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Visual Saliency Detection Based on
Multiscale Deep CNN Features

Guanbin Li and Yizhou Yu

Abstract— Visual saliency is a fundamental problem in both
cognitive and computational sciences, including computer vision.
In this paper, we discover that a high-quality visual saliency
model can be learned from multiscale features extracted using
deep convolutional neural networks (CNNs), which have had
many successes in visual recognition tasks. For learning such
saliency models, we introduce a neural network architecture,
which has fully connected layers on top of CNNs responsible for
feature extraction at three different scales. The penultimate layer
of our neural network has been confirmed to be a discriminative
high-level feature vector for saliency detection, which we call
deep contrast feature. To generate a more robust feature, we
integrate handcrafted low-level features with our deep contrast
feature. To promote further research and evaluation of visual
saliency models, we also construct a new large database of
4447 challenging images and their pixelwise saliency annotations.
Experimental results demonstrate that our proposed method
is capable of achieving the state-of-the-art performance on all
public benchmarks, improving the F-measure by 6.12% and 10%,
respectively, on the DUT-OMRON data set and our new data
set (HKU-IS), and lowering the mean absolute error by 9% and
35.3%, respectively, on these two data sets.

Index Terms— Convolutional neural

detection, deep contrast feature.

networks, saliency

I. INTRODUCTION

ISUAL saliency attempts to determine the amount of
Vattention steered towards various regions in an image
by the human visual and cognitive systems [2]. It is thus a
fundamental problem in psychology, neural science, and com-
puter vision. Computer vision researchers focus on developing
computational models for either simulating the human visual
attention process or identifying visually salient regions. It is
originally defined as a task of predicting eye-fixations to inves-
tigate the mechanism of human visual system [3]. Recently it
has been extended to locating regions of interest, known as
salient object detection [4], [5]. Since visual saliency results
set relative importance on the visual contents in an image, they
are conducive to narrowing the scope of visual processing and
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Fig. 1. An example illustrating that saliency models based on handcrafted
low-level features are fragile. From top left to bottom right: source image,
ground truth, our saliency map, and saliency maps of other five latest methods,
including SF [13], DRFI [14], HS [15], RC [16], and MR [17].

saving computing resources. As a result, Visual saliency has
been incorporated in a variety of computer vision and image
processing tasks to improve their performance. Such tasks
include image cropping [6], retargeting [7], summarization [8]
and thumbnail generation [9]. Recently, visual saliency has
also been increasingly used by visual recognition tasks, such
as object tracking [10], image classification [11] and person
re-identification [12].

Results from perceptual research [18], [19] show that
contrast is the most influential factor to visual attention in
the human vision system. Local and global contrast has
been successfully adopted to derive saliency maps in various
saliency detection methods, where the definition of contrast
is based on various types of handcrafted image features
(e.g., color, intensity and histogram) at the pixel or superpixel
level [4], [16], [17]. Though these methods perform well
on simple benchmarks, they may fail when the background
becomes complex since handcrafted low-level features are not
able to effectively capture semantic contexts hidden in an
image, and very often the contrast between these low-level
features is not strong enough to make salient objects stand
out from the background. For example, in Figure 1, a lion
is hidden in the bushes and it could not be detected as a
salient object using low-level saliency cues alone. However,
humans can easily recognize the lion and check it out care-
fully since it is semantically salient in high-level cognition.
Because of this, in our work, we leverage the advantages
of high-level semantically meaningful features from deep
learning as well as low-level features when inferring saliency
maps.

Human visual and cognitive systems involved in the visual
attention process are composed of layers of interconnected
neurons. For example, the human visual system has layers of
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simple and complex cells whose activations are determined
by the magnitude of input signals falling into their receptive
fields. Since deep artificial neural networks were originally
inspired by biological neural networks, it is a natural choice
to build a computational model of visual saliency using deep
artificial neural networks. Specifically, recently popular con-
volutional neural networks (CNN) are particularly well suited
for this task because convolutional layers in a CNN resemble
simple and complex cells in the human visual system [20]
while fully connected layers in a CNN act like higher-level
inference and decision making.

In this paper, we develop a new computational model for
visual saliency using multiscale deep features computed by
convolutional neural networks. Deep neural networks, such
as CNNs, have recently achieved many successes in visual
recognition tasks [21]-[23]. Such deep networks are capable
of extracting feature hierarchies from raw pixels automatically.
Further, features extracted using such networks are highly
versatile and often more effective than traditional handcrafted
features. Inspired by this, we perform feature extraction using
a CNN originally trained over the ImageNet dataset [24]. Since
ImageNet contains images of a large number of object cate-
gories, our features contain rich semantic information, which is
useful for visual saliency because humans pay varying degrees
of attention to objects from different semantic categories. For
example, viewers of an image likely pay more attention to
objects like cars than the sky or grass. In the rest of this paper,
we call such features CNN features.

By definition, saliency is resulted from visual contrast as it
intuitively characterizes certain parts of an image that appear
to stand out relative to their neighboring regions or the rest of
the image. Thus, to compute the saliency of an image region,
our model should be able to evaluate the contrast between the
considered region and its surrounding area as well as the rest
of the image. Therefore, we extract multiscale CNN features
for every image region from three nested and increasingly
larger rectangular windows, which respectively encloses the
considered region, its immediate neighboring regions, and the
entire image.

On top of the multiscale CNN features, our method further
trains fully connected neural network layers. Concatenated
multiscale CNN features are fed into these layers trained
using a collection of labeled saliency maps. Thus, these fully
connected layers play the role of a regressor that is capable
of inferring the saliency score of every image region from
the multiscale CNN features extracted from nested windows
surrounding the image region. The penultimate fully connected
layer of our neural network is thus becoming a very dis-
criminative high-level feature vector for saliency detection,
and we can generate significantly more accurate saliency
maps than those from existing saliency models based on
low-level features by simply performing logistic regression.
We further find out that this high-level discriminative feature
vector is complementary to handcrafted low-level features, and
train a random forest regressor on concatenated high-level
and low-level features. Experimental results show that such
hybrid features can further boost the performance of saliency
detection.
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We have extensively evaluated our CNN-based visual
saliency model over existing datasets, and meanwhile noticed
a lack of large and challenging datasets for training and
testing saliency models. At present, MSRA-B [4] is the most
frequently used dataset. However, this dataset has become
less challenging over the years because images there typi-
cally include a single salient object located away from the
image boundary. DUT-OMRON [17] is currently the most
challenging dataset with nature images for the research of
both salient object detection and eye fixation prediction.
To facilitate research and evaluation of advanced saliency
models, we have created another large dataset where an image
likely contains multiple salient objects, which have a more
general spatial distribution in the image. Furthermore, our
dataset only includes images that receive consistent saliency
annotations from multiple users. Our proposed saliency model
has significantly outperformed all existing saliency models
over this new dataset as well as all existing datasets.

