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Abstract—Realistic image super-resolution (SR) focuses on
transforming real-world low-resolution (LR) images into high-
resolution (HR) ones, handling more complex degradation pat-
terns than synthetic SR tasks. This is critical for applications like
surveillance, medical imaging, and consumer electronics. How-
ever, current methods struggle with limited real-world LR-HR
data, impacting the learning of basic image features. Pre-trained
SR models from large-scale synthetic datasets offer valuable
prior knowledge, which can improve generalization, speed up
training, and reduce the need for extensive real-world data in
realistic SR tasks. In this paper, we introduce a novel approach,
Dual-domain Adaptation Networks, which is able to efficiently
adapt pre-trained image SR models from simulated to real-world
datasets. To achieve this target, we first set up a spatial-domain
adaptation strategy through selectively updating parameters
of pre-trained models and employing the low-rank adaptation
technique to adjust frozen parameters. Recognizing that image
super-resolution involves recovering high-frequency components,
we further integrate a frequency domain adaptation branch into
the adapted model, which combines the spectral data of the
input and the spatial-domain backbone’s intermediate features to
infer HR frequency maps, enhancing the SR result. Experimental
evaluations on public realistic image SR benchmarks, including
RealSR, D2CRealSR, and DRealSR, demonstrate the superiority
of our proposed method over existing state-of-the-art models.
Codes are available at: https://github.com/dummerchen/DAN.

Index Terms—Image super-resolution, neural network adapta-
tion, spectral data.

I. INTRODUCTION

REALISTIC image super-resolution (SR) aims to trans-
form low-resolution (LR) inputs from the real world to

high-resolution (HR) images. In contrast to traditional super-
resolution [2]–[4], which often deals with clean and synthetic
datasets, realistic image SR focuses on handling real-world
degradation patterns, making it much more applicable to actual
applications. It focuses on enhancing overall image quality,
recovering finer details and textures in a natural and percep-
tually appealing manner. This is important for improving user
experiences in electronic devices such as TVs and smartphone
photographs. It also has huge significance in applications such
as security and surveillance, medical imaging, and forensic
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Fig. 1: Our dual-domain adaptation method aims to adapt
pre-trained image super-resolution (SR) models from sim-
ulated to realistic datasets. The first and third rows show
SR enhancements, and the second and fourth rows highlight
improved high-frequency components. The second column
presents the pre-trained DAT model outcomes [1]. The third
and fourth columns demonstrate visual and structural improve-
ments achieved with our spatial and dual-domain adaptation
strategies, respectively.

analysis, where improving image quality can lead to better
decision-making, diagnosis, or analysis. Hence, this paper
focuses on efficiently learning neural network-based models
for addressing the realistic image SR task.

Recent methods [5], [6] are dedicated to improving the
robustness of SR models by simulating the image degradation
process to generate LR images from their HR counterparts.
However, the real image degradation process remains more
complex than these simulations. An emerging solution lies in
harnessing directly captured LR-HR image pairs with diverse
camera configurations [7]–[10]. The pioneering works [8]–[10]
introduce methods focusing on leveraging adjacent informa-
tion, improving the reconstruction of textural nuances, and
modeling disparate high-frequency distributions. Considering
image SR models pre-trained on large-scale simulated datasets
are exposed to abundant images, they are advantageous at cap-
turing these basic features. Intuitively, such prior knowledge of
pre-trained image SR models can be used for improving the
generalization ability, accelerating the training process, and
relieving the burden of training data collection quality when
coping with the realistic image SR task.

To address the challenges of realistic image SR, we
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propose a novel Dual-domain Adaptation Network (DAN)
that efficiently adapts pre-trained SR models on simulated
datasets to realistic scenarios. Our approach introduces two
key innovations: a spatial-domain adaptation strategy and
a frequency-domain adaptation branch, designed to syn-
ergistically enhance SR performance. Image SR models pre-
trained on simulated datasets excel in extracting fundamental
features, but their direct application to realistic datasets is
suboptimal due to domain-specific variations. To bridge this
gap, our spatial-domain adaptation strategy refines the pre-
trained model by selectively freezing intermediate module
parameters while updating others. This selective freezing strat-
egy achieves an optimal balance between performance and
retraining efficiency, outperforming the traditional approach of
freezing only shallow modules. Additionally, we incorporate
low-rank adaptation (LoRA) [11] to fine-tune static parame-
ters with minimal computational overhead. These techniques
enable effecctive and efficient adaptation of pre-trained SR
models to realistic datasets. Fig. 1 provides two examples for
illustrating the effect of our proposed method in adapting a
pre-trained image SR model, DAT [1]. As shown by the third
column of Fig. 1, the above spatial-domain adaptation strategy
can significantly improve the SR results of the pre-trained
DAT, while minimal extra trainable parameters are introduced.

