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Abstract—Semi-supervised object detection (SSOD) mitigates the annotation burden in object detection by leveraging unlabeled data,
providing a scalable solution for modern perception systems. Concurrently, detection transformers (DETRs) have emerged as a
popular end-to-end framework, offering advantages such as non-maximum suppression (NMS)-free inference. However, existing
SSOD methods are predominantly designed for conventional detectors, leaving the exploration of DETR-based SSOD largely
uncharted. This paper presents a systematic study to bridge this gap. We begin by identifying two principal obstacles in
semi-supervised DETR training: (1) the inherent one-to-one assignment mechanism of DETRs is highly sensitive to noisy
pseudo-labels, which impedes training efficiency; and (2) the query-based decoder architecture complicates the design of an effective
consistency regularization scheme, limiting further performance gains. To address these challenges, we propose Semi-DETR++, a
novel framework for efficient SSOD with DETRs. Our approach introduces a stage-wise hybrid matching strategy that enhances
robustness to noisy pseudo-labels by synergistically combining one-to-many and one-to-one assignments while preserving NMS-free
inference. Furthermore, based on our observation of the unique layer-wise decoding behavior in DETRs, we develop a simple yet
effective re-decode query consistency training method to regularize the decoder. Extensive experiments demonstrate that
Semi-DETR++ enables more efficient semi-supervised learning across various DETR architectures, outperforming existing methods by
significant margins. The proposed components are also flexible and versatile, showing superior generalization by readily extending to
semi-supervised segmentation tasks. Code is available at https:/github.com/JCZ404/Semi-DETR.

Index Terms—Object Detection, Detection Transformer, DETR, Semi-Supervised Learning

1 INTRODUCTION

Object detection (OD) is a fundamental computer vision
task that aims to predict the bounding boxes and class
category of objects within an image, which has broad ap-
plications, such as autonomous driving and object tracking.
In the past decade, the prosperity of deep learning [22] has
led to significant advancements in this field [64], [75], [63],
[47]. However, the performance of these advanced detectors
heavily relies on the availability of accurately annotated
datasets [48], [22], which incurs expensive annotation costs.
To mitigate this reliance on labeled data, semi-supervised
object detection (SSOD) [72], [53], [84] has emerged as a
promising paradigm, leveraging abundant unlabeled data
through semi-supervised learning (SSL) techniques [71], [5],
[4] to enhance detector performance.

The current state-of-the-art methods in SSOD are pre-
dominantly built upon the conventional CNN-based detec-
tors like Faster R-CNN [64] and FCOS [75]. These detectors
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typically incorporate a series of hand-crafted components,
including rule-based label assignment strategies [28], [63],
[65], [75], [95], [26] and non-maximum suppression (NMS)
for post-processing [5]. These components complicate the
overall semi-supervised detection pipeline and hinder the
practical deployment. In contrast, Detection Transformers
(DETRs) [11], [57], [50], [41], [92] have recently emerged as a
popular alternative to the traditional object detectors. With
the unique designs such as sparse queries and Hungarian
matching, DETRs eliminate the need for many manual
components like anchor generation and NMS, resulting in
a significantly simplified and efficient end-to-end detection
pipeline.

Despite the prevalence of DETRs, their potential with
semi-supervised learning remains largely unexplored. This
work aims to bridge this gap by systematically inves-
tigating SSOD with DETR-based detectors. Our analysis
shows that a naive application of existing SSOD frame-
works leads to suboptimal performance (see Section 3.2),
and we trace this failure to two root causes - the very
mechanisms underpinning DETRs’ success, the one-to-one
Hungarian matching, and the query-based decoder, also
present unique challenges for standard semi-supervised
techniques. First, the one-to-one assignment is highly sen-
sitive to noise; when presented with imperfect pseudo-
labels, it tends to incorrectly reject high-quality candidate
detections as negatives, thereby misguiding the learning
process. Second, the attention-driven, dynamic nature of
the query-based decoder makes it challenging to establish
stable query correspondences across different augmented
inputs, which is crucial for effective consistency regular-
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ization. Consequently, the effectiveness of both pseudo-
labeling and consistency training, the two effective modern
SSL techniques, is severely undermined when applied to the
DETR architecture.

To address these challenges, we propose Semi-DETR++,
a novel framework for efficient end-to-end semi-supervised
object detection with DETRs. Our solution is built upon
two key components designed to overcome the specific
limitations identified. First, to mitigate the optimization
inefficiency caused by noisy pseudo-labels, we introduce a
Stage-wise Hybrid Matching (SHM) strategy. This approach
divides the training process into two distinct phases. During
the early stage, we employ a soft one-to-many assignment
to salvage high-quality candidate detections that might be
suppressed by label noise, while simultaneously down-
weighting unreliable proposals. As training progresses and
pseudo-labels become more reliable, we seamlessly transi-
tion to the standard one-to-one Hungarian matching in the
later stage. This design progressively eliminates duplicate
predictions, thereby preserving the end-to-end inference
nature of DETRs while dramatically improving training ro-
bustness and efficiency in the presence of noise. Second, we
propose a simple yet effective Re-decode Query Consistency
(RQC) scheme to enable effective consistency regularization
for the query-based decoder. Our approach is based on
the observation that as object queries propagate through
the decoder layers, they gradually aggregate increasingly
discriminative features and exhibit a strong local decoding
behavior, binding with specific image regions. With this
insight, the RQC scheme feeds the dense predictions and the
corresponding decoded features from the final decoder layer
through the teacher and student decoders once more. These
refined features act as an implicit guidance, prompting the
queries to aggregate context from the same salient regions.
The consistency loss is then applied between the outputs
of this "“re-decoding” process to encourage the learning
of the decoding locality. This elegantly circumvents the
need for explicit query correspondence matching, providing
a natural and effective regularization mechanism for the
query-based architecture. By integrating these two dedi-
cated designs, Semi-DETR++ enables highly efficient semi-
supervised learning for DETR-based detectors. Extensive
experiments on standard benchmarks like MS-COCO and
PASCAL VOC demonstrate the superior effectiveness of our
approach, establishing a new state-of-the-art performance
in SSOD and surpassing previous methods by a substan-
tial margin. Our method is termed Semi-DETR++ as it
represents a significant extension and enhancement of our
preliminary work presented in CVPR 2023 [94]. In summary,
our principal contributions are as follows:

1) We present Semi-DETR++, a novel framework for
semi-supervised object detection specifically de-
signed for DETR-based architectures. To the best of
our knowledge, this is the first systematic study to
explore and identify the core challenges of applying
DETRs in the SSOD task.

2) We propose a stage-wise hybrid matching strategy
that dynamically transitions from a noise-robust
one-to-many assignment to the standard one-to-one
assignment. This approach effectively mitigates the

training inefficiency caused by noisy pseudo-labels
in the DETR framework while preserving its end-to-
end inference nature.

3) We introduce a re-decode query consistency (RQC), a
simple yet effective regularization method tailored
for the query-based decoder. This innovation en-
ables efficient consistency training by leveraging
the model’s own decoding outputs, eliminating the
need for complex query selection and correspon-
dence matching.

4) Extensive experiments demonstrate that Semi-
DETR++ establishes a new state-of-the-art across
various SSOD settings on the MS-COCO and PAS-
CAL VOC benchmarks, outperforming previous
methods by significant margins.

Beyond our preliminary conference version [94], this
journal extension offers the following new contributions:

1) A systematic, in-depth analysis of the challenges
in developing DETR-based semi-supervised object
detection methods, particularly in pseudo-labeling
and consistency training (Sec. 3.2). This study not
only completes our methodology but also provides
valuable insights for the community.

2) A novel and more effective consistency scheme, the
Re-decode Query Consistency (RCQ), which eliminates
the manual and complex construction of consistent
queries required in our prior work. A comprehen-
sive analysis (Sec. 5.6) validates its superiority is
further provided to validate its superiority.

3) An extension of the Semi-DETR++ framework to
segmentation tasks, demonstrating its versatility
by achieving strong performance on both semi-
supervised instance and semantic segmentation,
and underscoring the superior generalization capac-
ity of our proposed approach.

2 RELATED WORK
2.1 Object Detection

Modern object detection has undergone substantial
progress, largely driven by advances in deep learning. Early
breakthroughs were dominated by Convolutional Neural
Network (CNN)-based architectures, which can be broadly
categorized into two-stage and one-stage detectors.
Two-stage detectors, pioneered by the R-CNN fam-
ily [29], [28], [65], operate through a coarse-to-fine process.
They first generate a sparse set of region proposals and
then perform classification and bounding-box regression
on these regions. Faster R-CNN [65] is a landmark model
in this category, introducing a dedicated Region Proposal
Network (RPN) to efficiently generate proposals, thereby
unifying the entire pipeline into a single network. In con-
trast, one-stage detectors [01], [62], [63], [75], [99] streamline
the process by directly predicting bounding boxes and class
probabilities from image features, eliminating the proposal
generation step. Models like the YOLO series [61], [62],
[63] and FCOS [75] exemplify this approach, which is of-
ten favored in real-time applications due to its superior
inference speed. Despite their success, both two-stage and
one-stage paradigms are inherently dense predictors. They
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rely on numerous hand-crafted components, such as rule-
based label assignment strategies [95], [26], [27], [24], [46],
[93], [45] and non-maximum suppression (NMS) for post-
processing [8], [9]. These elements introduce complexity and
can hinder optimal performance.