In summary, this paper has the following contributions:

« A new visual saliency model is proposed to incorporate
multiscale CNN features extracted from nested windows
with a deep neural network with multiple fully connected
layers. The deep neural network for saliency estimation is
trained using regions from a set of labeled saliency maps.
The penultimate layer of the proposed neural network can
be viewed as a discriminative high-level feature vector
for saliency detection, and can further boost saliency
performance when concatenated with handcrafted low-
level features.

« A complete saliency framework is developed by further
integrating an aggregated saliency map over multi-level
image segmentations with a spatial coherence model
based on a fully connected CRF.

The remainder of the paper is organized as follows.
Section II reviews related work and differentiates our method
from such work. Section III introduces our proposed multi-
scale deep features. The complete algorithm is presented in
Section IV. A new dataset was introduced in the preliminary
version of this paper [1], we present it here again in Section V
for the completeness of this paper. Extensive experimental
results and comparisons are presented in Section VI. And
Section VII concludes this paper.

II. RELATED WORK
A. Salient Object Detection

Visual saliency algorithms can be categorized into three
groups: bottom-up, top-down, and hybrid algorithms of the
previous two.

Bottom-up models are primarily based on the center-
surround scheme, computing a master saliency map
using a linear or non-linear combination of low-level
visual attributes such as color, intensity, texture and
orientation [3]—[5], [25], [26]. According to the spatial scope
of saliency computation, these methods can be further divided
into local methods and global methods. Local methods
measure saliency by considering the contrast between each
pixel or image region and a small neighborhood. One example
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of this category is the work by Borji and Itti et al. [3], where
color and orientation contrasts across multiple scales are
computed to measure local conspicuity. While it is able to
identify salient pixels, as pointed out by Cheng et al. [16],
the results are generally blurry and contain a significant
amount of false detection. Ma and Zhang [27] proposed a
fuzzy growing process to simulate the process of human
perception using local contrast as a measure of saliency.
Harel er al. [28] created feature maps using the method
from [3] but perform normalization using graph-based
random walk. As these methods only consider local contrast,
they tend to detect high-frequency features, such as edges or
noise, only and suppress homogeneous regions at the interior
of salient objects.

Global bottom-up methods estimate saliency by consider-
ing contrast over the entire image. Achanta [5] proposed a
frequency-tuned method that directly estimates pixel saliency
by computing color differences from the average image color.
Cheng et al. [16], [26] took color histograms as regional fea-
tures and computed saliency on the basis of histogram dissim-
ilarity. In [15], Yan et al. proposed a hierarchical framework
to address small-scale high-contrast patterns. Recently, much
effort has been made towards designing discriminative features
and saliency priors. Most algorithms essentially follow the
region contrast framework, aiming to discover features that
better characterize the distinctiveness of an image region with
respect to its surrounding area. In [4], three novel features are
integrated with a conditional random field. A model based on
low-rank matrix recovery is presented in [29] to integrate low-
level visual features with higher-level priors. Chen ef al. [30]
designs a structure-aware descriptor based on the intrinsic
biharmonic distance metric which is able to simultaneously
integrate local and global structure information. Though sig-
nificant improvements have been made, these global features
are still weak in capturing image semantic information.

Top-down methods in general require the incorporation of
high-level knowledge, such as objectness and object detectors
in the computational process [29], [31], [32]. In [33], Judd
trained a top-down saliency model using high-level image
features including those based on face detection and person
detection results. Borji [34] integrated bottom-up and top-
down features when learning their saliency model, considering
person and car detectors as high-level priors. In [31], Jia et al.
computed a high-level saliency prior using objectness without
category information, and applied a Gaussian MRF to enforce
the consistency among salient regions. Chang et al. [32]
proposed a framework which conceptually integrates object-
ness and saliency via a graphical model accounting for their
relationship. Our deep feature extracted from Krizhevsky’s
CNN [21] implicitly encodes the semantic information of
1.2 million images and has much stronger generalization
capability than those based on a relatively small number of
object detectors (e.g. face, human and car) or approximate
objectness.

Saliency priors, such as the center prior [4], [33] and the
boundary prior [14], [35], are widely used to heuristically
improve saliency estimation. The center prior is normally for-
mulated as a Gaussian fall-off map assigning higher saliency to
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the central region of an image while the boundary prior takes
a complementary perspective and assigns image boundary
regions lower saliency. These saliency priors are either directly
integrated with other saliency cues as weights [26], [31], [36]
or used as features in learning based algorithms [14], [33].
While these empirical priors can improve saliency results for
many images, they can fail when a salient object is off-center
or significantly overlaps with the image boundary. Note that
object location cues and boundary-based background modeling
are not neglected in our framework, but have been implicitly
incorporated through multiscale CNN feature extraction and
neural network training.

B. Deep Convolutional Neural Networks

Convolutional neural networks have recently achieved many
successes in visual recognition tasks, including image classi-
fication [21], object detection [23], and scene parsing [22].
Donahue et al. [37] pointed out that features extracted from
Krizhevsky’s CNN trained on the ImageNet dataset [24] can
be repurposed to generic tasks. Razavian ef al. [38] extended
their results and concluded that CNN-based deep learning
can be a strong candidate for any visual recognition tasks.
Nevertheless, saliency detection is generally defined as a low-
level computer vision problem and acts quite different from
conventional object detection. It is the contrast against the
surrounding area rather than the content inside an image
region that should be learned for saliency prediction. This
paper proposes a simple but very effective neural network
architecture for digging out contrast information hidden in
multi-scale deep CNN features and inferring the saliency score
for each region. Note that in [22], a multiscale convolutional
network was trained to extract hierarchical feature vectors
well suited for scene labeling. The raw input image was
transformed through a Laplacian pyramid into three scales
before being fed to a 3-stage convolutional network, and the
pixelwise features are similar to hypercolumn features [39],
formed by stacking responses corresponding to the same
pixel from all convolutional layers of the CNN. Different
from region-oriented features used in our method, their pixel-
oriented features are not focused on region contrast which is
crucial in saliency detection.