High-frequency detail restoration is critical for high-quality
SR but is inadequately addressed by spatial-domain techniques
alone. This may lead to memorizing pixel values without
explicitly capturing intricate high-frequency textural features.
Previous researches [12]–[14] underscore the potential for
image restoration based on the frequency domain, which ex-
hibits advantages in recovering intricate high-frequency details
compared to techniques based solely on the spatial domain.
Exploiting this insight, we incorporate a frequency-domain
adaptation branch into our model. Unlike existing frequency
domain methodologies [13], [14], our approach merges the
Fourier transform coefficients of the input images and inter-
mediate features produced by the spatial-domain backbone
model to infer HR frequency domain images. Subsequently,
transforming these images to the spatial domain yields the
final prediction. As illustrated by the fourth column of Fig. 1,
the above frequency-domain adaptation branch helps enhance
the SR results by generating more accurate and clear high-
frequency components. Comprehensive evaluations of pub-
lic realistic image SR benchmarks, including RealSR [8],
D2CRealSR [10], and DRealSR [9], confirm the superior
performances of our method over existing state-of-the-art
realistic image SR solutions.

Our main contributions are summarized as follows:
• We introduce a dual-domain adaptation networks that is

able to seamlessly transfer models from simulated to real-
world image SR datasets.

• We devise a frequency-domain adaptation branch which
can be flexibly integrated with existing spatial-domain
backbone models, enhancing the restoration of high-
frequency components.

• Through extensive benchmark testing on public realistic
image SR datasets, our method establishes a new state-
of-the-art in SR performances.

II. RELATED WORK

A. Realistic Image Super-resolution

Image super-resolution, which seeks to increase the spatial
resolution of images, attracts significant attention. Dong et
al. [2] pioneer the introduction of the first deep neural net-
works (DNN) for the image SR task. With advances in DNN
architectures, piles of models [1], [4], [15]–[30] are proposed
with the aim of improving the performance of image SR.

To enhance the reality of image SR results, Ledig et al. [31]
advocate for regularizing the VGG [32] feature distance and
incorporating the generative adversarial learning loss [33] for
constraining the optimization of network parameters. Fuoli et
al. [12] present a Fourier space regularization loss to highlight
the recovery of omitted frequency components. In particu-
lar, Liang et al. [34] dynamically detect visual anomalies
in super-resolution images, emphasizing model learning in
these regions. Li et al. [35] focus on addressing the conflict
between perceptual and pixel-reconstruction-based objectives
with exclusionary masks and devise a data distillation strat-
egy to select simulated training data having similar noise
patterns with the target dataset. Liu et al. [14] introduce a
hybrid framework, interweaving spatial and frequency learn-
ing, employing spectral prediction uncertainty to combine the
strengths of PSNR-oriented and adversarial learning-based SR
models. However, a significant portion of existing SR research
is heavily based on simulated training datasets, which are
typically derived from image degradation operations such as
blurring and interpolation. These operations oversimplify the
intricate process inherent to real LR image formation, resulting
in models that can not perform well on realistic datasets.

To address the challenge of realistic image SR, Chen et
al. [7] collect real LR-HR image pairs by using various
camera lenses to capture indoor postcard images. Both Cai
et al. [8] and Wei et al. [9] expand on this, establishing more
extensive realistic SR datasets spanning indoor and outdoor
scenes. While these datasets focus on upsampling factors of
2, 3, and 4, Li et al. [10] introduce a 8× SR dataset. The
intricacies of capturing real-world images and ensuring pixel-
level alignment make the creation of such datasets a laborious
endeavor. Conversely, simulated image SR datasets are more
straightforward to generate, and models pre-trained on them
hold valuable insights that could improve realistic SR models.
The efficient model adaptation from simulated to realistic
datasets remains a relatively under-explored territory in image
SR. This paper introduces a dual-domain adaptation network
to bridge this gap. A spatial-domain adaptation strategy based
on selective parameter updation and low-rank parameter ad-
justment is devised for efficiently transferring the pre-trained
model. Moreover, a frequency-domain adaptation branch is
incorporated for further amplifying the model’s capability in
high-frequency detail recovery.

B. Frequency-domain Representations for Image SR

Several recent methods focus on enhancing frequency-
domain representations for image SR. Fuoli et al. [12] improve
high-frequency content using Fourier-space supervision but
primarily focus on perceptual quality with efficient models.
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In contrast, our method combines spatial-domain adaptation
and frequency-domain adaptation to refine both spatial and
frequency features, preserving low-level details from a pre-
trained model while enhancing high-frequency recovery. Wang
et al. [13] explore the complementary nature of spatial and
frequency domains in a two-branch network, but our approach
goes further by adapting pre-trained models with selective
parameter freezing in the spatial domain, enabling better
generalization on realistic datasets. Liu et al. [14] focus on
uncertainty estimation in the frequency domain, whereas our
method directly improves high-frequency component recovery
through Fourier domain adaptation while maintaining spatial
domain performance. In summary, while existing methods fo-
cus on frequency-domain enhancements for SR, our approach
integrates dual-domain adaptation to refine both spatial and
frequency features. This not only improves high-frequency
detail restoration but also preserves the low-level feature
extraction capabilities of the pre-trained model, providing a
more comprehensive solution for realistic image SR.