A paradigm shift was initiated with the introduction of
the Detection Transformer (DETR) by Carion et al. [11]. By
leveraging the transformer architecture [76], DETR formu-
lates object detection as a set prediction problem. It uses
a set of object queries and bipartite matching for label
assignment, thereby eliminating the need for anchors and
NMS. This end-to-end design sparked significant interest,
leading to a series of improved variants that address initial
limitations in convergence speed and performance. Notable
works include Deformable DETR [100], which improves
efficiency with multi-scale deformable attention, and DN-
DETR [41], which accelerates convergence through denois-
ing. Most recently, DINO [92], equipped with comprehen-
sive enhancements, has achieved state-of-the-art detection
performance.

2.2 Semi-Supervised Learning

Semi-supervised learning (SSL) is a powerful paradigm
designed to improve model performance by leveraging both
labeled and abundant unlabeled data. Early foundational
work established key principles based on graph theory and
transductive learning [6], [2], [10], as well as bootstrapping
methods like self-training and co-training [82], [67], [7], [1].

In the deep learning era, SSL has been dominated by
two principal techniques: Pseudo-Labeling and Consistency
Training. The Pseudo-Labeling (PL) strategy [39], [82] in-
volves generating artificial labels for unlabeled data and
incorporating them into the training process as ground
truth. To mitigate the confirmation bias inherent in this
approach, advanced methods [89], [79], [16] often employ
dynamic thresholding mechanisms to selectively generate
higher-quality pseudo-labels. In contrast, Consistency Train-
ing (CT) is based on the manifold assumption, which posits
that a model’s predictions should remain consistent under
small perturbations of the input. This is typically enforced
by applying different data augmentations [91], [20], [21] to
the same unlabeled sample and minimizing the divergence
between the model’s outputs [38], [74]. The Mean-Teacher
framework [74] is a seminal work in this domain, which
maintains a teacher model as an exponential moving aver-
age (EMA) of the student model, providing stable targets
for consistency regularization.

Recently, a trend has emerged to synergistically combine
Pseudo-Labeling and Consistency Training within unified
frameworks like MixMatch [5] and FixMatch [71]. These
methods often build upon the Mean-Teacher architecture
to achieve state-of-the-art performance by leveraging the
strengths of both techniques. For a more comprehensive
overview, we refer readers to recent surveys [85].

2.3 Semi-Supervised Object Detection

Semi-supervised object detection (SSOD) seeks to enhance
the performance of object detectors by leveraging large
amounts of unlabeled data through semi-supervised learn-
ing methods. As a pioneering work, STAC [72] successfully

adapted pseudo-labeling and consistency training strategies
from SSL [82], [71], [5] to the object detection task. Subse-
quent research has largely focused on refining these two
core techniques, primarily within the framework of two-
stage and one-stage CNN-based detectors.

Advances in Pseudo-Labeling. A significant line of work
aims to generate more accurate pseudo-labels. Early meth-
ods like ISMT [86], Humble-Teacher [73], and Instant-
Teaching [98] employed techniques such as pseudo-label
ensembling, co-rectification, and soft supervision [12] to
exploit the pseudo-labels more reliably. To address class
imbalance and confirmation bias in pseudo-labels, Unbiased
Teacher [53] integrated the Mean-Teacher framework with
Focal Loss, while ACRST [90] and CAPL [44] developed
specific strategies to mitigate the negative effects of im-
balanced pseudo-label distributions. Soft-Teacher [84] ad-
vanced this further with a decoupled labeling strategy and
adaptive weighting. Other innovations include VCL [14],
[15], which introduces virtual categories to exploit previ-
ously discarded low-confidence pseudo-labels, and Active-
Teacher [58], which reformulates pseudo-labeling as an
active sample selection problem to seek a more reliable
pseudo-label selection strategy. TMR [56] otherwise encour-
ages diverse pseudo-labels by leveraging representation dis-
agreement.

Advances in Consistency Training. Another direction fo-
cuses on strengthening consistency regularization. Early
efforts like CSD [34] employed simple flip augmentations
for prediction consistency. MUM [35] developed more ad-
vanced image-tile augmentations for stronger regulariza-
tion. Subsequent work shifted towards feature-level con-
sistency; for instance, PseCo [43] and SED [30] introduced
consistency training to promote scale-invariant learning.
Extension to One-Stage Detectors. While early SSOD meth-
ods were predominantly built on two-stage detectors, recent
works [96], [78] have extended these techniques to one-
stage architectures. DSL [13], [87] and Unbiased-Teacher
V2 [54] made an initial comprehensive attempt, investigat-
ing adaptive pseudo-labeling and uncertainty consistency
for anchor-free one-stage detectors. Other approaches like
USD [19] and Dense-Teacher [97] focused on developing
dense pseudo-labeling paradigms tailored for one-stage de-
tectors such as FCOS [75] and RetinaNet [47]. We refer
readers to [69] for a more comprehensive overview of SSOD
methods.

In contrast to this extensive landscape of CNN-based
methods, the application of SSOD to Detection Transform-
ers (DETRs) remains relatively unexplored. Our conference
paper, Semi-DETR [94], represents the first dedicated work
to enable efficient semi-supervised learning with DETR ar-
chitectures. A subsequent method, Sparse Semi-DETR [68],
focuses on the query design for improved small-object de-
tection. Note that concurrent to our work, Omni-DETR [77]
proposed a DETR-based framework for omni-supervised
learning. While Omni-DETR can be applied to the semi-
supervised setting, it essentially applies a naive Mean-
Teacher framework directly to DETR without addressing its
unique challenges. As our study demonstrates, this direct
application leads to suboptimal performance, underscoring
the need for designs specifically tailored for SSOD with
DETRs.
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Fig. 1: Left: Analysis of the sensitivity of the assignment strategy. The inherent one-to-one (020) assignment - Hungarian
matching, is more sensitive to the noise in the ground truth boxes. In contrast, the traditional one-to-many (O2M)
assignment exhibits more resistance to noisy labels. Right: The illustration of the issue of the consistency training in
DETR-based SSOD compared with the traditional CNN-based detector.

3 THE SEMI-SUPERVISED DILEMMA FOR DETRS
3.1 Preliminary

General SSOD Framework. Semi-supervised object detec-
tion (SSOD) leverages the limited labeled data alongside
a large collection of unlabeled data to enhance detection
performance. Formally, let D, = {zf,y5}Y denote the
labeled dataset and D, = {2} the unlabeled dataset,
where N; < N,,. The annotations y° consist of bounding
box coordinates and object categories.

Modern SSOD methods predominantly resort to the
Mean-Teacher framework [74]. Typically, it maintains a stu-
dent model and a teacher model with identical architec-
ture. During training, a weakly augmented version of an
unlabeled image is fed to the teacher to produce pseudo-
labels via filtering the dense prediction with the confidence
threshold d. A strongly augmented view of the same image
is then passed to the student model and is used to train
the student model with the supervision from the pseudo-
labels. The overall training objective combines supervised
and unsupervised losses:

L= ['sup + Ay - Eunsupa (1)

where L, is computed on labeled data D, Lunsup is the
consistency loss on unlabeled data D,,, and A, is a balancing
weight. The student model parameters 6, are updated via
standard gradient descent, while the teacher parameters 6;
are updated as an exponential moving average (EMA) of the
student:

05<—95—vg—é, 0, + aby + (1 — a)bs, )

where 7 is the learning rate and « is the EMA decay rate.

End-to-End Detection Paradigm of DETR. Detection Trans-
former (DETR) reformulates object detection as a set pre-
diction problem. It utilizes a set of object queries that
interact with image features via cross-attention to extract
and update object features. A key innovation of DETR is
the use of a one-to-one (0O20) bipartite matching strategy to
assign the unique best-matched prediction to each ground-
truth object during training, thereby eliminating the need

for handcrafted components such as anchors and non-
maximum suppression (NMS). Formally, given N object
query predictions, the optimal assignment 6, is found by:

N

Oo20 = arg min Z Cmatch (gzv ya(z)) ) (3)

S —
where £y is the set of permutations of N object query
predictions, §; and y, ;) is the i-th ground truth and o (i)-th
object query’s prediction, respectively. Note that we follow
[11] to pad the ground truth with no-object to have the same

length as the prediction for illustration clarity.