There exist other convolutional neural network based
saliency detection methods since the publication of our ear-
lier work [1]. Wang et al. [40] applied a deep neural net-
work (DNN-L) to learn local patch features for determining
the saliency score of the center pixel. Since only local patches
were considered, the quality of the generated saliency map
may be sensitive to high-frequency background noise, and
homogeneous regions inside salient objects may be misclas-
sified. Therefore, a global search stage was added to exploit
the complex relationships among global saliency cues which
are represented using handcrafted features. Li and Yu [41]
proposes an end-to-end deep contrast network which considers
both pixel-level and segment-wise saliency inference. In [42],
both global and local contexts were utilized and integrated
into a unified deep learning framework for saliency detection.
Their model calculates a saliency score for every superpixel.
The global context of a superpixel contains the whole image
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Fig. 2. The architecture of our deep feature based visual saliency model.

with the superpixel located at the center of the context, while
the local context has a fixed size equal to one third of
the global context. While our proposed method also extracts
CNN-based context features, it is different from [42] in three
aspects and is also more robust. First, the size of our local
context is spatially varying, relying on the actual size of the
surrounding regions. Our local context can better estimate the
contrast between each region and the background. Second,
Instead of direct regression, we propose a neural network
architecture to mine the contrast information hidden inside the
concatenated multiscale deep features. Third, we apply multi-
level segmentation and pixel-level CRF-based refinement to
compensate the inaccuracy caused by superpixels. Experimen-
tal results demonstrate that our proposed method outperforms
all existing CNN based saliency models.

This paper provides a more complete understanding of
multiscale deep features first presented in the conference
version [1], providing additional insights, analysis, and eval-
uation. Furthermore, we improve the original framework in
two aspects. First, we propose the concept of deep contrast
features, and analyze their strengths and weaknesses. To com-
plement deep contrast features, we also extract low-level fea-
tures, which can effectively capture segment properties as well
as color and texture contrasts between a region and the rest
of the image. Low-level features are concatenated with deep
contrast features to yield a hybrid deep and handcrafted feature
vector. We show that training a random forest regressor over
this hybrid feature vector can further boost the performance.
Second, to enhance spatial coherence and better preserve the
boundary of salient objects, a fully connected CRF model is
integrated into our framework to perform pixelwise saliency
refinement.

III. SALIENCY INFERENCE WITH DEEP FEATURES

As shown in Fig. 2, the architecture of our deep feature
based model for visual saliency consists of one output layer
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and two fully connected hidden layers on top of three deep
convolutional neural networks. Our saliency model requires an
input image to be decomposed into a set of nonoverlapping
regions, each of which has almost uniform saliency values
internally. The three deep CNNs are responsible for multi-
scale feature extraction. For each image region, they perform
automatic feature extraction from three nested and increas-
ingly larger rectangular windows, which are respectively the
bounding box of the considered region, the bounding box
of its immediate neighboring regions, and the entire image.
The features extracted from the three CNNs are fed into the
two fully connected layers, each of which has 300 neurons.
The output of the second fully-connected layer is fed into
the output layer, which performs logistic regression that infers
the probability of a region being salient. When generating a
saliency map for an input image, we run our trained saliency
model repeatedly over every region of the image to produce
a single saliency score for that region. This saliency score is
further transferred to all pixels within that region. When the
output of the penultimate layer is taken as a deep contrast
feature, it can be concatenated with handcrafted low-level
features to further boost saliency detection performance.

A. Multiscale Feature Extraction

We extract multiscale features for each image region with a
deep convolutional neural network originally trained over the
ImageNet dataset [24] and fine-tuned for object detection [23]
using Caffe [43], an open source framework for CNN training
and testing. The architecture of this CNN has eight layers
including five convolutional layers and three fully-connected
layers. Features are extracted from the output of the second last
fully connected layer, which has 4096 neurons. Although this
CNN was originally trained on datasets for visual recognition,
automatically extracted CNN features turn out to be highly
versatile and can be more effective than traditional handcrafted
features on other visual computing tasks.

Since an image region may have an irregular shape while
CNN features have to be extracted from a rectangular region,
to make the CNN features only relevant to the pixels inside
the region, as in [23], we define the rectangular region for
CNN feature extraction to be the bounding box of the image
region and fill the pixels outside the region but still inside
its bounding box with the mean pixel values at the same
locations across all ImageNet training images. These pixel
values become zero after mean subtraction and do not have
any impact on subsequent results. We warp the region in the
bounding box to a square with 227x227 pixels to make it
compatible with the deep CNN trained for ImageNet. The
warped RGB image region is then fed to the deep CNN
and a 4096-dimensional feature vector is obtained by forward
propagating a mean-subtracted input image region through all
the convolutional layers and fully connected layers. We name
this vector feature A.

Feature A itself does not include any information around
the considered image region, thus is not able to tell whether
the region is salient or not with respect to its neighborhood
as well as the rest of the image. To include features from an
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area surrounding the considered region for understanding the
amount of contrast in its neighborhood, we extract a second
feature vector from a rectangular neighborhood, which is the
bounding box of the considered region and its immediate
neighboring regions. All the pixel values in this bounding box
remain intact. Again, this rectangular neighborhood is fed to
the deep CNN after being warped. We call the resulting vector
from the CNN feature B.

As we know, a very important cue in saliency computation is
the degree of (color and content) uniqueness of a region with
respect to the rest of the image. The position of an image
region in the entire image is another crucial cue. To meet
these demands, we use the deep CNN to extract feature
C from the entire rectangular image, where the considered
region is masked with mean pixel values for indicating the
position of the region. These three feature vectors obtained
at different scales together define the features we adopt for
saliency model training and testing. Since our final feature
vector is the concatenation of three CNN feature vectors, we
call it S-3CNN.

B. Neural Network Training

As discussed above, our proposed S-3CNN is a concate-
nation of three parts of deep features of 12288 dimmensions.
On top of S-3CNN, we train a neural network with one output
layer and two fully connected hidden layers. This network
plays the role of a regressor that infers the saliency score
of every image region from the multiscale CNN features
extracted for the image region. It is well known that neural
networks with fully connected hidden layers can be trained to
reach a very high level of regression accuracy.

Concatenated multiscale CNN features are fed into this
network, which is trained using a collection of training images
and their labeled saliency maps, that have pixelwise binary
saliency label. Before training, every training image is first
decomposed into a set of regions. The saliency label of every
image region is further estimated using pixelwise saliency
labels. During the training stage, only those regions with 70%
or more pixels with the same saliency label are chosen as
training samples, and their saliency score are set to either
1 or O respectively. During training, the output layer and the
fully connected hidden layers together minimize the least-
squares prediction errors accumulated over all regions from
all training images.

C. Deep Contrast Feature

Note that the output of the penultimate layer of our neural
network can be viewed as a fine-tuned feature vector for
saliency detection. The final layer of our neural network
essentially performs logistic regression on this fine-tuned
feature, which effectively captures the contrast of a region
with respect to its surrounding neighborhood at the semantic
level. We name this feature Deep Contrast Feature (DCF) in
the rest of this paper. Traditional regression techniques, such
as support vector regression and boosted decision trees, can be
trained on DCF to generate a saliency score for every image
region. Nonetheless, we have found experimentally that this
feature vector is highly discriminative and even simple logistic
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regression performed in the final layer of our neural network
is sufficient to produce state-of-the-art performance on all
visual saliency datasets. Since DCF reflects image semantics,
we have further confirmed that DCF is complementary to
handcrafted low-level features. In the following section, we
show that training a random forest regressor over hybrid
features including both DCF and some low-level regional
features can further boost the performance.