C. Neural Network Adaptation

Addressing domain-specific challenges, such as data imbal-
ance [36], [37], few/noisy training data [38]–[40], and domain
gap reduction [41]–[44], is widely studied in the field of image
processing and understanding. The paradigm of transferring
models pre-trained for generic tasks to specialized downstream
tasks is an effective and economic solution to tackling this
problem [45], [46]. A prevalent strategy involves fine-tuning
the entire pre-trained model on the specific downstream tasks
to achieve desirable results. To enhance efficiency and alleviate
computational overhead during the fine-tuning phase, Yosinski
et al. [47] and He et al. [48] advocate for the fine-tuning
of only the terminal layers, while keeping preceding layers
intact. Another line of research introduces adaptation modules
directly into the neural network architecture. For instance,
Houlsby et al. [49] and Chen et al. [50] recommend the
inclusion of lightweight adaptation heads within intermediate
layers. Chen et al. [51] optimize the model structure by
pruning redundant structures and fusing multi-order graphs.
Hu et al. [11] use a pair of down-projection and up-projection
layers to adjust parameters of neural network layers without
introducing computational overhead during inference. Zhang
et al. [52] and Xu et al. [53] suggest the incorporation of
supplementary side adaptation branches alongside original
backbone architectures. A distinct approach, as showcased
by Lester et al. [54] and Jia et al. [55], modifies pre-
trained models for downstream tasks by injecting auxiliary
information into the input signals. Recent studies have also
tackled visual degradation and representation across diverse
scenarios. For example, Huang et al. [56] address cross-
modal retrieval via a two-stage asymmetric hashing method.
Cheng et al. [57] propose a continual learning framework
for all-in-one weather removal using knowledge replay, while
Cheng et al. [58] introduce a contrastive learning strategy with
progressive negative enhancement for robust image dehazing.
Together, these works highlight the importance of adaptable
models for handling real-world visual variations.

Inspired by these neural network adaptation techniques, we
delve into transferring image SR models from simulated to re-
alistic datasets with minimal effort. A dual-domain adaptation
framework based on efficient spatial-domain parameter adjust-
ment and frequency-domain feature integration is devised to
implement the transfer of image SR models.

III. METHODOLOGY

This study addresses the challenge of realistic image SR. Let
the input image be denoted as X ∈Rc×h×w, where c, h, and w
signify the number of channels, height, and width, respectively.
A DNN-based image SR model is trained to predict a HR
image, O ∈ Rc×ρh×ρw, from X, with ρ being the upsampling
ratio. The ground-truth HR image is represented as Y.

A. Overview

To overcome the limitations of existing realistic image
SR approaches [8]–[10] that struggle with generalizing basic
features and reconstructing high-frequency details, we propose
a novel framework called Dual-domain Adaptation Networks
(DAN). By leveraging pre-trained SR models, our method in-
tegrates both spatial-domain adaptation (SDA) and frequency-
domain adaptation (FDA) to improve generalization, accelerate
training, and reduce reliance on extensive paired datasets. The
framework is designed to efficiently adapt pre-trained models
to real-world scenarios. An overview of our framework is
shown in Fig. 2.

We use SwinIR [59] as the pre-trained backbone model to
illustrate our approach, which consists of two key components:

1. Spatial-Domain Adaptation (SDA): This branch selec-
tively fine-tunes specific layers of the pre-trained SR
model while employing low-rank adaptation (LoRa) to
efficiently adjust unselected layers. This ensures effective
refinement without excessive parameter updates.

2. Frequency-Domain Adaptation (FDA): This branch
focuses on restoring high-frequency components that are
often lost in real-world low-resolution images, com-
plementing the spatial-domain adaptations by explicitly
addressing the high-frequency restoration challenges.

By combining these two strategies, the proposed framework
preserves the pre-trained model’s ability to capture fundamen-
tal features like edges and textures while enhancing its perfor-
mance on complex, real-world degradations. This dual-domain
approach delivers high-quality SR results with significantly
reduced trainable network parameters.

B. Pre-trained Backbone Model

Models pre-trained on simulated datasets capture valuable
prior knowledge for extracting basic image features neces-
sary for super-resolving LR images. Leveraging this prior
knowledge during training on realistic datasets accelerates the
process, mitigates overfitting especially with limited realistic
samples, and reduces computational costs by allowing certain
parameters to remain fixed.

For illustration, we use SwinIR [59] as our backbone model.
A convolutional layer first computes a preliminary feature
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Fig. 3: (a) Within the adapted Transformer unit, low-rank
adapters are incorporated to modify the parameters of the
linear layers for generating the query and value variables.
The workflow of the linear layer with low-rank adapter is
illustrated in (b). The output of frozen vanilla linear layer in
the left branch is adapted with residuals generated by a pair of
down-projection and up-projection linear layers together with
a scaling layer in the right branch.

map, Fs
0 ∈ Rd×h×w, from the input X, where d is the number

of feature channels. This map is enhanced by N groups of
Transformer units, each containing M units. We denote the
intermediate feature maps produced by the n-th group of
Transformer units as Fs

n ∈ Rd×h×w. Each Transformer unit
partitions the input into local blocks. Then, it applies linear
layers to compute query, key, and value variables, which
are subsequently used to compute cross-pixel correlations to
aggregate context information for feature enhancement. The
final enhanced feature map is computed as Fs

N+1 = Fs
0 +Fs

N ,
and an upsampler predicts the HR output Os in the spatial
domain.