Generally, the matching cost Catch integrates classifica-

tion, regression, and IoU costs:

Cmatch (37; y) = Aclsccls(g, y) + )\regcreg(ga y) + Aiouciou (ga y() 7)

4
where Cgs, Creg, Ciou are the matching cost functions that
measure the alignment between the ground truth § and
the prediction y. Ads, Areg; Aiou are the correponding cost
weight. This 020 assignment uniquely assigns each ground
truth to its best-matching prediction, which encourages the
matched prediction to become highly confident and accu-
rate, resulting in highly distinguishable outputs that can
remove duplicated predictions by simply ranking operation,
thereby achieving an NMS-free inference pipeline.

3.2 Challenge of DETR-based SSOD

We delve into the two most common SSOD techniques,
pseudo-labeling and consistency regularization, and reveal
significant issues when applying them to DETRs.

Inefficient Training with Noisy Pseudo-Labels. We found
the one-to-one assignment inherent to DETR’s Hungarian
matching is highly sensitive to noisy pseudo-labels, lead-
ing to significant optimization inefficiency. This sensitiv-
ity stems from the algorithm’s global optimization, which
selects a single, best-matching prediction for each object.
When pseudo-labels are inaccurate, this process is prone to
suffer from significant deviation: a low-quality prediction
may be incorrectly selected as a positive sample, while a
high-quality candidate is relegated to a negative sample.
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This creates a fundamental optimization conflict, where the
model is actively trained against its own more accurate
predictions, severely hampering learning efficiency. In con-
trast, traditional one-to-many assignment strategies mitigate
this issue by design. By allowing multiple candidates to be
assigned to a single ground truth, they inherently increase
robustness to label noise, as the probability of a high-quality
candidate being entirely overlooked is greatly reduced.

To quantitatively validate this hypothesis, we conducted
a controlled experiment comparing the sensitivity of both
assignment strategies to label noise. We systematically per-
turb the ground-truth (GT) boxes b; = (z1,y1, %2, y2) with
increasing levels of noise, following a box jittering proce-
dure similar to [84]:

l;’L = (1‘1 + 6l‘17y1 + 5y17l’2 + 5332,2/2 + 5y2),
8 = (021,041,042, 0y2) ~ N(0,1) ® (sw, sh, sw, sh). (5)

Here, b; and b; represent the original GT boxes and the per-
turbed version, respectively, s is the injected noise level, and
w and h are the width and height of b;. We then applied both
the DETR’s Hungarian matching and a traditional one-to-
many assignment [24] to these noisy labels. To evaluate as-
signment quality, we measured the highest overlap between
the assigned positive samples and the original, unperturbed
ground truth boxes (termed as GT Match Quality).

It can be observed on the left of Figure 1, the quality
of positive samples assigned by the one-to-one strategy
degrades rapidly than the one-to-many assignment as the
noise increases. This confirms that the Hungarian matcher
is more vulnerable to the noisy pseudo-labels, causing it
to select poor positives and, critically, leaving many high-
quality predictions as negative samples. This directly creates
the optimization conflict described above. Conversely, the
one-to-many strategy consistently identifies positives that
align well with the original ground truth, even under high
noise levels, demonstrating superior robustness to local-
ization noise and ensuring high-quality candidates receive
proper supervisory signal.

Query-based Decoder Complicates the Consistency Train-
ing. Consistency regularization has proven effective in var-
ious convolution-based studies of SSOD. Its success stems
from enforcing consistent predictions between different aug-
mented inputs, such as weak and strong augmentation [34],
or scale augmentation [30], [43]. This exerted consistency
regularization facilitates the learning of a more discrim-
inative representation that facilitates more effective and
robust detection. However, one critical condition of such
a consistency scheme is the presence of clear deterministic
correspondence relationships across different augmented
views, which is used to construct the pair to impose the
consistency constraint. As depicted in Figure 1, the tradi-
tional CNN-based detectors like Faster-RCNN [65] oper-
ate on local regions via ROIAlign, which maintains the
consistent spatial information throughout the processing,
facilitating the establishment of corresponding region pairs
for consistency regularization training [30]. However, this is
not the case in detection transformers. As illustrated in the
right of Figure 1, DETRs formulate the detection task as a
set-prediction problem and rely on sparse object queries for
adaptive attention-driven object feature aggregation. This

unique design complicates the acquisition of corresponding
prediction pairs necessary for consistency regularization
application, as the responsible region of a particular ob-
ject query constantly changes. Formally, let denote decoder
queries as q = {qo, g1, ---, gn—1} and the output of the Trans-
former decoder as o = {0g,01,...,0n_1}. F and A denote
the refined image features after the transformer encoder
and the attention mask derived based on the denoising
task design, respectively. Then, the decode operation can
be represented as:

o= D(q, F|A), (6)

where D denotes the Transformer decoder. The reason why
it is infeasible to apply the consistency regularization on
DETR-based SSOD can be illustrated as,

PredOrder(o) # PredOrder(q), 7)

where PredOrder refers to the order of each object query’s
prediction, which indicates the corresponding responsible
regions of each query. This is also evidenced by the analysis
of [41], [51]. This poses a notable challenge to implementing
consistency training for the DETR-based SSOD methods.
For instance, since the input query’s responsible region may
alter after the attention-driven feature update, it is not so
straightforward to construct the consistent query pairs in
different scales and then impose the consistency constraint
on the model’s prediction as the practice in [30].

4 SEMI-DETR++
4.1 Overview

To tackle the issue when adapting the DETR for the SSOD
task, we propose Semi-DETR++, which is the improved
version of our conference work, Semi-DETR [94], the first
DETR-based SSOD method. The overview of Semi-DETR++
is presented in Figure 2. We implement our method based on
the widely used Mean-Teacher [74] framework. We develop
two novel components, that is, Stage-wise Hybrid Matching
and Re-decode Query Consistency, to enable more efficient and
effective semi-supervised object detection with detection
transformers. With these dedicated designs, Semi-DETR++
achieves end-to-end semi-supervised object detection, elim-
inating the annoying hand-crafted components like NMS
during inference, and achieving state-of-the-art SSOD per-
formance. Furthermore, we showcase that our method can
naturally generalize to the segmentation task, exhibiting de-
cent segmentation performance under the semi-supervised
setting.

4.2 Stage-wise Hybrid Matching

To address the training inefficiency caused by inherent one-
to-one bipartite matching with inaccurate pseudo-labels, we
propose a stage-wise hybrid label-matching strategy, which
brings the best of both one-to-many and one-to-one assign-
ment strategies to enable efficient training while preserving
the end-to-end nature of DETRs.

Given that the pseudo-labels are often noisy during
early training, which may mislead the one-to-one Hungar-
ian matching, we argue that assigning multiple potential
positive candidates to pseudo-labels is more appropriate at
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Fig. 2: Overview of Semi-DETR++. We take the teacher-student framework to implement our semi-supervised object
detection with Detection Transformer (DETR). Generally, we contribute two novel designs, Stage-wise Hybrid Matching
(SHM) and Re-decode Query Consistency (RQC). The former is proposed to ease the training inefficiency in the early stage
when the pseudo labels are noisy, while the latter is designed to achieve effective consistency training with DETRSs.
Integrating these two designs, Semi-DETR++ achieves the state-of-the-art semi-supervised object detection performance.

this period. To this end, we divide the training into two
stages and employ a one-to-many assignment to mitigate
the potential optimization conflicts caused by the noisy
pseudo-labels in the early stage. Formally, the one-to-many
assignment &oom is defined as:

M 71

Oo2m = { arg min Z Cmatch (yza ym(j)) ) 8)
o, eCH j=1

i=1
where CAN4 is the set of M combinations of IV, which denotes
that a subset of M proposals in N candidates is assigned
to ground truth (pseudo ground truth) ¢;. This strategy
selects M positive samples for each pseudo-label based on
a matching cost. To align with DETR’s design, we consider
both classification and regression in the matching criteria.
Specifically, we use a high-order combination of the classi-
fication score s and the IoU overlap u between predicted
and ground truth bounding boxes to define the matching
quality:

Crmatch (9i5 Yj) = —mij = —s; ufj, 9

where s;; and u;; represent the classification score and
IoU overlap of the j-th prediction with respect to the -
th ground truth, respectively. The term m;; indicates the
overall matching quality of the j-th candidate with the i-
th ground truth. The hyperparameters « and 5 control the
effect of classification score and IoU during the assignment,
with default values set to @« = 1, § = 6. We then assign
multiple candidates to each ground truth based on the
lowest matching cost. If a candidate is assigned to multiple
ground truths, we select the ground truth with the maxi-
mum overlap. Therefore, for each positive candidate j, we
can obtain its matching quality /n; with respect to the target
ground truth. Since our one-to-many assignment may also
include some low-quality positive ones when increasing the
number of positive candidates, we then utilize the matching
quality to suppress the impact of such kinds of low-quality

positive samples. Concretely, we modify the classification
and regression loss function to exploit these positive sam-
ples as follows:

Npos N“EE
Ly =" |y — sj|"BCE (s;,17;) + Y 5] BCE (s;,0),
j=1 j=1
poa R Npus .
E;)eng = Z M, LGiou ( bJ) + Z m;Lr1 (bj,bj) ,
£om — pm g ﬁgggm, (10)

where 1y is set to 2 by default, s; and b; is the classification
prediction and regressed bounding box location of j-th
candidate. b; and 7 are assigned the ground truth box
and the matching quality of the target ground truth. With
such an assignment strategy, the noisy pseudo-labels can be
covered by multiple positive samples nearby, which reduces
the risk of conflicting positive and negative proposals, and
in conjunction with the modified loss function, the nega-
tive impact caused by proposals with inferior quality can
also be suppressed. Although the one-to-many assignment
eliminates the training inefficiency, it inevitably leads to
duplicated prediction, wherein the NMS must be applied
during the pseudo-label generation in the one-to-many
assignment training stage. With the accuracy of pseudo-
labels increasing, we transform to the original one-to-one
assignment along the loss function in [11], [100] after T
steps, one-to-many assignment training to rescue the NMS-
free property of DETRs in the late training stage. The loss is
also altered into:

£ = L0+ L ay
Note that in this stage, the NMS operation is retained
during pseudo-label generation as it is not clear when the
duplication is entirely eradicated, while the model gradually
learns to remove the duplicated prediction. Ultimately, the
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model evolves into an NMS-free model during inference,
aligning with DETR’s end-to-end design.

4.3 Re-decode Consistency Training

The lack of correspondence in the responsible region be-
tween the outputs and the inputs after going through the
forward decoding hinders the efficient consistency training
in DETR-based SSOD.

Cross-view Consistency Training: In our previous work
(Semi-DETR), we addressed the challenge of consistency
training for DETRs by designing cross-view query consis-
tency (CQC) regularization. This approach ensures local
decoding behavior by leveraging the semantic context of
cross-view queries. The implementation, depicted in Fig-
ure 3, follows a structured pipeline: (1) generating pseudo-
consistency bounding boxes b from the teacher model’s
final decoder layer outputs; (2) extracting region-of-interest
(ROI) features using RoIAlign; and (3) constructing the
final cross-view queries by projecting these features and
exchanging them between two distinct augmented views of
the input image. These constructed cross-view queries of the
student model and teacher model are then used to guide
the decoding process of the teacher and student decoder,
respectively, which can be formulated as follows:

4t = MLP(ROIAlign(Fy, b)), §s = MLP(ROIAlign(Fy,b)),
6t = Dyi(Gs, Fi|A), 6s = Dy(as, Fs|A), (12)

where F; and F are the encoded features of the teacher and
student model. gs and G are the constructed cross-view
queries from the student and teacher models. The cross-
view query consistency loss is imposed on the final decod-
ing results of these queries. The core insight behind cross-
view query consistency (CQC) training is to exploit the se-
mantic prior to assist with query correspondence. Instead of
taking the randomly initialized /constantly updated object
queries to construct the consistency training pairs, it utilizes
the local feature of the consistency pseudo-labels regions as
the initialization of the query for consistency regularization,
which constrains the decoded operation locally. The injected
semantic prior enables the inherent implicit decode output
to correspond, where consistency regularization is exerted
to boost the semantic matching capability of the decoder.
Despite its effectiveness, CQC suffers from two pri-
mary limitations: (a) Heuristic Candidate Selection: The
consistency training requires a careful selection of candidate
boxes. An insufficient number leads to inadequate training,
while an excess of boxes with poor semantic coverage
introduces unreliable correspondences and compromises
effectiveness. Although our conference version addressed
this issue with a cost-based pseudo-label mining strategy,
it complicates the overall pipeline. (b) Computational Over-
head: The reliance on the ROIAlign operation introduces
considerable time cost. This overhead becomes especially
prominent when increasing the number of queries to enforce
dense consistency regularization.
Re-decode Consistency Training: To address the issue of
cross-view consistency training, we propose a novel con-
sistency scheme that eliminates the need for tedious can-
didate box selection. Our approach is motivated by the
insight that while object queries are global, their decoding

becomes more localized as they progress through the de-
coder layers. To quantify this phenomenon, we define the
decoding instability score (DIS) to measure the prediction
order alternation of the object query across decoder layers.
Formally, let the predicted objects from decoder layer ¢ be
O ={0§,01,...,0%_,}, where N is the number of queries,
and the ground-truth objects be T' = T, 11, ..., Tars—1, where
M is the number of ground-truths. We denote the corre-
sponding relationship between the queries’ prediction and
the ground truth inferred via bipartite matching with index
vector VI = {V¢, Vi . Vi 1},

i [ m, if Of matches T},
Vo = { —1, if O! matches nothing , (13)
Then, the decoding instability score is calculated as:
N
DIS™' =N "1(Vi £ Vi), (14)
=0

We statistic the layer-wise DIS on the left of Figure 3, which
clearly shows that the prediction order variation diminishes
rapidly as decoding proceeds, regardless of whether it is in
the early, middle, or late stages of training. In other words,
although the query has the global receptive field with attention
mechanism, the decoder is learn to update the query features and
make it more localized, enabling more stable and local decoding.

Based on this observation, we introduce a re-decode
query consistency (RQC) scheme for DETR-based SSOD, as
illustrated in Figure 3. Specifically, we formulate the query
as a combination of content and positional queries following
[50], [41], [92]), ie. , ¢ = q¢f + ¢¥, where ¢f is a learnable
content query and ¢ is the positional query initialized with
the proposal box location. Given the content and positional
queries of the teacher and student models, we first decode
these queries as usual. Then, we use the updated candidate
box from the last decoder layer of the teacher model to
reinitialize the positional queries for both the teacher and
student decoders. Subsequently, we conduct an additional
decoding process using their corresponding updated con-
tent queries. Since each content query has already identified
the best-matched positional query to aggregate features for
specific objects during the first decoding process, these
queries are ensured to aggregate features locally during
the second decoding process. This locality enables us to
construct consistent training query pairs without requiring
additional matching, as follows:

o¢ = Di(af +at, F1[A), s = Ds(ag +ag, Fs|A) (15)

where ¢; and ¢S are the learnable content query of the
teacher and the student decoder after the first round de-
coding, ¢! is the positional query derived from the teacher’s
dense box prediction from the last decoder layer. We then
pose the consistency regularization on the classification
based on the decoded queries 04 and og:

wi =I( max p* (ye | 3r) > 1),

|0+

Lot = D wilke(p°(Ye | 05,)1| (0" (e | 0,)).
i=0

(16)

where p(+|-) is the classification head, K is the number of
class, Lk are the Kullback-Leibler (KL) divergence loss.
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Fig. 3: Left: Through layer-by-layer decoding, DETRs gradually focus on the local region, resulting in more stable object
queries and ground truth object correspondence. Right: The illustration of the cross-view query consistency and the newly
proposed re-decode query consistency. ‘Cont.” - content query; ‘Pos.” - positional query.

We modify the KL loss by adding an extra focal term to
eliminate the imbalance problem following [59]. Here, we
further introduce the weight factor w; to make the model
focus more on the foreground object with the confidence
threshold 7. We did not add the regression loss during
consistency training as we observed no obvious gains when
incorporating such a term.

4.4 Training Objective

The complete training objective of our Semi-DETR++ is the
combination of supervision loss and consistency loss:

Actotal = Elabel + Eﬁ?f;p, (17)

where £ is the consistency loss calculated with the unla-
beled data. The Lipe is the label supervision loss including
both labeled data and unlabeled data, and is formulated as

follows:

Liapel = JI@ng)(ESiE‘ +)\U‘C3$1rsr:1p) +H<t>T1>(£2§S +/\uﬁﬁigup)-

(18)
Here, t is the current training step, and 7} is the one-to-
many assignment training duration. A, is the loss weight
for the unlabeled data.