IV. THE COMPLETE ALGORITHM
A. Multi-Level Image Decomposition

A variety of methods can be applied to decompose an
image into nonoverlapping regions. Example methods include
grids, region growing, and pixel clustering. Hierarchical image
segmentation can generate regions at multiple scales to support
the intuition that a semantic object at a coarser scale may
be composed of multiple parts at a finer scale. In this paper,
we applied the graph-based image segmentation [44] approach
to compute M levels of segmentation based on M groups of
segmentation parameters. Specifically, for an image I, M levels
of image segmentations, S = {S1, S, ..., Su}(|S;| = N;), are
constructed from the finest to the coarsest scale. The regions
at any level form a nonoverlapping image decomposition.
version [1], to generate a more accurate segmentation, region
merger was prioritized by edge strength at boundary pixels
shared by two adjacent regions and the edge strength was
determined by an ultrametric contour map (UCM) proposed
in [45]. However, calculating UCM is time-consuming but
does not clearly improve the accuracy of the final saliency
map. In this paper, we simply apply the graph-based segmen-
tation algorithm in [44] to generate 15 levels of segmenta-
tions using different parameter settings. The target number of
regions at the finest and coarsest levels are controled to be
around 300 and 20 respectively, and the number of regions
at intermediate levels follows a geometric series. We train a
unified model based on all the regions across these 15 levels
of segmentations instead of a single model for each level of
segmentation.

B. HDHF: Hybrid Deep and Handcrafted Feature

As discussed in Section III-C, the initial saliency map from
our trained neural network can be viewed as the result of
logistic regression on DCE. As shown in Fig. 3, DCF is
especially adept at detecting salient regions in images with
low contrast and complex background as long as there exists
semantic distinction against their surrounding neighborhoods
(Fig. 3 a&b). However, since DCF is derived from multi-scale
CNN features that are focused on image semantics, it may not
contain sufficient information about the contrast in low-level
attributes. For example, as shown in Fig. 3 ¢, when regions
are salient due to contrast in low-level attributes (e.g. color
and texture), DCF tends to perform worse than those methods
based on handcrafted low-level features. And there are many
examples where neither deep features nor handcrafted low-
level features alone are good enough to generate accurate
saliency maps (e.g. Fig. 3 a,c&d)). To overcome this defi-
ciency, we propose a small set of complementary low-level
features to compensate DCF.
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TABLE I

A DETAILED DESCRIPTION OF HANDCRAFTED LOW-LEVEL FEATURES. R DENOTES AN IMAGE SEGMENT,
B REFERS TO THE PSEUDO BACKGROUND REGION, AND / DENOTES THE ENTIRE IMAGE

Contrast Descriptors (Color and Texture) Segment Properties

Notation Features Definition Dim | Notation Features Definition Dim
c1 ~ cg Difference between Average RGB Values \RT‘J” - B"gb\, \R'gb - I’gb\ 6 s1 ~ s3 | Variances of RGB values | varfp, var%, vm‘i’? 3
cr ~cs x? distance between RGB Histograms )ﬁ(hf’gb, hfgb), XQ(hféb, higb) 2 54~ s¢ | Variances of LAB values | varl, vary, varl 3
cg ~ C14 Difference between Average LAB Values |Rlab — plab| | Rlab _ flab| 6 87 ~ 89 Variance of HSV values ’ua?ﬁfz, vary, vary 3
c15 ~ C16 X? distance between LAB Histograms X2 (hfL hE ). X2 (A, bl ) 2 510 Normalized perimeter Perimeter(R) 1
c17 ~ C22 Difference between Average HSV Values \R"‘“’ — B’“”\, \Rh'“’ — Ih"‘“’| 6 S11 Normalized area Area(R) 1
23 ~ Ca4 x? distance between HSV Histograms X2(hE  hE VA (hEhE ) 2
cas ~ c26 | X2 distance b.w. Max response LM Histograms )f(hf,w hEM), X‘z(thA, hiM) 2
co7 ~ Cag x? distance between LBP Histograms Xz(hEBPv thP), XQ(thP, hiBP) 2

Source

(d)

Fig. 3. The integration of handcrafted low-level features with DCF. The
ground truth (GT) is shown in the second row. LF denotes saliency maps
generated using our defined handcrafted low-level feature. MDF refers to
saliency maps generated using our multiscale deep feature. HDHF refers to
saliency maps generated using hybrid deep and handcrafted feature. HDHF
is consistently better than MDF and LF.

Given an image, we first generate an initial saliency map
SM"" using multiscale deep features. We define a pseudo
background region B as the set of pixels within 30 pixels
from the image borders and having an initial saliency value
SM"it < 0.1. We compute low-level features for the entire
image, the pseudo background region, and every region in
every level of image segmentation. Such low-level features
includes both color and texture features. Color features include
RGB, LAB and HSV histograms as well as their corresponding
average values. Texture features include the histogram of
maximum responses of LM filters as well as the histogram
of LBP features.

On the basis of these low-level features, for each region R in
each level of segmentation, we extract a 39-dimensional low-
level feature descriptor including both contrast features and
segment properties. The contrast features include the contrast
between the low-level features of R and their corresponding
features of the pseudo background B as well as the contrast
between the low-level features of R and their counterparts

for the entire image. We adopt the y2 distance as the contrast
between two histograms and the absolute difference as the con-
trast between two scalar features. Segment properties include
the variance of various color and texture features as well as
geometric properties including the perimeter and area of the
segment. Note that the geometric properties are normalized
with respect to the overall image size. The details of all
handcrafted low-level features are given in Table I. We nor-
malize the Ly norm of both our proposed 300-dimensional
DCF and this handcrafted low-level feature descriptor before
concatenating them into a 339-dimensional hybrid feature
vector, called hybrid deep and handcrafted feature (HDHF).

C. Training Saliency Regressor Over HDHF

To demonstrate the effectiveness of HDHF, we train a
random forest regressor using hybrid deep and handcrafted
features. Each training sample corresponds to a region with a
339-dimensional HDHF. As done for neural network training
in Section III-B, only those regions with 70% or more pixels
with the same saliency label are chosen as training samples,
and their saliency scores are set to either 1 or 0 accordingly.
Learning a random forest based model can automatically
integrate low-level and high-level features, and map every
HDHF to a saliency score. We also train another random
forest model base only on 39 dimensional low-level features
for comparison. As shown in Fig. 3 and the quantitative results
in Section VI-F, HDHF based saliency maps are consistently
better than those based on DCF or handcrafted features only.