While effective for simulated datasets, such models may
underperform on realistic datasets due to differences in degra-
dation patterns. To bridge this gap, we propose a dual-domain
adaptation network (Fig. 2) that efficiently adapts the pre-
trained model to realistic datasets with both spatial-domain
and frequency-domain adaptation techniques.

C. Dual-domain Adaptation Networks

1) Spatial-Domain Adaptation.: Pre-trained models often
encode general, low-level features such as edges, textures,
and basic patterns in their initial layers. These foundational
features are transferable across tasks and domains, mak-
ing them essential for maintaining performance consistency.
Freezing these layers during fine-tuning preserves this crit-
ical knowledge, preventing it from being overwritten and
ensuring stable performance. Guided by this understanding,
we freeze the parameters of the convolutional head and the
first Msta ∈ {0,1,2, · · · ,M} units within each Transformer
group. Conversely, the parameters of the remaining Mdyn units,
where Mdyn = M − Msta, are updated during training. This
selective parameter freezing strategy enables the model to
retain its ability to extract low-level features while adapting
to task-specific nuances. Unlike completely freezing entire
Transformer groups, which may introduce bottlenecks by
constraining the propagation of domain-adaptive features, our
devised strategy allows dynamic units to effectively process
and integrate new information. This strategy mitigates overfit-
ting and enhances the model’s adaptability, ensuring improved
performance on realistic datasets.

Inspired by Hu et al. [11], we integrate low-rank adapters to
enhance the adaptability of frozen Transformer units. As de-
lineated in Fig. 3, a pair of down-projection and up-projection
linear layers are attached to each layer used for calculating
query and value variables through the additive operation. We
define r as the rank value of the adapter, with r being substan-
tially smaller than d. By integrating these adapters, we built
a robust spatial domain backbone model for addressing the
realistic image SR task. Importantly, this configuration enables
updates to only a restricted subset of network parameters and
does not introduce additional computation demands during the
inference phase.

2) Frequency-Domain Adaptation Branch.: The accurate
restoration of high-frequency components is pivotal in the SR
image reconstruction paradigm. We also observe that realistic
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Real DegradationBicubic Interpolation

Fig. 4: Visualization of frequency signals of LR images sim-
ulated by bicubic interpolation (left) and realistic LR images
(right).

LR images often lack the high-frequency signals found in
those LR images simulated via bicubic interpolation. This
difference is illustrated in Fig. 4, where each row shows
the frequency amplitude maps of an LR image bicubicly
interpolated from a HR image in the RealSR dataset [8] (left)
and the corresponding real LR image (right). To enhance the
capacity of the adapted SR model in restoring high-frequency
components, we incorporate an auxiliary adaptation branch
in the frequency domain, as depicted in the lower section of
Fig. 2.

Let the real and imaginary components of the frequency
domain for X be represented by R and I, respectively. These
components can be calculated utilizing the Fast Fourier Trans-
formation (FFT) algorithm. A convolutional layer is used to
extract the initial frequency domain feature F f

0 ∈ Rd f ×h×w

from the concatenation of R and I.
Subsequently, we employ N fusion blocks to cumulatively

combine the spectral data inherent in the intermediate features
{Fs

n}N
n=1 of the spatial-domain backbone model. By FFT, we

generate the spectral data E f
n , which is the concatenation of

the real and imaginary components of Fs
n. Each fusion block

comprises two residual components: the initial component
refines the frequency-domain feature map from the previous
stage, namely F f

n−1, while the latter merges E f
n into the refined

feature map. This can be mathematically represented as:

F̃ f
n = F f

n−1 +Fres(F f
n−1), F f

n = F̃ f
n +Fres([F̃ f

n ,E
f
n ]), (1)

where Fres(·) signifies the forward function of the residual
pathway, comprised of dual convolution layers.

As illustrated in the lower right quadrant of Fig. 2, an
upsampling mechanism is adopted to increase the resolution of
the frequency domain feature map. The feature map produced
by the penultimate convolution layer of the space-domain
backbone undergoes an FFT transformation and is subse-
quently fused into the frequency domain’s upsampler using the
additive operation. The resulting high-resolution spectral maps
are denoted as O f , which yield the terminal super-resolution
output O upon transformation into the spatial domain.