5 EXPERIMENT
5.1 Setup

Datasets and Evaluation Protocols: We evaluate our
method on two standard object detection benchmarks:
MS-COCO [48] and PASCAL VOC [23]. The MS-COCO
dataset contains 160k labeled images across 80 categories,
partitioned into train2017 (118k), val2017 (5k), and
test2017 (41k) splits. An additional 123k unlabeled im-
ages are provided in the unlabeled2017 set. We follow
established protocols and evaluate under two settings: (a)
COCO-Partial: We treat 1%, 5%, and 10% of the train2017
set as labeled data, using the remainder as unlabeled data.
For each data split, we report the mean average precision
(mAP) on the val2017 set averaged over 5 different data
folds. (b) COCO-Full: The entire train2017 set is used
as labeled data, supplemented by the unlabeled2017

set. Performance is reported as mAP on the val2017 set.
For the PASCAL VOC benchmark, we follow previous
works [13], [30] by training with VOC2007 training set as
labeled data and the VOC2012 as the unlabeled data, and
report APsg and APs0.95 on the VOC2007 test set.
Implementation Details: We implement Semi-DETR++ us-
ing two representative detection transformers, Deformable-
DETR [100] and DINO [92], with a ResNet-50 backbone [32]
pre-trained on ImageNet [22]. We use Focal Loss [47] for
classification and a combination of Smooth L1 Loss and
GIoU Loss [66] for regression. The number of object queries
is set to 300 for Deformable-DETR and 900 for DINO. The
training configurations for different settings are as follows:
(a) COCO-Partial: Models are trained for 120k iterations
with a batch size of 40 (5 images/GPU). The first stage of
our hybrid matching lasts for 60k iterations. The labeled-
to-unlabeled data ratio per iteration is 1:4, with an unsu-
pervised loss weight A\, = 4.0. (b) COCO-Full: Training
is extended to 240k iterations with a batch size of 64 (8
images/GPU). The first hybrid matching stage lasts 180k
iterations. The labeled-to-unlabeled data ratio is 1:1, with
Ay = 2.0. (c) PASCAL VOC: Models are trained for 60k itera-
tions, with a 40k-iteration first stage. Other hyperparameters
align with the COCO-Partial setting. Across all experiments,
we use the Adam optimizer [36] with a learning rate of
0.0015 and no decay. The teacher model is updated via the
exponential moving average (EMA) with a momentum of
0.999. For pseudo-labeling, the confidence threshold ¢ is set
to 0.4, and the employed strong and weak augmentation
is the same with Soft-Teacher [84]. The number of positive
candidates M during the O2M assignment in SHM is set to
13. The foreground confidence threshold 7 used to calculate
the consistency loss is set to 0.15.

5.2 Comparison with State-of-the-art Methods

We present a comprehensive comparison of Semi-DETR++
against current state-of-the-art (SOTA) SSOD methods on
the MS-COCO and PASCAL VOC benchmarks.

MS-COCO Benchmark As summarized in Table 1, Semi-
DETR++ establishes a new state-of-the-art across all data
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TABLE 1: Quantitative comparisons in COCO benchmark. All results are the average of all 5 folds. ‘Def-DETR’ denotes
Deformable DETR. ‘Sup Only” denotes supervised-only baseline.

Method Reference COCO-Partial COCO-Full
1% 5% 10% 100%
Two-Stage Detector
Unbiased Teacher [53] ICLR 2020 20.75+0.12 28.27+0.11 31.50+0.10 40.2 — 41.3 (+1.1)
Soft-Teacher [84] ICCV 2021 20.46 £0.39 30.74+0.08 34.04+0.14 40.9 — 44.5 (+3.6)
Active-Teacher [58] CVPR 2022 22.20 30.07 32.58 —
DTG-SSOD [42] NeurIPS 2022 21.27+0.12 31.90+0.08 35.924+0.26 40.9 — 45.7 (+4.8)
PseCo [43] ECCV 2022 22.43+0.36 32.50+0.08 36.06+0.24 41.0 — 46.1 (+5.1)
MixTeacher [49] CVPR 2023 25.16 £0.26 34.06 +£0.13 36.724+0.16 40.9 — 45.7 (+4.8)
VC Learning [15] TPAMI 2024 23.86 32.05 34.82 —
TMR-RD-v2 [56] WACYV 2024 26.91 34.37 37.74 40.2 — 46.9 (+6.7)
Single-Stage Detector
DSL [13] CVPR 2022 22.03+0.28 30.87+0.24 36.224+0.18 40.2 — 43.8 (+3.6)
Dense Teacher [97] ECCV 2022 22.38+0.31 33.01+0.14 37.13+0.12 41.2 — 46.1 (+3.6)
Unbiased Teacher v2 [54] CVPR 2022 22.71+£0.42 30.08+0.04 32.61+0.03 40.2 — 44.7 (+4.6)
Consistent Teacher [78] CVPR 2023 26.30 £0.32 35.70+0.14 40.00+0.13 40.5 — 47.7 (+7.2)
DIL [87] TIP 2025 25.00 32.20 34.45 —
End-to-End Detector
Deformable-DETR Supervised [100] — 11.00 £ 0.24 23.704+0.13 29.20£0.11 —
Deformable-DETR SSOD — 19.40+£0.31 31.10£0.21  34.80 £0.09 -
Omi-DETR (Def-DETR) [77] CVPR 2022 18.60 30.20 34.10 -
Semi-DETR (Def-DETR) CVPR 2023 25.20 £0.23 34.50+0.18 38.10+0.14 -
Semi-DETR++ (Def-DETR) — 26.00 £0.28 35.20+0.20 39.40 £ 0.13 —
DINO Supervised [92] — 18.00+0.21 29.50+0.16 35.00+0.12 —
DINO SSOD — 28.40 £0.21 38.00+0.13 41.60+0.11 —
Omi-DETR (DINO) [77] CVPR 2022 27.60 37.70 41.30 —
Semi-DETR (DINO) [94] CVPR 2023 30.50 £0.30 40.10 £0.15 43.50£0.10 48.6 — 50.4 (+1.8)
Sparse Semi-DETR (DINO) [68] CVPR 2024 30.90 £0.23 40.80+0.12 44.30+0.01 49.2 — 51.3 (+2.1)
Semi-DETR++ (DINO) = 31.20 £ 0.21  41.60+0.14  45.00 £ 0.15 48.6 — 53.0 (+3.8))

regimes on the MS-COCO benchmark. The results can be
analyzed from three perspectives:

(a) Superiority over Conventional Methods. Semi-DETR++
demonstrates substantial performance gains over leading
methods built on traditional two-stage and one-stage de-
tectors. For instance, using a Deformable DETR backbone,
our method surpasses PseCo by 3.57, 2.70, and 3.34 mAP
under the 1%, 5%, and 10% labeled data settings, re-
spectively. The advantage is even more pronounced with
a DINO backbone, where margins over PseCo increase
to 8.77, 9.10, and 8.94 mAP. Similar substantial improve-
ments are observed against Dense Teacher. While the latest
method, Consistent-Teacher, shows a slight edge over our
Deformable DETR-based model—attributable to its addi-
tional, parameter-heavy feature alignment module—Semi-
DETR++ with DINO decisively outperforms it by significant
margins of 4.89, 5.89, and 5.00 mAP. These results under-
score the superiority of our end-to-end approach, which
achieves higher performance while eliminating the hand-
crafted components inherent in conventional detectors.

(b) Advancements in DETR-based SSOD. Semi-DETR++
yields a significant boost over both the supervised base-
line and a naive Mean-Teacher semi-supervised baseline
of DETRs. When applied to DINO, it exceeds the semi-
supervised baseline by 2.80, 3.60, and 3.40 mAP, confirming
that a direct application is suboptimal and that our tailored
design is crucial. Furthermore, Semi-DETR++ consistently
outperforms our conference version, Semi-DETR, by 0.70,
1.50, and 1.50 mAP, and also surpasses the recent Sparse

Semi-DETR, which specializes in small-object detection.
This validates the effectiveness and generalizability of our
proposed components.

(c) Effectiveness with Large-Scale Unlabeled Data. Un-
der the COCO-Full setting, which leverages the large-scale
unlabeled2017 set, Semi-DETR++ achieves its most im-
pressive results. It elevates the strong DINO baseline from
48.6 to 53.0 mAP, setting a new state-of-the-art record. This
substantial improvement, starting from an already high
baseline, powerfully demonstrates the scalability and ro-
bustness of our method when abundant unlabeled data is
available.

Pascal VOC Benchmark. Semi-DETR++ demonstrates con-
sistent and superior performance on the PASCAL VOC
benchmark, as detailed in Table 2. Building upon our confer-
ence version, Semi-DETR++ significantly improves over the
supervised baseline, achieving gains of 9.0 AP5y and 11.0
AP50.95 with a Deformable DETR backbone (and 4.9 AP5q
and 5.6 AP5g.95 with DINO). These results culminate in
Semi-DETR++ surpassing all previous state-of-the-art SSOD
methods by substantial and consistent margins across both
evaluation metrics, further validating its robustness.

5.3 Extending Semi-DETR++ to Segmentation Tasks

The versatility of Semi-DETR++ is further evidenced by
its strong performance on semi-supervised segmentation
tasks, as shown in Table 3 and Table 4. For semi-supervised
instance segmentation, our method establishes a new state-
of-the-art. It outperforms the leading method, Guided Dis-
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TABLE 2: Quantitative comparisons in PASCAL VOC
benchmark. All results are the average of all 5 folds.
Def-DETR denotes Deformable DETR. Sup Only denotes
supervised-only baseline.