D. Saliency Map Fusion

Given the regions in an image decomposition, we can
generate an initial saliency map either with the neural network
model or the HDHF-based random forest regressor. Given
M levels of segmentations, we obtain M saliency maps,
{AD, AD A} interpreting salient parts of the input
image at various granularity. We aim to further fuse them
together to obtain an aggregated saliency map. To this end, we
take a simple approach by assuming the aggregated saliency
map is a linear combination of the maps at individual segmen-
tation levels, and learn the weights in the linear combination
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by running a least-squares estimator over a validation dataset.
Thus, our aggregated saliency map A is formulated as follows,

M
A= aA®
k=1

2
M _ ; ; _ (k)
s.t. {akty=) = argmin a|,a121,r.r.l.,aM; A; ;akAi
L€l F
(D

where I, stands for the set of indices of the images in the
validation dataset.

Note that there are many options for saliency fusion. For
example, a conditional random field (CRF) framework has
been adopted in [46] to aggregate multiple saliency maps from
different methods. Nevertheless, we have found that, in our
context, a linear combination of all saliency maps can already
serve our purposes well and is capable of producing aggregated
maps with a quality comparable to those obtained from more
complicated techniques.

E. Spatial Coherence Based on CRF

Due to the fact that image segmentation is imperfect and our
model assigns saliency scores to individual segments, noisy
scores inevitably appear in the above aggregated saliency map.
To enhance spatial coherence, we perform pixelwise saliency
refinement using the fully connected CRF model in [47]. This
model solves a binary pixel labeling problem, and employs
the following energy function,

E(L)=— logP (i) + > 6ij (li, 1), )
i i,j

where L represents a binary label (salient or not salient)
assignment for all pixels. P(/;) is the probability of pixel x;
having label /;, which indicates the likelihood of pixel x; being
salient. Initially, P(1) = S; and P(0) = 1 — S;, where S;
is the saliency score at pixel x; from the above aggregated
saliency map A. 6;j (I;,1;) is a pairwise potential and defined
as follows,

2 2
0ij = p (i, 1) |:w1 exp(— Ip:— )] - I = L] )

202 20ﬁ2
Ipi = pi?
+ wy exp BT :|,
7
3)

where u (l,-,lj) = 1if [; # I, and zero otherwise. 8;;
involves two kernels. The first bilateral kernel depends on
both pixel positions (denoted as p) and colors (denoted as 1),
suggesting nearby pixels with similar colors to be assigned
similar saliency scores. The degrees of color similarity and
pixel closeness are controlled by two parameters, o, and op,
respectively. The second kernel only depends on pixel position
and aims at removing small isolated regions. The “scale” of
the Gaussian kernel is controlled by o, . The parameters are
determined through cross validation using the validation set of
MSRA-B dataset in our experiment, as in [47].
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Fig. 4. Comparison of saliency detection results with and without CRF.

Energy minimization is based on a mean field approxima-
tion to the CRF distribution and high-dimensional filtering
can be utilized to speed up computation. In this paper, we
use the publicly available implementation of [47] to minimize
the energy, and it takes less than 0.5 second on an image
with 300 x 400 pixels. At the end of energy minimization,
we generate a saliency map using the posterior probability of
each pixel being salient. Note that features other than color can
be used in the first term to boost performance (e.g. contour
information was used in an earlier version of this paper [1]).
Currently, we only use color for the sake of efficiency and
find it sufficient for enhancing spatial coherence and removing
noisy saliency scores in the aggregated saliency map due to
imperfect segmentation. The result is an enhanced saliency
map. As shown in Fig. 4, our initial saliency maps in general
look fragmented and the boundaries of salient objects are not
well preserved. The application of the CRF model can not only
give rise to smoother results with pixelwise accuracy but also
better preserve the boundaries of salient objects. A quantitative
study of the effectiveness of the CRF model can be found in
Section VI-D.3.

V. A NEwW DATASET

We have constructed a more challenging dataset to facilitate
the research and evaluation of visual saliency models. To build
the dataset, we initially collected 7320 images. These images
were chosen by following at least one of the following criteria:

1) there are multiple disconnected salient objects;

2) at least one OF the salient objects touches the image

boundary;
3) the background is complex;

4) the color contrast (the minimum Chi-square distance
between the color histograms of any salient object and
its surrounding regions) is less than 0.7.

To reduce label inconsistency, we asked three people to
annotate salient objects in all 7320 images individually using
a custom designed interactive segmentation tool. On average,
each person takes 1-2 minutes to annotate one image. The
annotation stage spanned over three months.

Let A? = {a)(cp )} be the binary saliency mask labeled by the

p-th user. And a)(cp ) = 1if pixel x is labeled as salient and
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a,(cp ) — 0 otherwise. We define label consistency as the ratio

between the number of pixels labeled as salient by all three
people and the number of pixels labeled as salient by at least
one of the people. It is formulated as

c= 2 <Hf’:1"§‘p)) ,
SEISETZET

“)

We excluded those images with label consistency C < 0.9,
and 4447 images remained. For each image that passed the
label consistency test, we generated a ground truth saliency
map from the annotations of three people. The pixelwise
saliency label in the ground truth saliency map, G = {gx|gx €
{0, 1}}, is determined according to the majority label among
the three people as follows,

3
ga=1|>a=2]. )
p=1

At the end, our new saliency dataset, called HKU-IS,
contains 4447 images with high-quality pixelwise annotations.
It is more challenging and unbiased compared with the most
often used dataset (e.g. MSRA-B [4]).

VI. EXPERIMENTAL RESULTS
A. Dataset

We have evaluated the performance of our method on
several public benchmarks for salient object detection as well
as on our own dataset.

1) MSRA-B [4]: This dataset has 5000 images, and is
widely used for salient object detection. Most of the images
contain only one salient object. Pixelwise annotation was
provided by [14].

2) DUT-OMRON [17]: This large dataset contains 5168
natural images. Both bounding boxes and pixelwise salient
object annotations are provided. We have noticed that many
saliency annotations in this dataset may be controversial
among different human observers. As a result, none of the
existing saliency models has achieved a high accuracy on this
dataset.

3) SOD [48]: This dataset has 300 images, and it was orig-
inally designed for image segmentation. Pixelwise annotation
of salient objects in this dataset was generated by [14]. This
dataset is very challenging since many images contain multiple
salient objects either with low contrast or overlapping with the
image boundary.

4) PASCAL-S [49]: This dataset was built using the valida-
tion set of the PASCAL VOC 2010 segmentation challenge. It
contains 850 images with pixelwise salient object annotation.
The groundtruth saliency masks were labeled by 12 subjects.
We threshold the masks at 0.5 to obtain binary masks as
suggested in [49].

5) ECSSD [15]: This dataset contains 1,000 structurally
complex images acquired from the Internet with pixelwise
groundtruth masks.
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6) HKU-IS: Our new dataset contains 4447 images with
pixelwise annotation of salient objects.