The combination between spatial-domain and frequency-
domain adaptation plays a crucial role in enhancing the
performance of image SR models. The spatial-domain adap-

40 60 80 100 120 140 160 180 200
Training Time (s)

29.0

29.2

29.4

29.6

29.8

30.0

PS
NR

SwinIR-ReT
11.9M

SwinIR-FT
11.9M

SwinIR-DAN-F
13.3M

SwinIR-DAN-P
3.6M

CDC
39.9M

D2C-SR
5.7M

DAT-ReT
14.8M

DAT-FT
14.8M

DAT-DAN-P
4.1M

DAT-DAN-F
16.1M

Fig. 5: Scatter plots of PSNR values, training time per epoch,
and trainable parameter amount of different methods. Larger
points indicate more trainable parameters.

tation (SDA) contributes to transferring the low-level feature
extraction capabilities of the pre-trained model into realistic
scenarios with the selective parameter adjustment strategy
and low-rank adapters. Meanwhile, frequency-domain adap-
tation (FDA) directly addresses the loss of high-frequency
components, which are essential for reconstructing fine de-
tails in realistic images. By combining these two strategies,
SDA focuses on refining the spatial-domain representations of
basic features, while FDA enhances the restoration of high-
frequency information that may be ignored during training on
realistic datasets.

D. Objective Function

The cost function utilized for parameter refinement com-
prises two principal facets: (i) the deviation between the
output of the spatial domain backbone model, i.e., Os, and the
ground-truth HR image Y; and (ii) the discrepancy between
the output of the frequency domain adaptation branch, i.e., O f ,
and the Fourier coefficients of Y.

Both of these deviation terms are quantified using the
L1 norm. Consequently, the composite cost function can be
articulated as:

L = ||Os −Y||1 +λ ||O f −FFT(Y)||1, (2)

where λ (= 10) is a constant. Throughout the training phase,
the modifiable parameters within the spatial-domain backbone
model, along with entire parameters within the frequency-
domain adaptation branch, undergo optimization.

IV. EXPERIMENTS

A. Datasets

Three realistic SR datasets are used to evaluate the perfor-
mance of SR methods:

• RealSR [8] contains LR and HR image pairs captured
from 559 scenes using two DSLR cameras including
Canon 5D3 and Nikon D810. Every scene has an HR
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TABLE I: Comparison with existing methods on RealSR, D2CRealSR, and DRealSR datasets.

Method

RealSR D2CRealSR DRealSR
4× 3× 2× 8× 4× 3× 2×

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 27.24 0.764 28.61 0.810 31.67 0.887 27.74 0.822 30.56 0.822 31.50 0.835 32.67 0.877

SRResNet [31] 28.99 0.825 30.65 0.862 33.17 0.918 30.01 0.864 31.63 0.847 31.16 0.859 33.56 0.900

EDSR [18] 29.09 0.827 30.86 0.867 33.88 0.920 30.23 0.868 32.03 0.855 32.93 0.876 34.24 0.908

RCAN [19] 29.21 0.824 30.90 0.864 33.83 0.923 30.26 0.868 31.85 0.857 33.03 0.876 34.34 0.908

LP-KPN [8] 29.05 0.834 30.60 0.865 33.49 0.917 - - 31.58 - 32.64 - 33.88 -

ESRGAN [60] 29.15 0.826 30.72 0.866 33.80 0.922 30.06 0.865 31.92 0.857 32.39 0.873 33.89 0.906

CDC [9] 29.24 0.827 30.99 0.869 33.96 0.925 30.02 0.841 32.42 0.861 33.06 0.876 34.45 0.910

D2C-SR [10] 29.67 0.830 31.28 0.870 34.30 0.925 30.47 0.869 31.79 0.852 32.69 0.865 34.07 0.904

SwinIR-PreT [59] 27.64 0.780 28.98 0.821 32.08 0.895 29.14 0.854 30.61 0.821 31.61 0.837 32.82 0.880

SwinIR-ReT 29.26 0.829 30.83 0.865 34.06 0.926 30.16 0.873 31.86 0.850 32.95 0.869 34.28 0.906

SwinIR-FT 29.46 0.833 31.14 0.871 34.16 0.926 30.24 0.875 32.23 0.856 33.10 0.872 34.55 0.909

SwinIR-DAN-P (Ours) 29.65 0.835 31.20 0.872 34.30 0.927 30.30 0.876 32.25 0.855 33.18 0.874 34.54 0.910

SwinIR-DAN-F (Ours) 29.70 0.837 31.31 0.874 34.40 0.928 30.36 0.876 32.45 0.859 33.34 0.877 34.75 0.913

DAT-PreT [1] 27.64 0.780 28.98 0.820 32.08 0.895 - - 30.61 0.821 31.60 0.837 32.82 0.880

DAT-ReT 29.51 0.831 31.10 0.869 34.19 0.926 30.04 0.873 31.90 0.850 32.91 0.868 34.28 0.907

DAT-FT 29.71 0.839 31.36 0.876 34.41 0.929 30.26 0.877 32.32 0.860 33.18 0.874 34.62 0.912

DAT-DAN-P (Ours) 29.95 0.841 31.59 0.878 34.58 0.930 30.49 0.876 32.36 0.857 33.20 0.874 34.63 0.912

DAT-DAN-F (Ours) 30.00 0.843 31.68 0.880 34.73 0.932 30.51 0.878 32.58 0.862 33.42 0.880 34.87 0.915

image and its three LR counterparts having 1/2, 1/3, and
1/4 resolutions, respectively. 459 and 100 image pairs are
used for training and testing, respectively.