Method AP35 APs50.95
Two-Stage Detector

Unbiased Teacher [53] 77.37 48.69
Instant-Teaching [96] 79.20 50.00
Humble Teacher [73] 80.94 53.04
Single-Stage Detector

DSL [13] 80.70 56.80
Dense Teacher [97] 79.89 55.87
Unbiased Teacher v2 [54] 81.29 56.87
DIL [87] 77.60 -
End-to-End Detector

Deformable-DETR (Sup only) [100] 74.50 46.20
Deformable-DETR SSOD (Baseline) 78.90 53.40
Semi-DETR (Def-DETR) [94] 83.50 57.20
Semi-DETR++ (Def-DETR) 84.20 58.30
DINO (Sup only) [92] 81.20 59.60
DINO SSOD (Baseline) 84.30 62.20
Semi-DETR (DINO) 86.10 65.20
Semi-DETR++ (DINO) 86.40 66.10

TABLE 3: Semi-supervised instance segmentation with
Semi-DETR++ on COCO dataset. Following the SOTA
method of Guided Distillation [3], we report the instance
segmentation mAP on the COCO dataset.

Method Backbone 1% 2% 5% 10%
Supervised Method

Mask-RCNN [31] R50 35 95 174 219
CenterMask2 [40] R50 101 135 180 221
Mask2Former [18] R50 135 20.0 26.0 305
Ours (Sup-Baseline) R50 14.5 - 272 319
Semi-supervised Method

Data distillation [60] R50 38 118 204 242
Noisy Boundaries [51] R50 7.7 163 249 292
Polite Teacher [25] R50 183 223 265 30.8
Guided Distillation [3] R50 215 253 299 350
Ours (Semi-Baseline) R50 22.2 - 314 362
Ours R50 23.4 - 33.0 375

tillation [3], by 1.9, 3.1, and 2.5 mask mAP under the 1%,
5%, and 10% labeled data settings, respectively. This con-
sistent advantage highlights the transferability of our semi-
supervised learning framework. This trend extends to semi-
supervised semantic segmentation on the Cityscapes bench-
mark, where Semi-DETR++ also surpasses recent semi-
supervised methods across various data regimes. The strong
performance across these diverse tasks can be attributed
to two factors: (1) the inherent architectural flexibility of
DETR-based models, which facilitates a seamless transition
from detection to segmentation, and (2) our core semi-
supervised designs—the stage-wise hybrid matching and
redecode query consistency—which provide a general and
effective mechanism for leveraging unlabeled data beyond
the object detection task.

5.4 Qualitative Comparison

We present visual comparisons of Semi-DETR++ for semi-
supervised object detection under varying labeled data ra-

TABLE 4: Semi-supervised semantic segmentation with
Semi-DETR++ on Cityscapes dataset. We report the mloU
as the performance metric.

1/16 1/8 1/4 1/2
Method Backbone (186) (372) (744) (1488)
ECS [70] R50 - 67.4 70.7 72.9
CAC [37] R50 - 69.7 72.7 -
PS-MT [52] R50 - 67.4 70.7 72.9
U2PL [80] R50 70.6 73.0 76.3 77.2
UniMatch [85] R50 75.0 76.8 77.5 78.6
PrevMatch [70] R50 - 77.8 78.7 79.2
Ours R50 77.1 78.4 79.5 80.2
CPS [17] R101 69.8 74.3 74.6 76.8
AEL [33] R101 74.5 75.6 77.5 79.0
PS-MT [52] R101 - 76.9 77.6 79.1
U2PL [80] R101 74.9 76.5 78.5 79.1
PCR [83] R101 73.4 76.3 78.4 79.1
UniMatch [85] R101 76.6 77.9 79.2 79.5
PrevMatch [70] R101 - 78.9 80.1 80.1
Ours R101 78.9 79.5 81.2 81.8

tios on the COCO-partial dataset, as illustrated in Figure 5.
The results demonstrate that Semi-DETR++ consistently
outperforms the supervised baseline, particularly in chal-
lenging scenarios such as densely overlapped objects (e.g.
occluded giraffes, persons on motorcycles) and partially
visible objects (e.g. trucks). These findings underscore the
effectiveness of our method in leveraging unlabeled data
to enhance the base detector’s performance. Furthermore,
we showcase the performance of Semi-DETR++ in semi-
supervised instance segmentation, as depicted in Figure 6.
Compared to the state-of-the-art method [3], Semi-DETR++
achieves superior results with limited annotated data, gen-
erating more complete and precise masks. For instance, our
method excels in segmenting complex objects such as flying
birds and cats. These results highlight the superiority of
our framework in exploiting unlabeled data to improve the
performance of detection transformers across both detection
and segmentation tasks.

5.5 Ablation Study

We conduct a series of ablation studies to validate the
effectiveness of the proposed components in Semi-DETR++
and to determine the optimal design choices and hyperpa-
rameters. Unless otherwise specified, all experiments use
DINO with a ResNet-50 backbone and are trained on 10%
of the COCO labeled data.

TABLE 5: Components ablation of Semi-DETR++.

Stage-wise Re-decode
Hybrid Matching  Query Consistency mAP  APso  AP7s
416 583 4510
4 440 608 475
v 437 601 471
v v 450 621  48.6

Ablation Study of Components. As shown in Table 5, each
proposed component contributes significantly to the final
performance. Starting from a naive semi-supervised base-
line for DETR, the introduction of our Stage-wise Hybrid
Matching (SHM) yields a substantial gain of +2.4 mAP. This
confirms that mitigating optimization conflicts from noisy
pseudo-labels is critical for effective semi-supervised learn-
ing with DETRs. Separately, integrating the Redecode Query
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Fig. 4: Training time evaluation curve. (a) Semi-DETR/Semi-DETR++ employ stage-wise hybrid matching to eliminate
the inefficient training caused by the noisy pseudo-labels in the early stage, improving training efficiency significantly
compared to the naive semi-supervised baseline. (b) The newly introduced re-decode query consistency further boosts the
convergence speed and reaches higher performance than Semi-DETR.

TABLE 6: Hyperparameter ablation study. (a) PL Conf. - confidence threshold used to filter the pseudo-labels. (b) FG Conf.
- foreground confidence threshold used to filter the prediction to construct the consistency query. (c) Num Pos. - number
of the positive samples assigned during O2M assignment in SHM. (d) Unsup. Loss Weight - loss weight of unlabeled data.
(e) O2M lIters. - the duration of the one-to-many assignment during SHM training.

PL Conf. \ mAP FG Conf. \ mAP Num Pos. \ mAP

Unsup. Loss Weight | mAP  O2M Iters. (x10%) |mAP NMS-Free

0.2 43.1 0.05 441 9 444
0.3 44.3 0.10 447 11 44.6
0.4 45.0 0.15 45.0 13 45.0
0.5 445 0.20 445 15 44.8
0.6 43.7 0.25 442 17 447

0.5 42.8 4 444 v
1.0 43.7 6 45.0 v
2.0 443 8 447 v
4.0 45.0 10 445 v
8.0 43.8 12 45.3 X

Proportion of used labeled data

Fig. 5: A visual comparison between Semi-DETR++ (i.e. (b),
(d)) and the baseline method (i.e. (a), (c)). It can be observed
that Semi-DETR++ performs better under challenging cases,
such as similar appearance and high occlusion, demonstrat-
ing the superiority of Semi-DETR++.

Consistency (RQC) scheme into the baseline improves per-
formance by +1.9 mAP. This improvement stems from the
scheme’s ability to enhance decoding locality and stabilize
the matching process by guiding queries to focus on con-
sistent image regions. Crucially, when combined, SHM and
RQC exhibit a synergistic effect, pushing the performance
to 45.0 mAP. This result not only surpasses the sum of their
individual gains but also establishes a new state-of-the-art
for semi-supervised object detection under the 10% COCO
setting, underscoring the complementary nature of our two
core designs.

‘Guided Distillation

Semi-DETR++

Fig. 6: A visual comparison between Semi-DETR++ and
Guided Distillation on semi-supervised instance segmenta-
tion under 10% labeled data budget, where Semi-DETR++
generates more complete and precise segmentation masks.