To save space, the performance on the SED [50] and
ICOSEG [51] datasets is no longer reported since these
datasets are not challenging and not widely used. Readers can
refer to an earlier version of our paper [1] for performance
comparisons on these two datasets. To facilitate a fair com-
parison with other methods, we divided the MSRA dataset into
three parts as in [14], 2500 for training, 500 for validation and
the remaining 2000 images for testing. To test the adaptability
of trained saliency models to other different datasets, we use
the models trained on the MSRA-B dataset and test them over
all other datasets.

As discussed in the previous sections, we generate two
sets of saliency results using our proposed saliency models.
To evaluate the effectiveness of multiscale deep features, we
construct the first set of saliency maps from the output of
the neural network model aggregated with multi-level fusion
and further enhanced using the CRF model. To demonstrate
the complementariness between DCF and handcrafted low-
level features, we generate the second set of saliency maps
from the random forest regressor using HDHF, also aggregated
with multi-level fusion and enhanced using the CRF model.
We refer to the first set of saliency maps as MDEF, and the
second set HDHF in the rest of this paper. When conducting
an ablation study, we investigate the contribution of each
component to the accuracy of MDF, and we show the overall
performance of both MDF and HDHF when comparing them
with other state-of-the-art methods.

B. Implementation Details

We train our saliency models using the training set of the
MSRA-B dataset and test them over all other datasets. The
training set contains 2500 images. We perform 15 levels of
image segmentation and extract around 800 segments across
all levels from each image. The S-3CNN feature vector
extracted from each segment forms one training sample, and
we have 1.9 million training samples in total. Though the
dimension of S-3CNN and HDHF are larger than 12 thousand,
the number of our training samples is large enough to train an
accurate model free from overfitting. We have implemented
our proposed framework in Caffe [43]. More specifically, to
train our three-layer perceptron network, the learning rate is
set to 0.2 while the momentum parameter is set to 0.5. We use
the hyperbolic tangent function as the activation function in
the hidden layers and the sigmoid function in the output layer.
When jointly fine-tune deep CNN model with our proposed
three-layer MLP, the learning rate of the initial deep CNN
model is set to 0.0001. We cross-validate the parameters in
the fully connected CRF according to [47] on the validation
set and the final values of wi, w2, o4, 0p, and o, are 3.0,
5.0, 3.0, 50.0 and 3.0 respectively.

C. Evaluation Criteria

Following [26] and [52], we first use standard precision-
recall (PR) and receiver operating characteristic (ROC) curves
to evaluate the performance of our method. A continuous
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saliency map can be converted to a binary mask using a thresh-
old, resulting in a pair of precision and recall values when the
binary mask is compared against the ground truth. A PR curve
is then obtained by varying the threshold from O to 1. The
curves are averaged over each dataset. The ROC curve can
be conveniently generated according to the true positive rates
and false positive rates obtained during the calculation of the
PR curve. The AUC (Area Under ROC Curve) score is also
reported given the ROC curve.

Second, since high precision and high recall are both desired
in many applications, we compute the F-measure [5] as

@ + p?) - Precision - Recall

Fp = 6
b B2 - Precision + Recall ©

where $2 is set to 0.3 to weigh precision more than recall
as suggested in [5]. We report the maximum F-measure score
among all pairs of precision and recall values. We also report
the performance once every saliency map is binarized with
an image-dependent threshold proposed by [5]. This adaptive
threshold is determined to be twice the mean saliency of the
image:

2 W H
Ta=mzzs(%}’)a @)

x=1y=1

where W and H are the width and height of the saliency
map S, and S(x, y) is the saliency score of the pixel at (x, y).

We report the average precision, recall and F-measure over
each dataset using this adaptive threshold.

Although commonly used, PR curves have limited value
because they fail to consider true negative pixels. For a
more balanced comparison, we adopt the mean absolute error
(MAE) as another evaluation criterion. It is defined as the
average pixelwise absolute difference between the binary
ground truth (G) and the saliency map (§) [13],

1 W H
MAE:m;yélS(x,y)—G(xay” ®)

MAE measures the numerical distance between the ground
truth and the estimated saliency map, and is more meaningful
in evaluating the applicability of a saliency model in a task
such as object segmentation.

D. Ablation Study

1) Effectiveness of S-3CNN: As discussed in Section III-A,
our multiscale CNN feature vector, S-3CNN, consists of three
components, A, B and C. To show the effectiveness and
necessity of these three parts, we have trained five additional
models for comparison, which respectively take feature A
only, feature B only, feature C only, concatenated A and B,
and concatenated A and C. These five models were trained on
MSRA-B using the same setting as the one taking S-3CNN.
Quantitative results were obtained on the testing images in
the MSRA-B dataset. As shown in Fig. 5, the model trained
using S-3CNN consistently achieves the highest PR curve and
best performance on average precision, recall and F-measure.
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Fig. 5. The effectiveness of our S-3CNN feature. The left figure shows
the precision-recall curves of models trained on MSRA-B using different
components of S-3CNN, while the right figure shows the corresponding
precision, recall and F-measure using an adaptive threshold.

Precision

Precision
T Recan
o F-Measurg

)
Recall Fused Layer] Layer2 Layer3

Fig. 6. The effectiveness of multilevel fusion.“Layerl”, “Layer2” and
“Layer3” refer to the three segmentation levels that have the highest single-
level saliency detection performance. The left figure shows the precision-recall
curves while the right figure shows the corresponding precision, recall and
F-measure using an adaptive threshold.

Models trained using two components perform much better
than those trained using a single component.

These results demonstrate that the three components of our
multiscale CNN feature vector are complementary to each
other, and the training stage of our saliency model is capable
of discovering and understanding region contrast information
hidden in our multiscale features.

2) Multilevel Decomposition: Our method exploits informa-
tion from multiple levels of image segmentation. As shown
in Fig. 6, the performance of a single segmentation level is
not comparable to the performance of the fused model. The
aggregated saliency map from 15 levels of image segmentation
improves the average precision by 2.15% and at the same time
improves the recall rate by 3.47% when it is compared with
the result from the best-performing single level.

3) Spatial Coherence: In Section IV-E, a fully connected
CRF model is incorporated to improve spatial coherence and
refine the saliency scores obtained using MDF and HDHF.
To validate its effectiveness, we have evaluated the perfor-
mance of our saliency models with and without the CRF
model across six datasets. As shown in Figure. 7, the CRF
can consistently improve the results computed using MDF
and HDHF across all the six datasets. Especially on the
DUT-OMRON dataset which contains the largest number of
testing images, the CRF increases the F-measure by 4.7% on
the HDHF results and 4.2% on the MDF results.

E. Evaluation on Contemporary CNN Architectures

We evaluate the effectiveness of deep features extracted
using different CNN architectures. We extract deep features
using 4 contemporary deep CNN architectures, and train our
saliency model on MSRA-B using such deep features. Eval-
uated CNN architectures include AlexNet [21], VGG16 [53],
VGG19 [53] and the R-CNN model [23]. We obtain quantita-
tive comparison results on the testing images of the MSRA-B
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Fig. 7. The effectiveness of CRF-based spatial coherence. (a) Maximum
F-measure of our MDF-based model achieved with and without CRF on
six saliency detection datasets. (b) Maximum F-measure of our HDHF-based
model achieved with and without CRF on the same datasets.