• D2CRealSR [10] contains 115 pairs of LR and HR
images for 8× image SR. They are split into 100 and
15 for training and testing, respectively.

• DRealSR [9] contains 884, 783, and 840 training image
pairs, and 83, 84, and 93 testing image pairs for 2×, 3×,
and 4× SR, respectively.

B. Implementation Details
In this study, we employ PyTorch [61] for the imple-

mentation of our proposed methodology. Our experimental
framework involves the integration of dual-domain adaptation
networks with two distinct backbone models: SwinIR [59] pre-
trained on the DIV2K dataset, and DAT [1] pre-trained on
a composite dataset combining DIV2K and Flickr2K. These
backbone models are architecturally composed of six feature
enhancement groups (i.e., N = 6), with each group comprising
six Transformer units (i.e., M = 6). The intermediate feature
maps within these models have 180 channels, i.e., d = 180.
In our default configuration, we opt to freeze the parameters
of the convolution head and the first five units of each
Transformer group, namely Msta = 5. Regarding the low-rank
adapters, we assign a value of 4 to r. For DAT, low-rank
adapters are applied to adjust the parameters of linear layers
for generating key and value variables in spatial or channel-
wise self-attention modules and those for constructing the

spatial-gate feed-forward network. For the frequency-domain
adaptation branch, the dimension d f is set to 64. During
training, we use the Adam optimizer [62] to update the
parameters. The initial learning rate is established at 2×10−4,
which is subsequently halved every 2,000 iterations. Training
images are processed to randomly crop 96× 96 LR patches.
We set the batch size at 4 and conduct the training for 70,000
iterations.

C. Comparisons with Existing Methods
1) Quantitative Comparison: In our comprehensive evalu-

ation, detailed in Table I, we perform a comparative analysis
using PSNR and SSIM metrics to assess our dual-domain
adaptation methodology against established image SR tech-
niques such as SRResNet [31], EDSR [18], RCAN [19], LP-
KPN [8], ESRGAN [60], CDC [9], D2C-SR [10], along with
variants SwinIR or DAT adapted from simulated datasets to
realistic ones. The metric values of SRResNet and EDSR are
taken from [10]. This assessment highlights that pre-trained
models including SwinIR-PreT and DAT-PreT, show reduced
effectiveness on realistic datasets. Attempts to re-train SwinIR
and DAT from scratch as indicated by SwinIR-ReT and DAT-
ReT, respectively, exhibit a notable underperformance against
D2C-SR across various SR settings on the RealSR dataset.

We try to explore full fine-tuning (FT) of all parameters
on the pre-trained SwinIR and DAT, forming SwinIR-FT and
DAT-FT, respectively. These two models consistently improve
performance across all SR settings. Despite its effectiveness,
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GTDAT-DAN-P DAT-DAN-FBicubic CDC D2C-SR

Fig. 6: A qualitative comparison among different models on four 4× SR examples from the RealSR dataset. From left to right:
bicubic interpolation, CDC [9], D2C-SR [10], DAT-DAN-P, DAT-DAN-F, and the ground-truth (GT) image.

the FT process incurs computational inefficiencies due to the
necessity of updating all parameters. We then integrate our
novel dual-domain adaptation networks with the pre-trained
SwinIR and DAT, leading to the development of SwinIR-
DAN-P and DAT-DAN-P, respectively. These variants, which
require around 30% of the trainable parameters of their FT
counterparts, respectively, demonstrate not only a reduction in
the number of trainable parameters but also outperforming the
FT method, with SwinIR-DAN-P and DAT-DAN-P surpassing
SwinIR-FT and DAT-FT by 0.21dB and 0.24dB, respectively,
in the 4× SR setting. In particular, DAT-DAN-P exceeds the
performance of the previously best method, D2C-SR. Our
method’s potential is further underscored by unfreezing all
parameters in the backbone models, resulting in SwinIR-
DAN-F and DAT-DAN-F variants, which show substantially
improved results.

Fig. 5 shows the scatter plot of PSNR values, training
time per epoch, and trainable parameter amount of different
methods. All metrics are evaluated under the 4× SR set-
ting of the RealSR dataset. The training time per epoch is
tested with a Nvidia GeForce RTX 3090 GPU. It can be
observed that our method variant SwinIR-DAN-P or DAT-
DAN-P have much less training time and trainable parameters
while achieving higher PSNR value, compared to SwinIR-FT
or DAT-FT, respectively. This indicates that our devised DAN

is effective in improving the training efficiency compared to
full fine-tuning. Compared to D2C-SR, SwinIR-DAN-P has
significantly less training time while achieving comparable
PSNR value; DAT-DAN-P has comparable training time while
leading to much higher PSNR value. It can be deduced that
making use of image SR models pre-trained with simulated
data can effectively improve the SR performance or training
efficiency for learning realistic image SR models.