More Efficient Training with Hybrid Label Matching.We
evaluate the efficacy of our Stage-wise Hybrid Matching
(SHM) by analyzing the training convergence curves in
Figure 4. Compared to a baseline using only one-to-one
(020) bipartite matching [11], both Semi-DETR and Semi-
DETR++ — when equipped with SHM — exhibit markedly
faster convergence and superior final performance. For in-
stance, when compared with the performance of the 60k
iteration of the baseline, Semi-DETR converges over 1.5 times
faster than the naive semi-supervised manner, and reach nearly
2.0 times under the challenging 1% labeled data setting. This
accelerated convergence stems from the one-to-many (O2M)
assignment in SHM, which provides a richer supervisory
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signal by designating multiple positive proposals. This de-
sign effectively counteracts the instability caused by noisy
pseudo-labels, leading to more robust optimization. The
resulting stability, in turn, fosters the generation of more
accurate pseudo-labels for subsequent training cycles. The
benefit of SHM is most pronounced in low-data regimes,
where the performance gap is largest. This underscores the
critical role of a robust assignment strategy when pseudo-
label quality is inherently volatile. Collectively, these results
validate the superiority of the O2M phase in SHM for
mitigating optimization conflicts and effectively harnessing
noisy pseudo-labels.

More Effective Re-decode Consistency. As shown in Fig-
ure 4, our newly proposed re-decode query consistency
scheme delivers substantial performance gains over our
previous version. When integrated with the same stage-wise
hybrid matching, Semi-DETR++ consistently outperforms
our conference version (Semi-DETR), which used cross-view
query consistency, across all labeled data settings (1%, 5%,
and 10%) throughout the training process. The superiority
of the new design stems from two key advantages. First, it
eliminates the complex process of constructing a consistent
query set, thereby simplifying the pipeline and improving
training speed by removing the computationally expensive
RoIAlign operation. Second, it achieves dense consistency
regularization by directly leveraging all decoded query fea-
tures from the initial pass. This dense supervisory signal
aligns with recent trends in SSOD for traditional detec-
tors [97], [42] and proves to be both more efficient and more
effective than our previous sparse consistency approach.
Design Choice of Consistency Training. We conduct an
ablation study on three key aspects of our consistency train-
ing: (1) How to construct the consistency queries? The most
straightforward design is to utilize the randomly initialized
query. However, this design compromises the overall per-
formance, particularly in terms of the AP75 metric as shown
in Table 7 (see row a). This is because the regions ultimately
attended to by random queries are unpredictable due to dy-
namic layer-by-layer updates, leading to misaligned consis-
tency pairs. Our conference version, Semi-DETR, addressed
this with a cross-view query consistency (see row b), which
uses semantic features to guide decoding towards local
regions. This provides a significant performance boost by
establishing a semantic prior that stabilizes query corre-
spondence. However, it requires a special design to obtain
the eligible consistency pseudo boxes, complicating the
overall pipeline. In contrast, our Semi-DETR++ introduces
a more elegant and effective solution: the re-decode query
consistency. It uses the teacher’s dense box predictions from
the first decoding pass as positional queries for a second
decoding step in both the teacher and student models, while
retaining their original content queries (see row f). This
design leverages high-quality positional guidance from the
teacher to ensure local feature aggregation, eliminating the
need for explicit query matching. Compared to sparsely
selected queries, this dense consistency regularization is
more comprehensive and effective. We also try to utilize
the content queries after the first decoding pass of the
student model (RD Stu.) and the teacher model (RD Tea.)
to serve as the consistency query of both the teacher and
the student decoder (see rows ¢, d). However, we found

TABLE 7: Ablation of the source of the consistency query,
and the form of consistency loss. ‘Random” - random query,
‘CV’ - cross-view query, ‘RD’ - re-decode query.

Teacher Query Student Query Cls Loss Reg Loss[mAP AP50 AP75

(a) Random Random (4 4 414 582 444
(b) Ccv CvV v 4 43.8 60.8 47.5
(c) RD Stu. RD Stu. v 445 61.4 48.0
(d) RD Tea. RD Tea. v 447 61.8 484
(e) RD Tea. RD Stu. v v 446 615 48.1
(f)  RD Tea. RD Stu. v 450 62.1 486

TABLE 8: Ablation on the decoder layer to apply the consis-
tency. We incrementally include the early decoder layers.

Selected Decoder Layers [ mAP AP59 AP7s
@ 6 45.0 62.1 48.6
(b) 56 449 618 48.7
(c) 456 44.8 61.8 48.4
(d) 3456 447 61.7 48.6
) 23456 447 616 484
) 123456 445 614 480

that it achieves inferior performance than the one that only
the positional queries are replaced with the teacher’s dense
predictions while maintaining original content queries (see
row f). (2)What kind consistency loss is included? In our
consistency training, we only include the classification loss
by default. This is because we found that incorporating
regression consistency loss showed no significant perfor-
mance improvements, as shown in Table 7 (see rows e,
f). We attribute this to the geometric augmentations (e.g.
, shear, rotation) crucial for semantic consistency. While
these transformations impose effective semantic consistency
regularization by enforcing the view invariant, it may lead
to the spatial displacements of the bounding boxes after
the transformation, leading to counterproductive regression
consistency. (3) Which decoder layers are selected to ap-
ply the regularization?. We build our Semi-DETR++ upon
DINO, where there are a total of 6 decoder layers. We
investigate the prediction of the specific decoder layers
to execute our consistency regularization and summarize
the results in Table 8. The performance of our consistency
training varies across decoder layers. Specifically, it shows
notable robust effectiveness when applied to the later stages
(layers 4-6), yielding consistently high performance with
slight performance fluctuation. However, enforcing consis-
tency on the early layers, especially the first, results in a
clear performance drop. We hypothesize that this is due to
the potentially unstable state of query representations in the
initial decoding steps, which are not yet ready for serving
as stable anchors to predict some specific regions.

Total Training Loss
Consistency Loss

1000 1500 1000 1500
Iterations (X 50) Iterations (x 50)

Fig. 7: Training loss curves. Left: The total training loss
curve. Right: The consistency loss curve.
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Training Convergence Stability. We visualize the train-
ing loss curve of the total loss and the consistency along
in Figure 7. Overall, the total training loss is optimized
smoothly, demonstrating the superior training stability of
our approach despite the integration of multiple objec-
tives. Meanwhile, the consistency objective is also optimized
steadily, with the late one-to-one training stage converging
faster.

Backbone Ablation. We further evaluate our approach
using different backbones, including ResNet-101 [32] and
Swin-Transformer Large [55], as shown in Table 9. Semi-
DETR++ demonstrates consistent improvements across both
architectures, confirming that its gains stem from the effec-
tive exploitation of unlabeled data and are not diminished
with stronger feature extraction. Notably, with a Swin-
Transformer backbone, our method sets a new state-of-
the-art of 50.9 mAP using only 10% of the labeled COCO
data. This result definitively shows that our framework’s
effectiveness is backbone-agnostic, highlighting its strong
generalization capability.

TABLE 9: Backbone ablation study. We implement
our method upon DION with ResNet-101 and Swin-
Transformer Large as the backbone, respectively.

Model [ 1% 5% 10%

R101 Sup-only 200£038  320+0.12  367+0.07
R101 Semi-Sup 3134021 4114015 439 +0.08
R101 Semi-DETR++ 3244024 428+ 0.08 457 +0.10
Swin-L Sup-only 2824029 3974014 446+ 0.09
Swin-L Semi-Sup 389+£0.28 4814011 49.8+0.05
Swin-L Semi-DETR++ | 39.8 +0.33  49.6 + 0.12  50.9+ 0.07

Hyperparameter Ablation. We also conduct thorough ab-
lation studies on some hyperparameters in our method,
and the results are summarized in Table 6. Specifically,
(a) Pseudo-label threshold §: We ablate the choice of the
confidence threshold used for pseudo-label selection. The
pseudo-labels of unlabeled data are generated by filtering
the teacher’s dense prediction. We found that either too low
or too high a confidence threshold causes the performance
degeneration, and the threshold of 0.4 achieves the best
performance. (b) Foreground confidence threshold : In re-
decode query consistency, we retain the prediction with a
certain foreground probability to impose consistency regu-
larization. We ablate such a foreground confidence thresh-
old. It shows that the p = 0.15 yields the best performance.
Setting 1 too low introduces many unstable queries that
correspond to no meaningful region, which harms training.
while an excessively high 7 reduces the number of reliable
queries, resulting in inadequate consistency training. Note
that although there is still a foreground confidence threshold
that needs to be determined, it significantly simplifies the
consistency query selection procedure compared with Semi-
DETR, where a special module is designed to balance the
precision and recall carefully. Moreover, it can be observed
that it is robust within the range of 0.10 to 0.20, achieving
much better performance than the previous design. (c) Num-
ber of positive samples M: We select multiple proposals
for the pseudo-labels during one-to-many assignment to
rescue the potentially high-quality samples. We found set
M = 13 achieves the best result. It can be observed that
further increasing the number of positive candidates leads

to slight performance degradation, as it may include more
negative samples than the misclassified positive samples.
(d) Loss weight of unlabeled data \,: We analyze the impact
of the unlabeled data loss weight A,. It shows that both
excessively small and large values degrade performance.
When )\, is too small, the contribution of unlabeled data
becomes negligible, causing the training to rely primarily
on labeled data and limiting potential gains. Conversely,
an overly large value overemphasizes the supervision from
the inaccurate pseudo-labels, which can misguide the opti-
mization process. A, = 4 achieves the best performance by
striking a good balance between exploiting the accurately
annotated data and effectively leveraging unlabeled data. (e)
Duration of the O2M assignment T : We ablate the duration
of the O2M assignment during SHM training. Note that it
can achieve the best performance by employing the O2M as-
signment throughout the training process, which sacrifices
the detection transformer’s NMS-Free inference property.
In comparison, it achieves decent performance with 60,000
optimization steps using O2M assignment, while retaining
the NMS-free characteristic.