TABLE II

COMPARISON OF SALIENCY DETECTION PERFORMANCE USING
DIFFERENT CNN ARCHITECTURES. * REFERS TO DEEP
MODEL WITH PARAMETERS FINE-TUNED

Deep Model | AUC  MAE  F-Measure
RCNN 0978 0.066 0.888
RCNN* 0.979 0.065 0.901
AlexNet 0.975 0.070  0.879
AlexNet™* 0975 0.068 0.881
VGG16 0976 0.070 0.881
VGG16* 0.978 0.068  0.883
VGG19 0.977 0.069 0.882
VGG19* 0978 0.069 0.883
CF I VDF I HDRF ] o e LoE [ E ‘
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MSRA-B  HKU-IS  ECSSD SOD  PASCAL-S DUT-OMRON MSRA-B  HKU-IS DUT-OMRON ECSSD PASCAL-S  SOD
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Fig. 8. Performance of our HDHF-based model. (a) Maximum F-measure of
HDHF, MDF and LF on six saliency detection datasets. (b) MAE of HDHF,
MDF and LF on the same datasets.

dataset. As shown in Table II, the R-CNN model achieved
slightly better performance than others. This model can better
capture the feature of an image region probably because it
was fine-tuned on a dataset of image regions for the purpose
of object detection.

We have also tried to jointly fine-tune the deep CNN
model with our proposed MLP. As shown in Table II, models
with parameters fine-tuned can deliver slightly better results.
Though our proposed model can effectively mine the contrast
information from different scales of image regions and learn a
superior deep contrast feature for saliency detection, it can
hardly fine-tune much better description for each scale. In
fact, all of these deep models are capable of capturing the
feature of an image region but the regional feature performance
of all these deep models does not vary much when applied
in our contrast learning framework. To sum up, for saliency
estimation, discovering the contrast between a region and its
surrounding neighborhood is equally important.

F. The Performance of HDHF

We evaluate the effectiveness of HDHF quantitatively by
comparing its performance against that of MDF, which is
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based on deep features (S-3CNN) only, and LF, which is
based on the 39-dimensional handcrafted low-level features
only. Figure 8 shows the F-measure and MAE of these three
methods on six datasets. HDHF performs better than MDF
most of the time, and consistently and significantly outper-
forms LF. Especially on the DUT-OMRON dataset, HDHF
improves the F-measure of MDF by 2.6% and LF by 12.4%
while, at the same time, lowers the MAE of MDF by 8.5%
and LF by 46.3%.

G. Comparison With the State of the Art

Let us compare our two saliency models (MDF and HDHF)
with a number of existing state-of-the-art methods, including
multi-context deep learning (MC) [42], local estimation and
global search based deep network (LEGS) [40], single-layer
cellular automata (BSCA) [54], pixelwise image saliency
aggregating (PISA) [55], discriminative regional feature inte-
gration (DRFI) [14], optimized weighted contrast (wCtr*) [35],
manifold ranking (MR) [17], global cues (GC) [36], region
based contrast (RC) [26], hierarchical saliency (HS) [15],
saliency filters (SF) [13], frequency-tuned saliency (FT) [5]
and the spectral residual approach (SR) [25]. For GC, RC,
FT and SR, we use the implementation provided by the
authors of [26]; for other methods, we use their original
implementation with recommended parameter settings.

A visual comparison is given in Fig. 9. For space consid-
eration, we only choose the top 8 among all the methods we
compare with for this visual demonstration. As can be seen,
our models (Fig.9j&k) perform well in a variety of challenging
cases, e.g., cluttered background (the first two rows), multiple
disconnected salient objects (3-rd and 4-th rows), low contrast
between salient object and background (5-th and 6-th rows),
and objects touching the image boundary (1-st and 4-th rows).
In all the complex scenarios shown in Fig. 9, it is obvious that
our models are able to successfully highlight entire salient
objects, yielding saliency maps closest to the ground truth.

As part of the quantitative evaluation, we first evaluate our
method using Precision-Recall and ROC curves. As shown in
Figs. 10 , our methods (HDHF and MDF) consistently occupy
the top two spots and outperform others on all benchmark
datasets. The AUC (Area under ROC curve) is reported in
Table III. It is necessary to point out that the performance
of MC [42] is overrated on the MSRA-B dataset and the
performance of LEGS [40] is overrated on both the MSRA-B
dataset and the PASCAL-S dataset because most images in the
corresponding datasets were actually training samples for the
publicly available trained models of MC [42] and LEGS [40]
used in our comparison.

Precision, recall and F-measure values using the aforemen-
tioned adaptive threshold are shown in Fig. 11. Our method
also achieves the highest precision and F-measure on all
datasets. On the DUT-OMRON dataset, HDHF achieves 70.9%
in precision and 75.7% in recall while the second best (MC)
achieves 62.2% in precision and 78.5% in recall. Though the
recall rate of MC is higher than ours, its precision is much
lower. Thus it is much more likely for MC to misclassify
unsalient pixels as salient ones. This is also reflected in
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Fig. 9. Visual comparison of saliency maps generated from 10 state-of-the-art methods, including our two models MDF and HDHF. The ground truth (GT)
is shown in the last column. MDF and HDHF consistently produce saliency maps closest to the ground truth.

Precision
Precision

Precision

Recall

Fig. 10. Comparison of precision-recall curves of 15 saliency detection methods on 3 datasets. Our MDF and HDHF based models consistently outperform

other methods across all the testing datasets.
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Fig. 11.

the lower F-measure and higher MAE achieved with MC.
Performance improvement becomes more obvious on HKU-IS.
Compared with the second best (MC), our method increases
the F-measure from 0.76 to 0.86, and achieves an increase of
10.9% in precision while at the same time improving the recall
by 15.3%.

A quantitative comparison is shown in Table III. As can
be seen, our HDHF based model improves the F-measure
achieved by the best-performing existing algorithm by 6.4%,
2.3%, 10.0%, 6.1%, 5.5% and 8.1% respectively on MSRA-B
(skipping MC and LEGS on this dataset), ECSSD, HKU-IS,
DUT-OMRON, PASCAL-S (skipping LEGS on this dataset)
and SOD. And at the same time, our HDHF based model also
outperforms other existing methods in terms of MAE, which
provides a better estimation of the visual difference between
the predicted saliency map and the ground truth. As shown
in Table III, our HDHF based model lowers the MAE by
48.0%, 2.0%, 35.3%, 9.1%, 2.1% and 12.3% respectively on

DUT-OMRON I HKU-IS

02
HDHF MDF_ MC LEGS DRFI PISA wCtr= MR HS BSCA RC SF GC FT SR

o [
HDHF MDF MC LEGS PISA DRFI wCtr* MR RC BSCA HS SF GC FT SR

Comparison of precision, recall and F-measure (computed using a per-image adaptive threshold) among 15 different methods on 3 datasets.