2) Qualitative Comparison: Fig. 6 and Fig. 7 visualize
examples from the different SR settings of RealSR, DRealSR
and D2CRealSR dataset, respectively. As illustrated by the
four examples of Fig. 6, our method variants DAT-DAN-P
and DAT-DAN-F are capable of generating characters with
sharper edges and clearer appearances than D2C-SR and CDC.
As illustrated of Fig. 7, our method demonstrates enhanced
performance in reconstructing building surface streaks and
high-frequency structural details

D. Cross-camera Adaptation

To validate the robustness of our method in the situation of
cross-camera adaptation, we conduct experiments by dividing
the RealSR dataset into two subsets according to the camera,
including Canon and Nikon. One subset is used to pre-train
the DAT model which is subsequently adapted to the other
one. The experimental results are presented in Table II. Our

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2026.3654395

© 2026 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on January 17,2026 at 03:03:03 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXXX XXXX 8

GT-DAT-DAN-P DAT-DAN-FBicubic CDC D2CSR

D
R

ea
lS

R
 3

D
R

ea
lS

R
 4

D
R

ea
lS

R
 2

D
2
C

R
ea

lS
R

 8

Fig. 7: Qualitative comparison among different models on 2×,3×,4× SR setting of the DRealSR dataset [9] and 8× SR
setting of the D2CRealSR [10]. From left to right: bicubic interpolation, CDC [9], D2C-SR [10], DAT-DAN-P, DAT-DAN-F,
and the ground-truth (GT) image.

TABLE II: Performance in cross-camera testings on RealSR
dataset, including Canon→Nikon and Nikon→Canon. DAT is
used as the backbone model.

Settings Metrics ReT FT DAN-P

Canon→Nikon
PSNR 28.11 28.28 28.53

SSIM 0.794 0.811 0.814

Nikon→Canon
PSNR 29.23 29.35 29.60

SSIM 0.832 0.839 0.840

proposed method DAN-P performs significantly better than
retraining from scratch (ReT) and full fine-tuning (FT). For
example, under the setting of Canon→Nikon, the PSNR of
DAN-P is 0.42 and 0.25 higher than that of ReT and FT,
respectively. These experiments further validate the generaliza-
tion of our method in different real-world conditions, affirming
the robustness of our DAN-P and DAN-F variants.

E. Ablation Study

This section is dedicated to conducting comprehensive
ablation experiments to validate the effectiveness of the key
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Fig. 8: Variation of PSNR with respect to the percent of
trainable parameters.

components in our method. We also evaluate the impact of
employing diverse strategies and hyper-parameters for model
adaptation. These experiments are carried out systematically
on the RealSR dataset, and SwinIR is used as the space-
domain backbone model.

• Efficacy of Principal Components. Table III illustrates the
implementation of various variants of our method to substan-
tiate the effectiveness of key components including selective
parameter fine-tuning (SPFT), low-rank adapters (LoRa), and
frequency-domain adaptation (FDA). The pre-trained SwinIR
model serves as the foundational baseline (referenced as No.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2026.3654395

© 2026 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on January 17,2026 at 03:03:03 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XXXX XXXX 9

2 4 8 12
r

29.43

29.44

29.45

29.46

PS
NR

(d
B)

4x super-resolution

16 32 64 128
d f

29.60

29.62

29.64

4x super-resolution

1 2 4 6
nf

29.50

29.55

29.60

29.65

4x super-resolution

2 4 8 12
r

34.12

34.13

34.14

34.15

PS
NR

(d
B)

2x super-resolution

16 32 64 128
d f

34.24

34.26

34.28

34.30

2x super-resolution

1 2 4 6
nf

34.18
34.20
34.22
34.24
34.26
34.28
34.30

2x super-resolution

Fig. 9: Variation of the PSNR metric with respect to the rank
value r, the feature dimension d f in the frequency-domain
adaptation branch and the number of frequency domain adap-
tation stage n f .

TABLE III: Ablation study for key components in 4× and 2×
settings of RealSR. ‘SPFT’, ‘LoRa’, and ‘FDA’ denotes selec-
tive parameter fine-tuning, low-rank adapter, and frequency-
domain adaptation, respectively.

No. SPFT LoRa FDA
4× 2×

PSNR SSIM PSNR SSIM

1 29.26 0.829 34.06 0.926

2 ✓ 29.47 0.831 34.11 0.925

3 ✓ ✓ 29.46 0.832 34.15 0.925

4 ✓ ✓ 29.58 0.834 34.24 0.926

5 ✓ ✓ ✓ 29.65 0.835 34.30 0.927

1). Upon fine-tuning selective parameters of this baseline
model, encompassing the parameters of the last Transformer
units in all feature enhancement groups and the upsampler
(referenced as No. 2), an enhancement in the SR results is
observed. For example, there is an increase of 0.21dB in the
PSNR metric in the 4× SR setting.

