertainty and rea-
sonable lesion area. To this end, we propose an auxiliary dis-
criminator Da to distinguish whether segmentation results are
obtained from real images xs or generated ones xt→s. In this
way, Gs is encouraged to generate samples performing well
in the downstream segmentation task. Such process of ad-
versarial learning can be solved by adversarial segmentation
loss:

LADS = Exs∼ps
[logDa(fs(x

s))]

+ Ext∼pt
[log(1−Da(fs(Gs(x

t))))].
(7)

2.6. Full Objective

The total loss of PST-Net is as follows:

LTOTAL = λADTLADT + λCYCLCYC + λIDTLIDT

+ λCONLCON + λATTLATT + λADSLADS.
(8)

In our experiments, we set λADT = 1, λCYC = 10, λIDT = 5,
λCON = 1, λATT = 1, λADS = 1.

3. EXPERIMENTS

3.1. Dataset

In this paper, we adopt a recently proposed large-scale multi-
modal polyp segmentation dataset named PICCOLO [12],
which contains 2,131 WLI images and 1,302 NBI images.
For dataset partitioning, 80% of the samples in each modality
are randomly selected for training, and the remaining 20%
serve as the test set.

3.2. Implementation Details

Our model is implemented with Pytorch and trained on a sin-
gle NVIDIA RTX 2080Ti. We employ the Adam optimizer
with a learning rate of 0.0002 for 100 epochs. The batch
size is set to 1. All the images are resized to 256 × 256 for
translation. For the polyp segmentation network fs, we adopt
PraNet [3] trained on the WLI domain. The generators refer
to the design in [13], and discriminators use the architecture
of PatchGAN [14].

3.3. Compared Methods

Our method is compared with the following state-of-the-art
methods: CycleGAN [10], MUNIT [15], CUT [16], NEG-
CUT [17], and GP-UNIT [18]. Eight metrics are used to
evaluate the segmentation performance quantitatively, includ-
ing ”Recall”, ”Specificity”, ”Precision”, ”Dice Score”, ”IoU
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Table 1. Quantitative comparison on polyp segmentation. The best results are shown in bold.
Methods Rec Spec Prec Dice IoUp IoUb mIoU Acc

w/o translation 82.82 88.32 58.66 61.34 49.10 84.29 66.69 86.95
CycleGAN 82.20 92.19 67.83 68.98 58.84 88.74 73.79 90.66

MUNIT 81.30 91.68 66.85 66.49 56.60 87.00 71.80 88.81
CUT 77.49 94.88 71.71 68.41 58.92 90.12 74.52 91.59

NEGCUT 79.23 93.66 68.07 68.35 59.06 89.59 74.32 91.21
GP-UNIT 78.72 84.22 54.64 55.47 44.16 78.83 61.49 81.39

Ours 83.12 96.76 78.19 76.85 68.67 92.60 80.64 93.79

Input CycleGAN MUNIT CUT NEGCUT GP-UNIT Ours Ground Truthw/o

Fig. 3. Qualitative comparison on polyp segmentation. ”w/o” is the abbreviation for ”without translation”.

Input MUNIT GP-UNIT Ours

Fig. 4. Qualitative comparison on image-to-image transla-
tion.

for Polyp (IoUp)”, ”IoU for Background (IoUb)”, ”Mean IoU
(mIoU)” and ”Accuracy”.

3.4. Result Analysis

As shown in Table 1, our proposed PST-Net achieves supe-
rior performance over other competitive methods in all met-
rics. Take IoUp as an example. When no image translation
is performed, the resulting IoUp is only 49.10%, verifying
the domain shift between WLI and NBI. Therefore, it is sub-
optimal to directly apply the model trained on the WLI do-
main to NBI images. After applying our proposed PST-Net,
the IoUp is boosted to 68.67%, surpassing the second-best
method (NEGCUT) by a large margin. In addition, it can

be observed that not all methods result in performance gains.
The results of GP-UNIT are even worse than the case without
translation, denoting the importance of maintaining semantic
information in the translation process.

Some qualitative segmentation results are shown in Fig. 3.
Our method alleviates domain shift and helps the segmenta-
tion model better deal with various lesions. Some translation
results are shown in Fig. 4. Compared with other methods,
PST-Net can realistically translate NBI images into WLI im-
ages, thus enabling better domain adaptation.

We also conduct additional ablation experiments. Specifi-
cally, removing ”Content Consistency”, ”Attention Map Con-
sistency”, and ”Adversarial Segmentation Loss” causes IoUp
to drop by 2.75%, 2.53%, and 3.39%, respectively, demon-
strating the contribution of proposed strategies.

4. CONCLUSION

In this paper, we propose an image-to-image translation net-
work for domain adaptation. Our method can be regarded as
a means of data preprocessing to improve the generalizability
of existing polyp segmentation models effectively. In future
work, we will verify whether the same gains can be obtained
in more imaging modalities.
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