MSRA-B (skipping MC and LEGS on this dataset), ECSSD,
HKU-IS, DUT-OMRON, PASCAL-S (skipping LEGS on this
dataset) and SOD.

In summary, the improvement our method achieves over the
state of the art is substantial if we keep in mind the already
good performance of state-of-the-art algorithms. Furthermore,
the more challenging the dataset, the more obvious the advan-
tages because our multiscale CNN features are capable of
identifying subtle contrast among different parts of an image.
More importantly, although our models are learned using the
training set of the MSRA-B dataset, they are consistently
among the top performers over all other challenging datasets.

H. Efficiency

While it takes around 20 hours to train our deep neural
network based prediction model using the training set of the
MSRA-B dataset, it only takes around 4 seconds to detect
salient objects in a testing image with 400 x 300 pixels
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TABLE III

COMPARISON OF QUANTITATIVE RESULTS INCLUDING AUC (LARGER IS BETTER), MAXIMUM F-MEASURE (LARGER IS BETTER) AND MAE (SMALLER
Is BETTER). THE BEST THREE RESULTS ARE SHOWN IN RED, BLUE, AND GREEN COLOR, RESPECTIVELY. NOTE THAT MC [42] AND LEGS [40]
ARE OVERRATED ON THE MSRA-B DATASET AND LEGS [40] 1S OVERRATED ON THE PASCAL-S DATASET

Data Set Metric BSCA | DRFI FT GC HS LEGS MC MR PISA RC SF SR wCtr* MDF HDHF
AUC 0.954 0.966 0.766 0.863 0.930 0.958 0.975 0.941 0.954 0.937 0.886 | 0.710 0.948 0.978 0.982
MSRA-B F-measure 0.830 0.845 0.579 0.719 | 0.813 0.870 0.894 0.824 0.837 0.817 0.700 | 0.430 0.820 0.888 0.899
MAE 0.130 0.112 0.241 0.159 | 0.161 0.081 0.054 0.127 0.102 0.138 0.166 | 0.224 0.110 0.066 0.053
AUC 0.922 0.943 0.663 0.767 0.885 0.925 0.948 0.888 0.921 0.893 0.793 0.632 0.896 0.957 0.960
ECSSD F-measure 0.758 0.782 0.430 0.597 0.727 0.827 0.837 0.736 0.764 0.738 0.548 0.376 0.716 0.847 0.856
MAE 0.183 0.170 0.289 0.233 0.228 0.118 0.100 0.189 0.150 0.186 | 0.219 0.264 0.171 0.106 0.098
AUC 0911 0.950 0.710 0.777 0.884 0.907 0.928 0.870 0.925 0.903 0.828 0.674 0.910 0.971 0.972
HKU-IS F-measure 0.723 0.776 0.477 0.588 0.710 0.770 0.798 0.714 0.753 0.726 | 0.590 | 0.373 0.726 0.869 0.878
MAE 0.174 0.167 0.244 0.211 0.213 0.118 0.102 0.174 0.127 0.165 0.173 0.220 0.140 0.072 0.066
AUC 0.882 0.931 0.682 0.757 0.860 0.885 0.929 0.853 0.893 0.859 | 0.810 | 0.688 0.894 0.935 0.935
DUT-OMRON F-measure 0.617 0.664 0.381 0.495 0.616 0.669 0.703 0.610 0.630 0.599 | 0.495 0.298 0.630 0.728 0.746
MAE 0.191 0.150 0.250 0.218 0.227 0.133 0.088 0.187 0.141 0.189 | 0.147 0.181 0.144 0.088 0.080
AUC 0.872 0.899 0.627 0.727 0.838 0.891 0.907 0.852 0.866 0.840 | 0.746 | 0.671 0.866 0.921 0.922
PASCAL-S F-measure 0.666 0.690 0.413 0.539 | 0.641 0.752 0.740 0.661 0.660 0.644 | 0.493 0.392 0.655 0.771 0.781
MAE 0.224 0.210 0.309 0.266 | 0.264 0.157 0.145 0.223 0.196 0.227 0.240 | 0.263 0.201 0.146 0.142
AUC 0.843 0.890 0.607 0.692 | 0.817 0.836 0.868 0.812 0.848 0.828 0.714 | 0.679 0.827 0.899 0.901
SOD F-measure 0.654 0.699 0.441 0.526 | 0.646 0.732 0.727 0.636 0.660 0.657 0.516 | 0.444 0.653 0.793 0.791
MAE 0.251 0.223 | 0323 | 0.284 | 0.283 0.195 0.179 1 0.259 | 0.223 | 0.242 | 0.267 | 0.291 0.229 0.157 0.160

on a PC with two NVIDIA GTX Titan Black GPUs and a ACKNOWLEDGMENT

3.4GHz Intel processor using our MATLAB code. Noted that
feature extraction efficiency can be improved using multi-GPU
techniques provided in the latest Caffe framework [43].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a neural network archi-
tecture, which has fully connected layers on top of CNNs
responsible for feature extraction at three different scales.
The proposed neural network architecture works as a feature
learning model which deduces high-level semantic contrast
and contextual relationships among the three scales. The
penultimate layer of our neural network has been confirmed
to be a very discriminative high-level feature vector for
saliency detection and is complementary to handcrafted low-
level features. To generate a more robust feature, we integrate
low-level features with our deep contrast feature and feed the
concatenated feature vector into a random forest regressor
which maps the feature vector of each region to a saliency
score. We aggregate multiple saliency maps computed for
different levels of image segmentation to reduce error due
to imperfect segmentation, and further incorporate a pixel-
level CRF model to enhance spatial coherence. To promote
further research and evaluation of visual saliency models, we
have also constructed a large dataset of 4447 challenging
images and their pixelwise saliency annotations. Experimental
results demonstrate that our proposed method significantly
outperforms all existing saliency estimation techniques on all
public datasets.

As future work, we are considering to improve the efficiency
of deep feature extraction. In this paper, we treat each region
as an independent unit in feature extraction without any shared
computation.

We are considering spatial pyramid  pooling
networks (SPPnets) [56] for speeding up regional feature
extraction by computing a single convolutional feature map
for an entire image and then extracting all regional features
from this shared feature map. We are also considering the
application of our deep contrast feature in other pixel labeling
problems, e.g. depth prediction from monocular images,
eye-fixations and object proposals.

The authors would like to thank Sai Bi, Wei Zhang, and
Feida Zhu for their help during the construction of our dataset.
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