5.6 Mechanism Analysis

We provide additional analytical experiments to facilitate
a better understanding of the mechanisms behind our ap-
proach.

How did the one-to-many assignment in SHM help the
training? We propose stage-wise hybrid matching (SHM) to
facilitate the efficient SSOD training by combining the merits
of one-to-many assignment and one-to-one assignment. One
natural question is whether other one-to-many assignment
strategies work with our SHM module. To this end, we
conduct an ablation study on the one-to-many (O2M) as-
signment strategy of SHM, investigating whether alterna-
tive O2M designs are suitable. We replace our original
assignment with several common strategies: Max-IoU [65],
ATSS [95], and SImOTA [27]. The performance after the
O2M training stage is summarized in Table 10. A key
finding is that not all O2M strategies perform effectively in
DETR-based detectors. To understand why, we analyze their
underlying mechanisms via several representative metrics:
Coverage - the proportion of GT boxes assigned with at
least one candidate, Num - the average number of can-
didates assigned to each ground truth, Best Quality - the
highest overlap between the best-matched candidate and
GT, Variance - the average spread of assigned positive can-
didates. We visually compare these assignment strategies
in Figure 8. We observe: (a) Max-IoU assignment, designed
for the dense, predefined anchor boxes of two-stage detec-
tors [65], is ill-suited for DETRs’ sparse and dynamic ob-
ject queries. In conventional two-stage object detectors, the
anchors with varying aspect ratios are densely and evenly
distributed, which ensures sufficient positive candidates (i.e.
anchor boxes) for each ground truth. In contrast, DETRs
rely on sparse and dynamically changing object queries,
where the limited set of queries learns to adapt during
training, and can not guarantee sufficient IoU overlap with
each ground truth box, causing proposals to cluster around
a few ground truths and leaving others with inadequate
coverage. (b) ATSS assignment is similarly designed for
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Coverage: 0.365 Num: 575.49
Best Quality: 0.911

Coverage: 0.742 Num: 1.53
Best Quality: 0.866

Coverage: 0.987 Num: 7.21
Best Quality: 0.824

Coverage: 0.995 Num: 11.32
Best Quality: 0.846

Fig. 8: Visual analysis of one-to-many (O2M) assignment strategies in DETRs. The red figures indicate the number of
candidates assigned to each GT box. We analyze different O2M assignment characteristics via the metrics of coverage rate,
positive proposal number, best-matched quality, and variance of the assigned proposal. See more details in Sec.5.6.

fixed anchors, employing the sample-wise adaptive IoU
threshold t, = mg +v,4 - where mg and v, are the mean and
standard deviation of IoU for each ground truth — to select
positive candidates (i.e. anchor boxes) for each ground truth.
However, this mechanism is incompatible with DETRs. The
model’s learnable object queries cause regressed boxes to
cluster densely around ground truths, which artificially
inflates the adaptive IoU threshold t,. This overly stringent
filtering erroneously excludes many high-quality proposals.
As a result, while ATSS improves spatial coverage over
other methods, the average number of positive candidates
per object remains critically low (below 2), severely limiting
its effectiveness. (c) SimOTA and our proposed strategy
prove more robust. Both share two key principles: (1) a
rank-based top-k selection to guarantee sufficient positives,
and (2) a comprehensive ranking criterion that balances
classification confidence and regression quality (e.g., IoU) to
select diverse, high-quality candidates. However, SimOTA
employs a dynamic-k matching strategy, which determines
the number of positive candidates by summing the top-
k largest IoUs. This approach prioritizes highly overlap-
ping candidates (reducing assignment variance) but over-
looks candidates with slight deviations. These deviated
candidates are crucial when exploiting noisy pseudo-labels,
as they may represent high-quality proposals when the
pseudo-ground truth is inaccurate. In summary, the SHM
enhances the training efficiency by assigning sufficient positive
proposals with a certain spatial deviation but retaining the decent
proposal quality to each pseudo label. These kinds of proposals
deliver more robustness to the inaccurate pseudo-labels in
the early stage, mitigating the potential optimization conflict

TABLE 10: One-to-many (O2M) assignment analysis in
SHM.

SHM Variants \ mAP APs50 APrs
(a) O2M w/ Max-IoU [64] 11.4 15.0 12.1
(b) O2M w/ ATSS [95] 18.7 30.5 189
(c) O2M w/ SimOTA [27] 425 59.9 45.2
(d) Ours 441 61.0 47.5

and enabling more comprehensive supervision.

Why re-decode query consistency is well-suited to DETR’s
attention-based query mechanism? We conduct further
analysis of our re-decode query consistency and reveal
several key properties that make it an ideal consistency
training scheme for DETR-based SSOD: (1) Persistent Se-
mantic Correspondence. The quantitative experiment results
about decoding instability score (DIS) shown in Figure 3
have already validated that the queries become increasingly
stable and locally focused through layer-by-layer decoding,
developing clear semantic bindings to particular image re-
gions. Our method builds upon this insight and leverages
this inherent property to construct consistent query pairs.
To further demonstrate this persistent semantic binding,
we visualize the query’s attention and the corresponding
prediction of the first decoding and re-decoding process
in Figure 9. It can be observed that queries progressively
localize correct regions during initial decoding. When these
updated queries are fed through the decoder again, they
maintain consistent localization with more concentrated
attention. This validates our hypothesis that the queries
preserve the semantic correspondence through re-decoding.
The re-decode query consistency transforms the converged
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Fig. 9: Visual illustration of the re-decode locality in DETRs. The
rectangle is the ground truth bounding box, and the small blue squares are the deformable attention attended

query,
locations. Best viewed zoomed in.

prediction from the teacher decoder to serve as guidance
for the student decoder, and then enforces the re-decoding
results of the student query to be consistent with the teacher.
This can be understood as a form of distillation where the
student learns local decoding behavior from the teacher
by aligning their re-decoding outputs. (2) Dense Consistency
Supervision. Unlike the sparse consistency queries in our
conference version, Semi-DETR++ leverages the teacher’s
dense predictions without selection for more comprehen-
sive regularization. This aligns with recent findings on the
advantages of dense supervision in Mean-Teacher frame-
works [97], [42]. This is also demonstrated by the ablation
in Table 6, where higher confidence thresholds (0.25 vs.
0.15) cause notable performance degradation. While higher
thresholds ensure high foreground overlap, they discard
valuable partially-overlapped predictions that contribute
to effective dense supervision. (3) Implicit Correspondence
Eliminates Explicit Matching. Our approach bypasses explicit
query matching entirely by leveraging the inherent locality
of decoded queries when constructing dense consistency
pairs. An alternative would require Hungarian matching
between query sets, which has O(n?) complexity and be-
comes computationally expensive as query numbers in-
crease. By exploiting the natural semantic binding of re-
decode queries, our method achieves efficient consistency
training without this computational bottleneck.

rectangle is the predicted bounding box of the

6 CONCLUSION

In this paper, we investigate the potential issue of adopt-
ing detection transformers (DETRs) for semi-supervised
object detection (SSOD). We reveal that the primary chal-
lenge of DETR-based SSOD lies in the noise-vulnerable
bipartite matching and the consistency training of the in-
compatible query-based decoding paradigm. To address
these issues, we propose Semi-DETR++, the first end-to-end
semi-supervised object detection approach based on detec-
tion transformers. To enhance the training efficiency, Semi-
DETR++ develops a stage-wise hybrid matching strategy
to combine a delicately designed one-to-many assignment
strategy with the inherent bipartite matching in a stage-
wise manner to resist the noisy pseudo-labels while retain-
ing the precious end-to-end inference property of DETRs.
Based on the insight that the evolved locality of query fea-
tures along the layer-by-layer decoding process, a re-decode
query consistency training scheme is introduced to resolve
the lack of deterministic correspondence in query-based
decoding and enable efficient consistency regularization
with DETRs, which simply the overall pipeline compared to
our conference version significantly while achieving more
effective consistency regularization. Extensive experiments
on COCO and PASCAL VOC benchmarks demonstrate that
Semi-DETR++ outperforms existing SSOD methods by sig-
nificant margins. Moreover, we show the versatility of our
framework by extending it to semi-supervised segmentation
tasks, including instance and semantic segmentation, high-
lighting its generalization capability.
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