Furthermore, the incorporation of FDA, as illustrated in No.
4, results in substantial performance improvement. Specifi-
cally, there is an increase in the PSNR metric by 0.11dB
and 0.13dB in the 4× and 2× SR settings, respectively. As
depicted in No. 3 and No. 5, the use of LoRa to modulate
the frozen parameters of the backbone model contributes to
certain performance enhancements. We attempt to alter the
FDA branch with an extra spatial-domain branch having more
parameters. As shown in Table IV, this method variant indi-
cated by (SDA-P) is unable to improve the PSNR and SSIM
metrics compared to No. 3 in Table III, indicating the extra
spatial-domain branch is redundant in adapting the backbone
model. However, our devised FDA branch can still bring
improvement by enhancing the recovery of high-frequency
components in the Fourier domain.

TABLE IV: Performance of replacing the FDA branch in
DAN-P with a spatial domain adaptation branch (SDA-P) on
4× RealSR dataset.

Variants PSNR SSIM Ntrn

SDA-P 29.44 0.832 4.6

DAN-P 29.65 0.835 3.6

TABLE V: The results of replacing FFT with wavelet trans-
form on the RealSR dataset.

Method Variants
4× 2×

PSNR SSIM PSNR SSIM

Wavelet Transform 29.47 0.832 34.15 0.925

Fast Fourier Transform 29.65 0.836 34.30 0.927

• Comparison FFT against Wavelet Transform in Spatial-
Frequency Decomposition. We implement a variant of our
method through replacing the Fast Fourier Transform (FFT)
with wavelet transform (WT). The results of this variant are
presented in the third row of Table V. Compared to FFT,
WT shows a performance decline, e.g., the PSNR of WT
is 0.18 and 0.15 lower than that of FFT on 4× and 2× SR
settings, respectively. The potential reason is that FFT provides
a global frequency decomposition which is useful for capturing
periodic patterns, textures, and high-frequency details in a
holistic manner while WT only captures local high-frequency
details. This global perspective is particularly advantageous
in SR tasks that require precise restoration of high-frequency
components.
• Choice of Parameter Freezing Strategies. Our analysis
extends to the performance implications of employing three
distinct strategies for freezing parameters of the backbone
model. In the first strategy, we freeze the parameters of
the shallowest groups completely. We label this strategy as
“freezing shallow groups” in Fig. 8. In the second strategy
which is labeled as “freezing deep units per group” in Fig. 8,
we freeze the parameters of deep Transformer units of each
group while updating the parameters of other Transformer
units. The third strategy, which is the one adopted in our final
method, involves freezing the first several Transformer units
in each group. As indicated by the curve labeled “freezing
shallow units per group” in Fig. 8, this approach yields a
more favorable balance between performance and the number
of trainable parameters.
• Variability of Hyper-parameters. The influence of choos-
ing values for the rank value r, the feature dimension d f

within the frequency-domain adaptation branch and the num-
ber of frequency-domain adaptation stages (denoted as n f ) is
depicted in Fig. 9.

1) The rank value r controls the number of learnable
parameters in adapters for frozen layers. Optimal SR
performance is achieved by setting r to 4, while larger
values for r do not confer additional benefits.

2) The parameter d f determines the complexity of the FDA
branch. The peak performance in 4× and 2× SR is
attained at different values. In the 2× SR context, the
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Fig. 10: PSNR variation curves produced with different num-
bers of training images.

PSNR value plateaus beyond a d f setting of 64; in the
4× SR context, the PSNR value shows a continuous
increase as d f increases from 16 to 128. Balancing both
performance and resource consumption considerations,
we establish d f at 64 in the final version of our method.

3) Increasing the number of FDA stages n f leads to higher
PSNR values, since using more FDA stages helps cap-
ture more nuanced high-frequency features.

• Performance under Various Numbers of Training Im-
ages. We conduct experiments using various numbers of
training images including 10, 25, 50, and 100. Fig. 10 il-
lustrates the PSNR variation curves of FT and DAN-P with
respect to the training iteration. The PSNR values of FT
degrade substantially with increasing training iteration due to
overfitting. The overfitting issue intensifies as the number of
training images decreases. The PSNR values of our DAN-P
remain stably as the training process advances when using
100 training images. For 50 training images, the PSNR value
of DAN-P suffers a decrease at around 3,000 iterations and
then saturates in subsequent training iterations. For 25 and 10
training images, moderate overfitting issue of DAN-P can be
observed. In summary, compared to FT, our DAN-P method
can effectively alleviate the overfitting issue while achieving
better performance.

V. CONCLUSION

This study introduces a dual-domain adaptation network
for transferring image SR models from simulated to realistic
datasets. We find that selective parameter fine-tuning and fre-
quency domain adaptation notably improve SR performance.
Our analysis reveals that freezing intermediate Transformer
units offers a better performance-resource balance compared
to freezing the shallowest modules. Low-rank adapters also
contribute to adjusting the frozen parameters of the backbone
model. Our devised network adaptation method significantly

outperforms the full fine-tuning strategy using nearly one
third of the trainable parameters. Our method can significantly
improve pre-trained backbone models, achieving new state-of-
the-art performances on RealSR, D2CRealSR, and DRealSR
datasets. The limitation of this work is that the pre-trained
image SR models usually have high network complexity.
Learning light-weight image SR models with the help of
the knowledge of pre-trained large models deserves future
research.
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